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I. Introduction 

Inherent in the nature of fused salts are two fundamental com-
plications which the theorist must understand and surmount. In the 
first place, these substances are representative members of the class of 
liquids, a state of matter whose microscopic structure and thermo-
dynamic properties have always been difficult to predict quantita-
tively from the known character of the constituent molecules. In 
the liquid state, one has appeal neither to the structural regularity 
of crystalline solids, where atomic motions may be regarded as a 
superposition of running harmonic waves (normal vibrational modes 
for the lattice) , nor to the situation characteristic of dilute gases, 
where collisional encounters are rare and occur predominantly be-
tween isolated molecular pairs. In common with gases, ordinary 
liquids have an essentially disordered nature over distances in the 
substance of macroscopic size. In this article it will become clear, 
however, that the positions of neighboring particles in liquids, and 
especially molten salts, are often indicative of a strong local ordering 
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influence, or "structure," which is, in the last analysis, a direct result 
of the qualitative features of the force laws acting between the con 
stituent particles. 

The most obvious, and yet striking result of liquid disorder in the 
large (exempting the case of covalently bound glasses) is the property 
of fluidity. An adequate understanding of the liquid state must 
explain this ease of flow, with the seemingly contradictory fact of 
near-solid packing densities. The flow properties of liquids, vis-à-vis 
those of the other two states of aggregation, must reflect distinctive 
modes of molecular motion. These molecular motions in liquids are 
qualitatively unlike the separate collisions interrupting gas particle 
linear trajectories (with a well-defined free path length), or the 
multiply periodic lattice vibrations; they are instead a complicated 
Brownian motion. The rather small density change occurring upon 
melting of the solid therefore has a very profound effect on the 
collective aspects of molecular motion, and we anticipate that the 
local arrangement of the ions in salts also changes upon melting in a 
significant fashion to remain consistent with these modes of motion. 

The second significant and difficult characteristic of molten salts is, 
of course, the fact that the constituent particles are electrostatically 
charged. The extreme range of the Coulomb potential energy, 
compared, for example, with the Lennard-Jones interaction often 
quoted for noble gas atom pairs, proved in the early years of the-
oretical chemistry to provide a classical mystery insofar as under-
standing the thermodynamic properties of electrolytic solutions was 
concerned. The resolution proposed in the pioneering work of 
Debye and Mickel (19) demonstrated lucidly the profound effect 
that these long-range forces produce. Specifically, the various 
measurable equilibrium properties of dilute electrolytes in non-elec-
trolytic solvents cannot be expressed as salt concentration power series, 
as is the case for solutions of non-electrolytes. 

Pure molten salts are perhaps the most concentrated electrolytic 
fluids obtainable by ordinary laboratory techniques. They are most 
certainly outside the range of applicability of the Debye-Mickel 
approach. That the extra electrostatic binding in an ionic assembly 
has primary significance for fused salts is clear from the very high 
melting and boiling points, as well as the large surface tensions at 
elevated temperatures measured for these substances. Obviously, 
the ultimate theoretical analysis of fused salts must explicitly ac 
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knowledge the existence of Coulomb interactions, and clarify their 
role in determining ionic motions and arrangements. 

This article is intended to survey some of the existing theoretical 
approaches to the explanation of the equilibrium properties of pure 
fused salts. We shall not undertake to investigate the interesting 
field of transport processes such as electrical and thermal conduction, 
viscous dissipation, and diffusion, each of which demand establish-
ment of a non-equilibrium state for experimental observation and 
measurement. However, an elucidation of the equilibrium molecular 
structure may well serve eventually as a large aid in providing an 
account of irreversible phenomena close to equilibrium. In addition 
to covering past work in the field, an effort will be made to point out 
novel theoretical relations and points of view which seem to merit 
future detailed examination. 

As a preliminary to a review of the powerful Gibbs ensemble 
technique in equilibrium statistical mechanics, the nature of the forces 
acting between ions will be discussed at some length. Beside the 
somewhat trivial exercise of showing how the Coulombic ion—ion 
interactions arise from the detailed quantum-mechanical theory, it 
is instructive to analyze the nature of the other types of interactions 
that occur, and to emphasize the points at which the specifically 
chemical distinctions between ions of the different elements are im-
portant. The natural adjunct to such inquiry is recognition of the 
existence and nature of complex ions in the melt; unfortunately, 
limitations on a survey article of this sort prevent any but the most 
cursory acknowledgment of the fundamentals of modern structural 
inorganic chemistry, and of their value in predicting the properties of 
polyatomic species present in melts. On the other hand, it is neces-
sary to stress that the ionic polarizabilities, which may be com-
puted quantum-mechanically, are required for later discussion of the 
basic dielectric properties of fused salts. 

The viewpoint in the following article is that approximate statistical 
theories of fused salts must be critically evaluated and understood, 
insofar as it proves feasible, in terms of their relations to and de-
ductions from the rigorous (but often impractically complex) results 
of fundamental statistical mechanics. In this connection, the 
intention will be mainly to provide such justifications and criticisms 
on the basis of informal mathematical and physical intuition. It 
will soon become apparent to the reader that much remains yet to be 
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accomplished in this field, especially in the way of carrying out de-
tailed computational programs on the various theoretical analyses 
available at the time of this writing. The present survey will at-
tempt to indicate not only the lines of past progress, but also the 
major theoretical stumbling blocks and weaknesses remaining. 

II. Forces Between Ions 

The most fundamental characteristic of any assembly of molecules 
or ions, from the standpoint of statistical-mechanical theory, is the 
type of interactions operative between the constituent particles. 
To obtain a reasonably detailed account of these interactions and the 
corresponding forces, it is mandatory to use the notions of quantum 
mechanics. As a matter of historical fact, one of the early triumphs 
of wave mechanics in the hands of Heitler and London (32) was 
satisfactory explanation of chemical covalent binding forces, both 
qualitatively at first, and later with gratifying numerical agreement 
with experimental calorimetry and spectroscopy. Likewise, the 
attractive and repulsive "physical" ' forces acting between chemically 
saturated molecules received adequate explanation following London's 
recognition of the source of dispersion forces (47). 

We shall begin this article on fused salts by providing a brief sketch 
of the quantum-mechanical foundation of intermolecular force 
theory. Special emphasis will be given to aspects peculiar to ionic 
particles. The major points to be stressed arise from the qualitative 
character of the interaction potentials, rather than in their precise 
numerical computation. It is very often the task of theory in this 
field to provide a fairly general functional form for intermolecular 
( interionic in our case) potentials. Subsequently, the remaining 
adjustable parameters are chosen best to fit some experimental data. 
A well-known example in this regard is choice of the Lennard-Jones 
potential depth and breadth parameters to fit measured second virial 
coefficients or gas viscosities for the noble gases. The main motivation 
for use of experimental information is the obvious fact that the 
complete quantum-mechanical theory is impossibly difficult to 
solve; the traditional sequence of approximation procedures (men-
tioned below) may be reliable in preserving many important gross 
features of the interaction potentials, but numerical imprecision is 
often demonstrably large. 
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Fig. 1. The thermostated fused salt system in a container with rigid walls. 

The molten salt microphysical situation for which we seek a de-
scription is a set of ions in a suitable container which, for our purposes, 
may be thought of as comprising impenetrable walls of a rectangular 
box (see Fig. 1). Since we ultimately desire to investigate states of 
thermodynamic equilibrium, it will be necessary to bring this system 
into thermal contact with a large heat reservoir, or thermostat, 
characterized by absolute temperature T. It will be presumed 
that temperature and over-all density are chosen such that the final 
thermodynamic states of interest are fluid phases, with intensive 
properties such as local density constant from point to point within 
each fluid phase. Gravitational effects are significant only insofar 
as they constrain the denser liquid phase, in a system containing 
coexistent liquid and vapor, to occupy the bottom of the container. 

The individual ions are, of course, composed of orbital electrons 
surrounding essentially point nuclei. The total electronic and 
nuclear charges exactly cancel, to leave the entire fused salt system 
uncharged as a whole. 

For a single pure salt whose constituent ions are monatomic, there 
are just two types of point nuclei which ultimately will form cations 
and anions. Denote their charges by Z+e and Z_e, respectively, 
with positive integers Z+ and Z— the atomic numbers, and e the pro-
tonic charge. If there are N+ and N— of each of these types of nuclei, 
then the system must contain precisely M = N+ Z+  + N— Z— electrons. 

Except in the case of nuclei with the very lowest atomic numbers, 
electrons near these nuclei (the inner "core electrons") will be moving 
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with relativistic velocities. It would be strictly proper, therefore, 
only to describe the entire nuclear and electronic system by means 
of a relativistic wave mechanics, i.e., the Dirac four-component 
matrix equation (63). It is also well known that these rapidly moving 
electrons, as a result of their relativistic character, are subject to 
spin-orbit couplings. One recognizes a fortunate circumstance, 
though, that ordinarily these relativistic effects do not explicitly 
enter into computation of intermolecular forces. Since they are 
primarily confined to the inner orbital electrons which are very 
little affected by the presence of neighboring ions, one may confidently 
use a completely nonrelativistic quantum theory for intermolecular 
force calculations. In other words, the absolute error of relativistic 
origin has virtually no direct effect on intermolecular forces. It 
would be a mistake to suppose, however, that simultaneously other 
properties of the ions will be appropriately described, but this fact 
is of no concern in the present context. 

Consequently, we assume that the Schrodinger equation is an 
adequate formulation of electron and nuclear mechanical motion. 
The interaction portion, U, of the Hamiltonian operator now consists 
entirely of the Coulomb potentials for each pair of elementary 
particles. We split U into a portion strictly involving only nuclear 
coordinates, U,, and the remainder, Ue, dependent as well upon 
positions of the electrons: 

U = Un+Ue 

N +  + N_ ZZ3e2 

	

Un = E 	 (1) 
i < :i :=11 I rj  - ri l 

	

M 	
e 

2 	M N++N 	2 

	

Ue E 	E E 
i<j=1S5-S 	i=1 j=1 Irj  — s i l 

Position vectors S refer to electrons, r to nuclei. 
A major simplification in the interatomic force problem results by 

use of the Born-Oppenheimer separation (11). The nuclei are 
sufficiently massive by comparison with the electrons that instantane-
ously their relatively sluggish motions (even at molten salt tempera-
tures) may be disregarded in solving the quantum-mechanical 
electron problem. Thus the nuclei are regarded as providing a 
virtually time-independent force field in which the electrons move; 
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the "fixed" positions r 1  . . . rN(N = N+ + N—) of these nuclei there- 

z  fore adopt the role of parameters (rather than true quantum-dy-
namical variables) upon which the eigenfunctions and eigenvalues 
of the M-body electron problem implicitly depend. The small error 
in the Schrodinger equation eigenenergies as a result of this separation 
is known to be of the order of the square root of the electron to nuclear 
mass ratio (36). 

One therefore considers a reduced, or Born-Oppenheimer, wave 
equation for the M electrons: 

H1'(s 1  ... SM) = E11(s1 . . SM) 	 (2) 

/j2 M 

H - - 	E  v2 + Ue(Si. . . SM) 
2m, i = 1 

h is Planck's constant divided by 2ir, and m is the electron mass. 
Nuclear positions are implicit in both E and Ue. The M electrons, 
of course, have spin, but in writing the wave function 41, as in equation 
2, the spin coordinates have been suppressed in view of the fact 
that the Hamiltonian is spin independent. It is to be understood 
that i/'  is normalized and conforms to the Pauli principle; that is, 
4' must be antisymmetric with respect to simultaneous interchange of 
configuration and spin coordinates for any electron pair. 

Presuming that it is possible to determine the ground-state energy, 
E0 , from equation 2 as a function of nuclear coordinates, and since 
electronic excitations are usually not important for molten salts, the 
interionic potential energy function, VN(rl . . . rN) , for the molten 
salt will be taken to be 

VN(rl... rN) - Eo (r1 . .. rN) + U(r1 . . . rN) - E 	(3) 

The constant E is the value of E for infinitely separated nuclei, 
where the quantum state amounts to non-interacting ions. Con-
sequently, VN vanishes for this separated configuration. The 
nuclear motion subsequently may in principal be obtained from the 
classical equations of motion for these N particles, with interaction 
energy VN. The positions of the various ions in the actual system of 
interest are then identified at any instant with the coordinates 
r1 . . rN. 

With a specific nuclear (ionic) configuration, the M-electron wave 
function L'(s 1  . . . SM) has properties which satisfy a fundamental 
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theorem of molecular quantum theory. This theorem, which is 
useful in understanding the nature of forces between the ions of a 
salt, was discovered independently by Hellmann (33) and Feynman 
(22) . It states simply that the force on each nucleus is precisely 
the same as would be computed on the basis of classical electrostatics, 
from a charge density given by the fixed nuclear charges and the local 
electronic charge density, pe(r).  This latter is directly obtained 
from 41 by integrating i,L12: 

Pe(r) - - e 	fd 3si . . . d3sMô(r - s1)I(si. . . sM)2 
i=1 	 (4) 

- _eMfd 3s2  ... dsM (rs2 . . .SM) 2  

where the fact that all electrons must be regarded as indistinguishable 
has been used. Having computed the forces by this scheme, VN 
follows by integration, subject to the vanishing of this latter quantity 
for infinite separation. Isolated ions of the smaller atomic number 
elements have spherically symmetric charge distributions in their 
ground states (closed shells of electron orbitals) . If these distribu-
tions were preserved separately for each ion, regardless of position, 
electrostatics then would claim, by way of the Hellmann-Feynman 
theorem, that V N  would be precisely a sum of Coulombic contribu-
tions for the ion-charge pairs if all distances were not so small as to 
allow ion electron cloud overlaps. Since we shall see this is an over-
simplification for VN,  ion charge distortions must be important. 
A significant value of the Hellmann-Feynman theorem is its recogni-
tion that characteristically nonclassical features such as electron spin, 
and particle indistinguishability (the Pauli principle) have only an 
indirect effect on intermolecular forces, by the way in which they af-
fect p(r) through ;t'. 

Let us first examine the interaction V(r) between an isolated pair 
of ions, ion 1 of species 'y and ion 2 of species 5, with internuclear 
separation r. When r is very large, V 75  vanishes, and in this con-
figuration the electron density around each ion is spherically sym-
metric. We distinguish two cases: (1 ) r small enough so significant 
overlap of electron clouds occurs, and () r moderately large to 
prevent overlap, but still sufficiently small to produce mutual electron 
cloud polarizations. For the former, r is so small that the set of 
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orbital electrons for both ions are being forced into the same region of 
space. The Pauli exclusion principle assures that electrons of the 
same spin, at least, will avoid one another, so as to displace the elec-
tron clouds outward from the region of overlap between nuclei 1 and 
2. Furthermore, an attempt to crowd many electrons into a common 
region (the overlap region) would produce a considerable rise in elec-
tron kinetic energy for all electrons involved, regardless of spin. 
Both effects therefore tend to force electrons out of the region between 
the nuclei. In this event, the Hellmann-Feynman theorem implies 
that the nuclei should experience a very powerful repulsion. 

Several numerical calculations have been carried out on this 
repulsive energy for the noble gases (3,62) . Since most monatomic 
ions have completed outer valence shells of electron orbitals (noble 
gas configurations) , it is reasonable to suppose that a qualitatively 
similar result holds for ion overlap repulsions. It is generally found 
that this contribution to V(r) may be represented well by a very 
rapidly decaying exponential function, with large multiplicative 
coefficient, 

V(r) -+. A exp(—Br) 	(r small) 	 (5) 

It should be noted that Born and Mayer (10) have been reasonably 
successful in explaining ionic crystal binding energies, by use of this 
exponential type of repulsive interaction. 

The computional procedures used in obtaining results of type 5 
have amounted to first- or second-order quantum-mechanical per-
turbation theory, where the perturbation is the sum of electron—
electron Coulomb repulsions for pairs of electrons, one member of 
which is included in the electron cloud of ion 1, the other in the cloud 
of 2. Typically, it is necessary even in the most accurate procedure 
possible here to utilize properly antisymmetrized product wave 
functions, built up from only single-electron wave functions of the 
self-consistent field type, as the set of unperturbed basis functions. 

It is the very rapidly rising repulsive portion for V.(r) computed in 
this way which allows the concept of a meaningful collision diameter 
for the ion pair 1,2. The typical values of A and B obtained are so 
large that the fractional change in r causing the value of expression 5 
to change from IcT to 2/cT (lc is Boltzmann's constant) at molten salt 
temperatures is very small. In other words, function 5 appears to be 
almost vertical. 
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On account of this rapidly rising feature of the repulsive energy 
inside the collision diameter, it has often been found advantageous to 
replace the exponential decay form by a function qualitatively similar, 
but with mathematical properties tending to simplify specific prob-
lems. We mention in this connection two common choices. The 
first is the inverse twelfth (or more generally inverse nth) power law, 
appearing in the well-known Lennard-Jones potential function. 
Secondly, a rigid sphere interaction may be employed as the logical 
limit of rapid onset of repulsion. 

The only explicit manner in which the nonvanishing ionic charges 
are reflected in the parameters of equation 5 is by their effect on the 
self-consistent single-electron orbitals used to compute relevant matrix 
elements in the perturbation theory. A net positive charge 
for cations implies less expanded orbitals than for the cor-
responding isoelectronic noble gas; negative anions have more 
expanded orbitals. The resulting change in the collision diameter 
for ion pairs can be quite marked. In the case of the analogs—two-
electron hydride ion and helium atom, for example—the crystal 
radii are, respectively, 2.08 and 0.93 A. (56). 

In the second case of intermediate r, where there is negligible 
electron cloud overlap, some important contributions to V(r) are 
rather more subtle. Once again quantum-mechanical perturbation 
theory is the tool necessary for detailed calculations. The perturba-
tion now, though, is taken to be the operator ' corresponding to 
interaction between the various charge multipoles instantaneously 
present at the two ions. Specifically, we choose parallel coordinate 
systems centered at each nucleus with z axes in the direction r, so 

Ion 	 Ion  

Si 

	 Si 

Si  

/Y z A, r 	
/Y z 

Ionic electron 
clouds 

Fig. 2. Coordinate systems used in the multipole interaction perturbation H'. 
Electrons in the ionic "clouds" are located by displacement vectors S giving posi-
tions relative to the respective nuclei. 
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the x and y axes lie in planes normal to r through the respective 
nuclei, as in Figure 2. When the electrons in the respective ionic 
clouds are specified in position by their components x, y, and zi of 
displacement s 1  from the nucleus to which they are bound, H' may 
be written as an inverse series in r = ri: 

IT = 
	n,) (Z 8 _ no)e 2] 	[ 2 17  _ n7)e 2 nb 

+  
r2 	j=1 
 Zj 

	

(Z - n 	y 

 ] 	

[e2 flY 
- 	

)e2 	
- 	 (xx + yjy - 2zz)] 

r2 	i= 1 	 r3 i=ij=i 

	

+ 	
7)e2 	

(z5 2  - '/2x 2  - 1/2yj 2  ) 
[ (Z

7  - n 

r 3   

2 	7 

	

+ 8 
	no)e 	

(z 2  - 1/2x 1 2  - 1/2Yi2)] + 0(r -4)
r3 	i=i 

(6) 

Summation index i has here been used only for the n electrons of the 
ion 1, and  only for the na electrons of ion 2. 

The various terms in H' may easily be recognized. The leading 
contribution, dropping off with inverse distance, is the Coulomb 
interaction operator between the two ions regarded as point charges. 

H,d, decreasing with distance by an extra r' factor, represents the 
instantaneous electrostatic interaction of charge on one ion with the 
dipole moment of the other, as well as the reverse; the interaction 
again is that for point multipoles. Likewise, He'd,  varying as r 3 , 
is a dipole—dipole term. The last explicitly indicated contribution 
is for the interaction of a point charge—point quadrupole variety, and 
is also an r 3  perturbation. The neglected terms, 0(r4),  amount to 
charge—octupole, dipole—quadrupole, etc. interactions. When r 
is not too small (greater than four or five ionic collision diameters), 
the multipole expansion converges sufficiently rapidly that neglect 
of these higher order terms is appropriate. 

The unperturbed wave function for the n, + na electrons may be 
taken as simply a product of the individual isolated ion wave func-
tions; since overlap is assumed negligible, it is unnecessary to anti-
symmetrize the resulting product with respect to interionic electron 
permutations, in computing the necessary matrix elements. For ions 
of small atomic number, the isolated ion wave functions are spheri- 
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cally symmetric and are Russell-Saunders 15  states, so only a single 
such joint wave function is appropriate. For individual ions with 
more complicated electronic structure, several potential energy 
curves eventually would be computed relating to the various joint 
wave functions for the two ions that may be constructed (correspond-
ing, for example, to different values of total electronic spin and angu -
lar momentum along the internuclear axis) . In these cases, it would 
be necessary to seek some average potential curve according to a 
Boltzmann factor weighting for the temperature of interest. 

In the first order of perturbation, where the computed energy is 
symbolized as usual by the diagonal matrix element notation 
(OIH'O) (0 standing for the unperturbed ground state), only H yields a 
nonvanishing result: as expected this is the ion—ion Coulomb potential. 
The diagonal matrix elements of the other members of H' vanish 
for these spherically symmetric states. It is in second order, though, 
that nontrivial results are obtained; the nondiagonal matrix elements 
which occur appear squared: 

: (OH'1c)(kH'0) 
k5,-' O 	Ek - O 

Here, the €'s are the unperturbed energies and summation includes all 
excited intermediate states lc for the two-ion system. The energies 

cc 'of interaction corresponding to each of H . . . in this second 
order have the following r dependence: 

H,',: Vanishes in second (and each higher) order 
Hd: r- 4 

Hid: r 6  
H q: r° 

The physical meaning of the H,' perturbation is that of dipole 
polarization of the electron cloud of one ion due to the electric field 
surrounding the charge of its neighboring ion. In fact, the r 4  
dependence is precisely that expected for a charge and an induced 
dipole. It is therefore proper to call this type of force an induction 
force. In cases of interest, it may be evaluated either by complete 
quantum-mechanical calculation, or by use of experimentally meas-
ured ion polarizabilities aly  and a (from refractive index measure-
ments) , and the instantaneous electric field at the position of that ion. 
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The Hj'd contribution is usually called the London dispersion 
force. Physically, it amounts to the fact that orientations of in-
stantaneous dipole moments of the two electron clouds are correlated. 
They prefer to adopt simultaneously antiparallel directions to lower 
the total interaction energy. Consequently, this force is always 
attractive. Dispersion forces have been computed for noble gases 
(57) with results that are in reasonably good accord (when combined 
with the repulsive core calculations) with dilute gas equation of state 
and viscosity measurements. The second-order perturbation method, 
then, is apparently reliable for this contribution. No computations, 
however, have been carried out for ions. On a qualitative basis, 
though, the tighter average binding of electrons in cations relative 
to the isoelectronic noble gas implies less ease of spontaneous dipole 
formation. Consequently, the numerical multiplicative coefficient 
of r 6  in the dispersion interaction for a pair involving cations 
is depressed below the noble gas value. Naturally, the reverse is 
true in the case of anions. In any event, the largest share of the 
dispersion force will be due to the least tightly bound outer shell of 
electrons. With a pair of ions with noble gas atom structures for 
their ground states, the largest contribution to the dispersion energy 
in second-order perturbation theory will involve both ions in the 
intermediate state (k) with electrons excited to the lowest lying 
p orbitals. 

London (47) has proposed a simple means of estimating the numeri-
cal coefficient for the dispersion force. If the polarizabilities of ions 
1 and 2 are denoted, respectively, by a7  and a, and the energy 
required for removal of an electron from each by I and I, the London 
approximation has the simple form: 

VdisP (r) 	- 
3a7a&Io 	

(7) 
2(L + 13) r6 

Although originally proposed for neutral atoms or molecules, it 
should apply as well to our ionic case. In a recent review article, 
Pitzer (57) has discussed in detail the derivation of equation 7, along 
with related formulas for Vod1)(r)  attributed to Slater and Kirk-
wood(65)and Kirkwood and Miller (53). 

The final contribution to V(r), arising out of Hcq , is likewise an 
r 6  attractive interaction. It amounts to induction of a static 
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v_yo  (r) 

Fig. 3. Isolated ion pair interaction curves. 

quadrupole moment in one ion by the gradient of electric field at its 
center, due to the other ion's net charge. Obviously, no such force 
can exist between uncharged noble gas atoms, so this additional force, 
usually not recognized, is peculiar to the ionic case. In this second-
order perturbation scheme at least, it will mainly be due to the lowest 
lying states with excited d electrons, which have the proper quadrupole 
symmetry. Since the energy level scheme for light atoms generally 
places these d orbitals higher than the p orbitals required for the dis-
persion attraction, it is probably true that the major contribution 
to the total inverse sixth power attractive energy between ions is just 
the London dispersion portion. The charge—quadrupole contribu-
tion may also properly be termed an induction force. 

The total ion pair potential V 7 (r) may now be written: 

V(r) = A, oe _Bi - 	
{( z 7e) 2a + (zoe) 2 a.1 1 

r6 	 2r4 	 r 

z_y  = Z7  - n; za  = Z - no; 	 (8) 

Figure 3 indicates roughly the qualitative nature of V 7 (r) for a pair 
of ions with like and with unlike charge signs. The existence or 
non-existence of a minimum for the like pair is contingent on the 
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relative values of charge, dipole and quadrupole polarizability, dis-
persion attraction, and ion core size (collision diameter). 

The actual molten salt consists of '12N(N - 1) distinct ion pairs 
within the container. To obtain the total interaction energy VN 
for a given set of ion positions r 1  . . . rN, it is necessary to specify an 
approximate rule for conversion of the isolated ion pair result, to this 
many-ion case. The inverse distance ion-charge Coulomb inter-
actions z7z6e 2/r, will always be additive, as a general quantum-
mechanical result following definition of the H 6  perturbations. 
It is necessary to suppose in addition that the repulsive ion core, 
and the attractive dispersion forces are likewise additive. The 
deviations from this ideal situation (at least for the dispersion forces) 
have been investigated theoretically, and are discussed in a review by 
Kihara (39) . The errors involved are not large, and it is convenient 
to disregard them in the interests of simplicity. However, it is 
entirely inappropriate to suppose that the r 4  dipole induction 
contribution, in equation 8, is additive. The total induced dipole 
for any given ion may be regarded as a vector sum of dipoles due to 
all electric field sources surrounding this polarized ion. But the 
local electric field at the ion is a result not only of the entire set of 
ionic charges, but the other induced dipoles as well, which them-
selves depend upon the entire set of ionic charges and dipoles. In 
other words, the induced dipole potential energy is in the strict sense 
unavoidably a many-body interaction in the liquid salt system of 
interest. 

We shall tentatively suppose that the charge-induced quadrupole 
r 6  energies are on the average also additive, so they may be combined 
with the dispersion energies in VN.  The result then is a joint inverse 
sixth power attractive interaction for each ion pair, whose numerical 
coefficient combines these two types of perturbation. 

To find VN, therefore, one adds up the ion core repulsions, r 6  
attractions, and the r 1  Coulomb interactions for all pairs. With 
this subsequently must be combined the additional (negative) in-
duced dipole energy. This latter is obtained as solution of the 
classical electrostatic problem of a set of point charges, and polarizable 
point particles, at r1  . . . rN. 

There still remains the problem of choosing the constants A , 
and Cyb  in equation 8. Low-temperature data on the solid 

phase for the salt of interest are especially useful in this connection, 
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For salts which crystallize in lattices sufficiently symmetrical that 
each ion is a center of symmetry, the electric field at each nucleus 
vanishes, so no static polarization interactions occur. The lattice 
near-neighbor distance may be used to fix the unlike ion pair potential 
minimum, and the sublimation energy its depth. Furthermore, the 
compressibility should determine the curvature at this minimum. 
The remaining undetermined constants may be chosen so as to con-
form to London's rule, equation 7, and the known crystallographic 
radii of the ions. 

To this point, our discussion of forces has consistently supposed 
that ions refrained from covalent chemical binding. However, 
there is virtually a continuous spectrum of substances ranging from 
those whose melts are almost exclusively ionic (NaF) , to salts where 
the species present are primarily covalently bound complex ions or 
molecules (such as the mercuric halides) . At the two extremes, the 
relevant species present are easily distinguishable and may with 
virtually no ambiguity be regarded as the fundamental "building 
blocks" of which the melt is composed. Thus, in fused KNO 3 , 

the two significant species are clearly potassium cation and the stable 
polyatomic nitrate anion. 

Not only are a variety of experimental techniques available for 
distinguishing what bound species are present (simple molecules or 
complex ions) , but often their concentrations may readily be estimated. 
To be precise in a statistical-mechanical theory of melts containing 
these clear-cut polyatomic species, it would be necessary to include 
for each such particle a set of internal coordinates describing rota-
tional and vibrational degrees of freedom; in principle, the funda-
mental statistical methods to be described in later sections are capable 
of dealing with these additional complications, though often with 
considerable extra labor. In some cases, it will be possible to take 
advantage of rapid rotations to provide a sphericalization of these 
polyatomic species. Furthermore, it is often sufficient to consider 
center-of-mass translational degrees of freedom for the entire set of 
particles to be uncoupled from vibrations and rotations. 

The interparticle potential energy, VN, for an assembly of N 
polyatomic particles could be built up of contributions arising from 
each atom of the complex particles, using the pair potential energy 
form, equation 8, already adduced in this section, with parameters 
appropriate to bound atoms. Under the condition of rapid rotation 
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of the polyatomic species, the resulting rotation-averaged VN would 
have the same character as for monatomic particles (pairwise addi-
tive, except for the induced dipole contribution) , and is amenable to 
ready use in computing the microscopic structure of the liquid. 

The greatest conceptual difficulty, so far as the statistical mechanics 
of liquids is concerned, occurs in the fairly extensive class of borderline 
melts, where liquids are only partially and indistinctly associated, or 
where large polymeric complexes appear to be present. Typical 
examples are BeF 2  (48) and ZnC1 2  (49). The trouble is, on the one 
hand, that most neighboring pairs of particles are not sufficiently 
strongly associated to present a clear and unambiguous case of stable 
chemical (as distinguished from electrostatic) binding. But on the 
other hand, the additional forces which are covalent (or "chemical" 
in nature are sufficiently strong to modify the thermodynamic 
functions as well as local structure to a significant degree. If these 
chemical forces were central and pairwise additive, as are (ap-
proximately) the nonpolarization "physical" forces treated earlier, 
they would present no problem. But they are not this simple; 
chemical bonds are obviously directional, and they are saturating, 
since a given atom can bond to only certain numbers of neighbors, 
in accord with the usual chemical properties for the element in ques-
tion. 

It will eventually be necessary to include what is known about the 
qualitative features of chemical bonding forces within the framework 
of existing practical methods of statistical mechanics which explicitly 
utilize intermolecular force expressions. At present, however, such 
techniques are conspicuously lacking in liquid state theory. In 
the following, therefore, when it becomes necessary to use the potential 
energy function VN for the N salt ions, it will be supposed that these 
particles are suitably stable chemical entities, so VN itself contains 
no chemical binding, or valence, interactions. 

III. Local Dielectric Properties 

Section II has reviewed the fundamental bases for our qualitative 
understanding of the various types of forces acting between the ions 
in a molten electrolyte. The forces could be classified roughly by 
the number of particles simultaneously involved. The Coulomb 
p__ i  interaction as well as the London r 6 , and repulsive core potentials 
act only between pairs, and are thus (at least in good approximation 
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for the latter two) pairwise additive; this simple feature is helpful 
in visualizing these components of V v  for given r 1  . . . rN. The 
nature of polarization forces, though, is entirely different. An ion's 
charge will thus induce simultaneous dipoles in neighboring ions, 
which then will interact not only among themselves, but will likewise 
induce instantaneous dipoles in yet other ions. Since the induced 
dipole—induced dipole interactions fall off with distance sufficiently 
slowly (r 3  in a given direction relative to one such dipole), the 
entire molten salt is simultaneously involved in producing these 
polarization energies, rather than just sets of a small finite number 
of ions independent of the system size. 

It is the purpose of this section, however, to demonstrate explicitly 
the manner in which the usual dielectric constant hedge against the 
complicated nature of the truly many-body polarization forces may 
be systematically accomplished. The fact that our results indicate 
the validity of the usual use of a dielectric constant for the fused 
salt medium is in itself hardly startling, and has always been antic-
ipated for liquid electrolytes by physical intuition. The value of a 
careful approach, though, lies first in the derivation of explicit formu-
las for local (i.e., molecular) dielectric properties, and secondly, in 
clear recognition of what is being neglected in replacement of the 
many-body polarization effects by one- and two-body dielectric 
continuum interaction energies. 

For simplicity, it will be assumed in this analysis that the molten 
salt is in a single homogeneous fluid phase. The total interaction for 
the N ions, VN (rl . . . rN), may be separated for the present purposes 
into an electrostatic part, VN (e)(rl  . . . rN), including both the Coulomb 
charge—charge potentials as well as effects arising from induced 
dipoles; and the remaining VN8  (r1  . . . rN) which collects all the short-
range interactions (dispersion, core-repulsion) , and which is inde-
pendent of the ion charges. V N (s), it has already been remarked, 
may be considered pairwise additive. To each ion 1 < i < N we have 
assigned a polarizability a. The static charges z1e and induced 
dipoles will set up an instantaneous electrostatic potential in the 
system /'(r). Implicit in this function t must be all N ion positions 
r1 . . rN. 

The momentary dipole pi induced in ion i is equal to ai  times the 
electric field at the center of i due to all other charged and polarized 
ions in the system. This electric field is equal to the negative 
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gradient at r 1  of J/(r) , where this latter quantity is Vi with the self-
potential of ion i removed: 

	

ze 	ti j (r - r) 
(9) 

	

Ir - 	Ir - 	IS 
L iI 

Thus, 

ti = - aVit'(r 1) 	 ( 10) 

The electrostatic potential '(r) has just the familiar form 

(r) = 	
Jz3e 	t'i .(r - r) 

	

j=1 Ir - 	Ir - 	J 	
(11) 

appropriate to a set of point charges z1e and dipoles Lap Using 
equation 10, of course 

/'(r) 	i ze 	_ 	V/'1 (r1) . (r - r)) 

	

'3 	5 	(12) 

	

j1 jr - 	 r - ri  

An elementary theorem of electrostatics (69) provides the electro-
static interaction energy as one-half the sum over the region 
spanned by our salt system of the product of the point charges times 
the self-energy-corrected potentials for those points. As a result, 
equations 9 and 12 lead trivially to 

N 	
ZiZj C2 

V N (e )  (r 1  . . . rN) = 
i<j=1 Ir i  - rj l  

	

- 1/2 	[ 	zea 
V 3 (r2) . (r1 	rJ)1 (13) 

	

=1 L'; 	r - 	
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The doubly summed second portion of expression 13 represents the 
many-body polarization interactions. Their troublesome nature 
arises from the implicit dependence of V1j  on all ion positions. 

The square-bracketed single sum in equation 13 is the interaction 
energy of the ion i with all of the instantaneously induced dipole 
moments of the other N - 1 ions. Most of these latter are located 
at large distances from i on the molecular scale, and their dipoles 
appear from r i  to be oriented nearly at random (i.e., independent of 
the position r.). Therefore their individual contributions to the 
bracket largely cancel one another. This amounts to recognizing 
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that only small fluctuations are to be observed about the continuum 
behavior for this large assembly of dipoles. The most important 
fluctuations are those occurring close to the ion of interest at r 1 , 

both because the number of near neighbors is small (so that statistical 
laws of large numbers are less effective in "homogenizing" this nearby 
region) , and because the relevant charge—dipole interaction is large 
at these small separations. 

In accord with these ideas, we make use of an expansion procedure 
for a function f(r) of the position of ion i, which also depends im-
plicitly on the entire residual set of N - 1 positions r1  . . . r11 , 

r 1  . . . rN. Symbolically, 
N 

f(r) = (f)(i) 	E 
[(f)(iJ) 	(f)(i) ]  

j=1 

N 

+ 	
[(f)(iik) 	(;f)(3) _ (f)(ik) + (

f) 
j<lc== 1 

N 

+ 	[.1+... 	 (14) 
j<k<l=1 

Oi 

The angular brackets ( )( i . . . s) denote averages over the entire set of 
accessible configurations and momenta (p) for the system, but with 
the n ions i . . . s held fixed at r1  . . . r,: 

ffp(N) (r ' . . . p(r1  - r) . . . (r8  - r)dr . . . dpN 
f (N) (r'. . 	(r - r) . . ô (r, - r)dr . . . dp 

(15) 

The phase space probability density, or weighting function, p(N),  

appearing in the average value definitions (eq. 15) will later be identi-
fied as the Gibbsian canonical ensemble distribution. 

The successive terms in equation 14 have a fairly straightforward 
interpretation. The leading quantity, (f)(i),  represents the average 
value of f over all positions (and momenta) of the remaining N - 1 
ions. It is this replacement of the instantaneously position-fixed set 
of polarizable ions surrounding i by their time (or ensemble) average 
behavior that is equivalent to regarding ion i as being alone in a 
dielectric continuum. The succeeding terms on the right-hand side 
of equation 14, however, act to correct the error in this entirely 
homogeneous approximation for the surroundings of i. The quantity 



	

EQUILIBRIUM THEORY OF PURE FUSED SALTS 	 21 

[(j.)(i3) 	(f)ei) appearing next in equation 14 is the instantaneous 
extra effect on f of an ion j (which is not "smeared out" as in  

and, as shown, such correction must be made for all N - 1 ions not 
equal to i. But in computing each of these corrections, the residual 
set of N - 2 ions (,=~ i,j) are regarded as "smeared" into a dielectric 
continuum surrounding the pair i,j. In like fashion, the third set of 
terms in equation 14 takes into account the fact that actually there 
were discrete ion pairs j,k in the vicinity of i; etc. In principle it is 
necessary to go to N such terms to make the identity, equation 14, 
rigorously exact, but for certain choices of f we might reasonably 
expect this fluctuation expansion to converge rapidly. 

This will in fact be precisely our point of view concerning the square 
bracket in equation 13, which is now the specific choice for f. We 
truncate the resulting expansion, equation 14, after the second 
(single-particle fluctuation) class of terms, to obtain 

r N 	V(r) . (r - r)1 	/ 	(r - r) .V.(r )\(i) 
I 

 E z•ea3 	 I = ze 	L1 a 

L;I ri - r2 	_j 	
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+z 1e 	<' 	a/c 	 - 

j=1 \k=i • 	 r, - rk 
~ i 	 i,3 

	

- 

/EN (r - rk ) . Vk(rk) 	
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Upon inserting this result into expression 13 for 	the various 

terms are readily identifiable. Of course, the same point charge—
point charge Coulomb potentials occur again unaffected by the 
averaging procedure (they are the first sum in 13). The leading 
contribution from the inserted fluctuation expansion represents the 
interaction of each ion i with the average polarization field surround-
ing it; this polarization field is spherically symmetric for a monatomic 
ion and its ambient medium. The corresponding contribution to 
V N (e) is the so-called Born cavity energy. 

If the average surroundings of ion i are characterized as a linear 
dielectric continuum with radially varying dielectric constant D(r) 
as shown in Figure 4 (ion i is species -y) , then the average polarization 
density P7  is radially directed and likewise symmetric, and is given 
by 

4ii-P7 (r) = [D7 (r) - 11E(r) 	 (17) 
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D (r) 

up 

1 

a-, r 

Fig. 4. Qualitative nature of the local dielectric "constant," D(r), surrounding 
a central ion of type 'y located at the origin. The radial distance a 7  roughly 
corresponds to the distance of closest approach to this ion. 

where El. is the average local electric field at distance r from ion i, 

z er 
E(r) = — 

D(r)r3 	
(18) 

The Born cavity energy is therefore found by integration over all 
space of the interaction of the dipole density Pl y  with the charge on 
ion i producing it: 

•J-' 
d3r (z,e) P(r) -r 

2 	r 3 
= 

(19) 
= 	(;e)2dr 

2
f[i i] 

The local dielectric constants D(r) for all types of ions have the 
two general properties: 

( a) urn D(r) = 1, since no ions can penetrate the central ion's 

repulsive core, so that the dielectric constant exhibits the free-space 
value. 

(b) lim D(r) = D, the macroscopic dielectric constant. It is 

presumed that this latter is adequately approximated, in practical 
cases, by the square of the fused salt refractive index at optical 
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D (r) 

PC 

Fig. 5. The idealized local dielectric constant radial variation corresponding 
to a sharply defined spherical cavity in an otherwise uniform dielectric continuum. 

frequencies (this is typically around 2-5). * The simplest local di-
electric picture which might reasonably be adopted consistent with 
the general properties (a) and (b) is that of a sharply delineated 
spherical cavity of radius b7  in the dielectric continuum, outside of 
which the dielectric constant is everywhere D, the macroscopic 
value. This model is indicated in Figure 5. In this simplified case 
equation 19 may immediately be integrated to yield 

Ub1— 
_i12  i f 	1\ 

- 	

2b7 	-n 	(20) )  

Since D(r) ~! 1, the Born cavity energy is never positive, as may be 
seen either from the general expression (eq. 19), or more simply from 
equation 20. Due to the fact that the Born cavity energies are 
position independent within homogeneous fluid phases, they simply 
shift downward the total N-ion interaction energy, VN,  and can have 
no direct effect on the way in which ions are arranged in the bulk of the 
molten salt. 

* Implicit here is the assumption that no electronic transitions for the ions lie 
close in energy to that of the measuring optical radiation. This will certainly be 
true for the simple alkali halides, and it is probably valid for other uncolored 
melts. It is in principle possible to separate the anomalous optical dispersion 
due to low-lying electronic transitions near the optical region in other cases, if the 
frequencies and oscillator strengths of the transitions are known. 
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The remaining fluctuation terms arising from the previous sub-
stitution of equation 16 in equation 13 can be given a similar, though 
somewhat more complicated interpretation. The effect of performing 
the indicated average value operations is to recognize that the term 
depending explicitly on the position of pair i,j (with superscript 
indices occurring in that order for these two ions) represents the 
interaction energy of the charge ze on ion i (still in its dielectric 
cavity as before) with (1) the dipole moment induced by i in ion j; 
and () the excess polarization density in the dielectric medium sur-
rounding fixed i and j, beyond what would be present if just ion i were 
constrained to be fixed in position. One must realize that in the 
entire expression 13 there will arise two fluctuation quantities 
corresponding to i and j fixed. The other term's physical significance 
is also given by (1) and (2), but with the roles of i and j reversed. 
It is convenient to combine these two terms. 

When ions i (species y) and j (species ô) are constrained to be a 
distance r apart, which is comparable to ordinary molecular dimen-
sions, it would generally be necessary to concede that the dielectric 
cavities surrounding the two ions are no longer spherically symmetric. 
Of course they become almost precisely so as r increases beyond, let 
us say, ten or more ionic diameters. Nevertheless, it is certainly 
informative, and probably not far from the quantitative state of af-
fairs, to suppose that at all distances r the previous sharply defined 
spherical Born cavities (radii b7  and b) exist in the uniform continuum 
of dielectric constant D. With this double Born cavity picture in 
mind, it is in principle possible to compute the relevant contribution 
to V v (-,)  for the pair j,j,  the result for which we quote when r >> 
67  + b, (so that virtually uniform electric fields act on each cavity), 
combined with the 'i,j Coulomb term from the leading sum in equa-
tion 13: 

zze 2 	(D - 1)b 3  - (D + 2)a 	(z
ly  

Dr 
V(e)( r) = 	

+ (2D + 1)b 3  - 2(D - 1)ao 

	

(D - 1)b73  - (D + 2) a 	(ze) 2b 7 3  

+ (2D + 1)b 3  - 2(D - 1)a 	2Dr4 (21) 7   

* If r < b7  + bay the two spherical cavities Join to form a singly connected bi-
spherical region. The electrostatic problem to be solved in this geometry is un-
fortunately much more difficult than when the two cavities are distinct, and 

r > b y  + b5. 



EQUILIBRIUM THEORY OF PURE FUSED SALTS 	 25 

For large r, at any rate, V(e)( r) as shown is the proper form of the 
entire ion pair contribution to the electrostatic interaction energy. 
The last two terms in equation 21 are the interaction of charges 
ze and z oe, respectively, with the total dipole moment induced in the 
other ion and its cavity. For smaller r, terms in larger negative 
powers of r will appear in V o(e)(r) , though their explicit computation 
becomes difficult even for the idealized spherical cavities. Kirkwood 
(41) has considered the effect of interactions of type 21 on the thermo-
dynamic properties of electrolytic solutions, but apparently no ex-
plicit use has been made of this effective potential function in molten 
salt considerations. 

An empty cavity amounts to setting the charge and polarizability 
of its contained ion equal to zero, and for such case, equation 21 
demonstrates that a cavity alone is always repelled from an electro-
static charge. In a similar fashion, setting the cavity radius to zero, 
it is seen that an isolated polarizable point is always attracted to a 
charge. Accordingly, these two effects, in the case at hand, tend to 
cancel one another to give an interaction dropping off as r 4, which is 
less in magnitude in liquids than in vacvo. These r 4  terms shown 
explicitly in equation 21, as well as the terms occurring at smaller r, 
are probably not too large in liquids for most distances of separation. 
In the lack of strong evidence to the contrary, it is probably sufficient 
to retain only the leading term in 21 for the electrostatic potential in 
computing molten salt properties. Our later considerations will be 
sufficiently general, though, that these dielectric cavity and polariz 
ability terms may formally be included as part of the short-range 
pairwise additive interactions between ions, V, 6 (s) (r). 

We remark that these spherical cavity considerations may be 
employed to provide an elementary dielectric constant expression for 
the molten salt by a method due to Onsager (55). One finds the 
implicit relation 

D - 1 	JL 	 p -, a-yb
ly 

 

12D 	£ (2D + 1)b73  - 2(D - 1)a 	
(22) 

for a salt containing j  different types of ions, respectively present in 
the concentrations p. We shall have later reference to the total parti-
cle density variation of D; since equation 22 may be solved for D, it 
provides a convenient means for determining such variations. A 
more precise computation of local dielectric constants D(r) , as well 
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as their asymptotic value D, would have to follow the procedure 
outlined for nonpolar liquids by Brown (13), when suitably generalized 
to mixtures, and to the region surrounding a fixed set of ions. 

In conclusion, therefore, we have been able to replace the electro-
static part of the actual VN,  containing the many-body polarization 
interactions, by a sum of single-ion [ I and ion-pair [V 8 (e)(r)] 

interactions. Since for non-associated salts, the non-electrostatic 
forces as well may be taken as pairwise additive, the effective form 
for VN that may be used is now especially convenient: 

N 	 N 

VN(rl . . . rN) = E Ubc (t) + E [V 7& ( 8 ) (r) + V7o(e)(r) J (23) 
i=1 	 i<j=1 

,y = 7(i); t = 6  
Henceforth, we shall suppose that this reduction has been made 
when, in discussing the methods of evaluating molten salt thermo-
dynamic properties and microscopic structures, it is necessary to 
refer to an explicit potential-energy function. 

Iv. Fundamentals in the Statistical Theory 

The preceding section has been devoted to methods of finding an 
appropriate interaction potential for an assembly of ions, which is 
not unmanageably complicated. It is, after all, this interaction 
energy which determines the observed macroscopic properties of a 
molten salt. Having obtained a proper VN(rl . . . rN), it is subse-
quently the task of statistical mechanics to provide a deductive pro-
cedure for computing the fused salt properties of interest. As indi-
cated in the introductory remarks, we shall attack only the problems 
of predicting equilibrium properties; in other words, the fused salt 
system will have no gradients of temperature, composition, or pressure 
( gravitational effects are entirely inconsequential for homogeneous 
systems of modest dimensions). 

Figure 1 showed in schematic fashion a container of volume U 
holding the molten salt of interest, in thermal contact with a heat 
reservoir at the desired absolute temperature T. In the interests of 
simplicity, for the present, we shall suppose that O and T correspond 
to a single liquid phase (Sec. VII is concerned with the heterogeneous 
case) . It is convenient to assume that the walls of the containing 
vessel may, be idealized as infinitely high and steep potential barriers. 


