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Furthermore, we may suppose that the coupling with the heat bath 
is negligibly small, which amounts to insisting that the rate of heat 
flow in or out of the system for a given temperature difference between 
bath and system is finite, but insignificantly small. Here, we wish 
only to acknowledge the existence of a mechanism for thermal equi-
libration, without unduly influencing the structure of the system of 
interest. In any event, the bulk properties of the molten salt are 
not expected. to depend in any way on the constitution of the vessel 
walls. 

By virtue of the heat exchange mechanism between fused salt 
system and thermostat, the energy content of the system of ions will 
fluctuate from time to time, rather than be conserved, as would be 
the case for an isolated system. At any instant in time, the probabil-
ity of finding the N ions of the salt respectively at positions r1  . . . rN 

with momenta Pi . . . PN, is given by the normalized Gibbs canonical 
phase space density function*  (50): 

p (N)(ri  . . PN) 

exp 
kT[ 	

N 2 1 	

{ 

1 
A N 	- V N (rl . . . rN)]} (24) - 

h3N llN a ! 
al 

Here, k is Boltzmann's constant, h Planck's constant, and mj the 
mass of ion j. The normalization constant A N  may be identified as 
the Helmholtz free energy, 

' A N  
QN=exp -= 

kT 	
h3NllNa! 

X f d 3r1  ... d 3PN  exp 
{- 	[ 	

+ VN]} (25) 

	

kT/ 	2m 

In principle, therefore, prediction of all the thermodynamic prop-
erties of the system may be accomplished by computing the integral 

* This is the implicit form for p(W)  that must be used in the dielectric properties 
analysis of the preceding section. It should thus be inserted in equation 15 for 
complete and precise definition of the averages used there. Equation 14 is a 
valid identity for any p(N) ,  but its application to fluids in thermal equilibrium 
requires the canonical form, 24. 
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25, since one has the several identities of thermodynamics yielding the 
average energy E, entropy 8, and pressure p: 

(C)(A,1kT) 

 
\ 

E = 
6(11U) ) 	

(26) 

SE_AN 	 (27) 

IÔAN\ 
P = - 	 (28) 

As a practical matter, it is well known that integration of the phase 
space integral (eq. 25), the classical canonical partition function, is 
impossible except in certain limiting cases. Each momentum integral 
may immediately be performed, since it is a standard form, but the 
remaining configuration space portion is generally the stumbling 
block: 

QN = A 	
1 	

d3r1  . d3rN  exp 	
VN) 

II Na! X3Na fu 	• . 	1 	
(29) 

al 

where 

h 
Xa = '/2; 

N = 	N a  
(2rmakT) 	 a1 

The configuration integral in equation 29 receives a contribution 
from each set of positions r1  . . . rN  inside the container volume O. 
The amount contributed by a given configuration depends naturally 
on the potential energy of that configuration, V N (rl . . . rN). In 
comparing the relative importance of two configurations, a reduction 
in temperature has the effect of increased discrimination. Accord-
ingly, as T approaches absolute zero, only those configurations (there 
will be several corresponding to permutation of identical particles) 
in which the V v  attains its minimum value provide the value of AN 
in equation 29. We know that these configurations have the N ions 
in a regular crystalline array, so the predicted Helmholtz free energy 
refers to the zero-temperature crystalline solid, which was to be ex-
pected. AN may thus he readily found in this limiting case. 
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At elevated temperatures corresponding to a liquid state of aggrega-
tion for the N particles, the still energetically most important crystal-
line arrangement becomes swamped by the higher energy, but vastly 
more numerous, less regular liquid structures. These latter typically 
have each particle surrounded by a shell of neighbors which, in dense 
liquids at any rate, form a "cage" in which the central particle will 
generally oscillate many times before escaping to a different location. 
Unlike the regular solid, though, this shell of near neighbors is neither 
as definite in position from the central particle, nor in the number of 
its constituent particles, as is the crystal near neighbor shell. The 
primary trouble in evaluation of equation 29 for liquids therefore 
resides in the fact that a rather wide range of different (but invariably 
complicated) configurations is important, no one of which can be 
claimed to predominate. Furthermore, these configurations have 
each particle simultaneously and strongly interacting with several 
others (its near neighbors, at least) . The special difficulty for statis-
tical mechanics posed by liquids is due to the fact that one can appeal 
neither to a structural regularity (crystalline solids) nor to only 
occasional encounters between the constituent particles (as is the 
situation in the gas phase). 

There do exist reasonably straightforward techniques for roughly 
approximating the liquid phase configuration integral, some of which 
we shall review for the molten electrolyte case in Section V. In the 
circumstance that the interaction VN has a special form, however, a 
reasonably practical alternative evaluation scheme for the thermo-
dynamic properties of a liquid is available. In particular, it is neces-
sary to require that VN (aside from a position-independent additive 
constant) be a sum of particle pair interactions alone, as was con-
eluded to be a feasible approximation for fused salts in Section III. 
With this restriction, it is possible to relate each thermodynamic 
property of interest to a set of quantities, ion pair correlation func-
tions, which represent the probability of observing within the system 
pairs of particles of specified types, separated by a given radial dis-
tance (34,40). 

Let us choose for the sake of illustration a specific pair of particles 
of types a and 3, and arbitrarily suppose they are numbered 1 and 2, 
respectively. Pick two infinitesimal volume elements inside U, dtJ 1  
and dU2  as shown in Figure 6. If the distance r12 is very large on the 
scale of molecular lengths, the probability that particle 1 is in dV 
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d31 

Fig. 6. Simultaneously occupied infinitesimal volume elements used in defining 
ion pair correlation functions. 

while simultaneously 2 is in dV 2 , is the product of the individual 
occupation probabilities. That is, these are independent events if 
r12  is sufficiently large. For our macroscopic system, the joint occupa-
tion probability is, in sufficient accuracy for the present purposes, 
equal to 

dU 1  do2  

U 	O 

On the other hand, if the distance r12  had initially been chosen small 
enough that particles 1 and 2 could interact by their intermolecular 
forces, the two occupation probabilities would no longer be inde-
pendent. The probability of joint occupation must now contain a 
correction factor, 

	

gao (r12) 
du1 	

. 
dU2 	

(30) 

	

V 	o 

which is conventionally named the pair correlation function. 
A few general features of the gfl(2)  may immediately be recognized. 

The subscripted species types for the members of the initially chosen 
pair are essential, though their order is irrelevant. The intermolec-
ular force law will differ for the various distinct types of pairs, and 
consequently we must anticipate that the several g(2)  are not the 
same. The pair correlation function as shown in expression 30 de-
pends only on radial distance r12  as a result of isotropy of the homo- 
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geneous liquid. If one or both of the volume elements had been 
chosen near the walls of the container, this isotropy would be de-
stroyed, and g13(2)  would then depend on both vectors r 1  and r2. But 
in investigation of fused salt bulk properties, the radially symmetric 
pair correlation functions are sufficient. Obviously, as V12  becomes 
large, g",3(2) (r12) must asymptotically approach unity to reproduce 
the original independent occupation probabilities. Furthermore, our 
qualitative understanding of the nature of intermolecular forces, out-
lined in Section II, leads us to expect each gafl2  (r12) to vanish as r12  

goes to zero, owing to the essential impenetrability of particles. 
The pair correlation functions for each distinct type of ion pair 

naturally will depend on temperature and pressure (or more con-
veniently, density) . It is one of the main tasks of modern statistical 
mechanics to provide theoretical means for determining the g(2)'s  over 
the full accessible range of experimental conditions for fluids of in-
terest. Subsequent application of the pair correlation function 
quadratures for thermodynamic properties, presently to be exhibited, 
would then represent complete solution of the statistical problem 
( for molten salts, in the case at hand). 

The molecular, or ionic, correlation function concept may easily 
be generalized to sets of more than two particles. It is necessary to 
consider the infinitesimal volume elements dtJ1  . . . d(),, in the requisite 
configuration r1  . . . r, and to inquire then about the simultaneous 
occupation probability of particle 1 (type a) being in dU1 , . . . , particle 
n (type v) being in dlJ. The result now will contain an n-particle 
correlation function, 

(n) 	 dTh dU2 	dtJ 
gap. . 	. . r) 	 (31) 

If each of the n volume elements is sufficiently far from the others, 
we may suppose that g()  reduces to unity. Within the bulk of the 
liquid, isotropy is reflected in the invariance of g(n)  to translations 
and rotations which preserve all volume element pair distances. 

It is important to be able to provide an unambiguous mathe-
matical definition of these correlation functions in terms of the basic 
notions of statistical mechanics. The complete N-particle phase 
space density PN(rl . . . PN) has already been introduced, and is given 
specific form by equation 24. gj. . . (r1 . . . r) likewise expresses 
a probability, but only for the configuration coordinates of the 
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specified n particles, values of the other unspecified dynamical van-
ables being irrelevant. Each . . , must therefore be obtainable 
from (N)  by an operation which eliminates all N momenta p . . . PN, 
as well as the remaining N—n positions r,,+,... rN . Consistent with 
the fundamental ideas of probability theory, this elimination may 
be accomplished by integrating (N)  over these parameters: 

g. 	r) = mf PN(rl . . . pN)d3rfl+1 . . . d3rNd3pl . . . d3PN (32) 

The additional multiplicative factor V  is necessary for normaliza-
tion, to insure that g ... reduces to unity as all r 1  (1 < i,j n) 
increase beyond the range of intermolecular forces. 

In the form shown (eq. 32) , there is no readily apparent advantage 
to introducing the molecular correlation functions, for precisely the 
same integration difficulties are encountered here, for liquids, as 
previously in the case of the partition function itself, equation 29. 
A later section (VI), though, will indicate in some detail how these 
precise mathematical definitions may be employed to deduce practical 
pair correlation function calculation procedures. 

Note has already been taken of the behavior of the 9(2)  (r12) when 
r12  is very small (ion core overlap configuration) and when it is large. 
These functions' interesting and informative properties, however, 
occur at intermediate distances corresponding, roughly, to one to ten 
ionic diameters. If the collection of ions in our system were very 
dilute, so that virtually always no other ions were to be found in the 
vicinity of the fixed pair, 1,2, then g(2)  would be nothing more than 
the Boltzmann factor 

gag (2) (r12) - exp[ 
	

Vas(r12) 

U ] 	 (33) 

V a (ri2) = V a  (r) + V a  (1'12) 

But it is especially true in the dense liquid state that the ambient 
medium provided by the particles neighboring 1 and 2 can modify 
the "bare" interaction (eq. 33). In order that the chosen pair occupy 
the given positions, the surrounding medium will be disrupted to some 
extent, and the additional r12-dependent free energy required to 
perform the deformation modifies 33 extensively. If, for a given 
separation r12 , the requisite medium-disruption free energy is large 
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and positive, the actual pair correlation function will be less than the 
simple Boltzmann factor (eq. 33) . The proper expression replacing 
equation 33 at finite densities retains the Boltzmann factor form: 

gao 	= exp [ - 
Wa2(r12)] 

lcT 

However, Waj3 2 (r12) now includes the non-negligible medium rear-
rangement effects. 

In dilute electrolytic fluids, it is well known that the distinction 
between Va and Wafl 2  amounts to an exponential shielding of the 
Coulomb potential contained in the former; the medium disruption 
in this case is formation of ion atmospheres whose size is measured by 
the characteristic Debye length for the electrolyte. We shall later 
see that molten salts likewise have their own version of ion atmos-
pheres though qualitatively in quite a different manner from the dilute 
electrolyte case. In any event, or equivalently g(2),  must 
reflect sensitively the microscopic liquid structure. This fact alone 
would be sufficient reason to study these functions quantitatively, 
even if they were not useful in predicting thermodynamic properties. 

If f(r1  . . . PN) is any function of the configuration coordinates and 
momenta for the N ions, its average value in the equilibrium state is 
obtained by integrating it with the phase space density (N)  as a 
weighting factor: 

f f(r, . . . pN)P(w)(rl. . . pN)d 3rl. . .d3PN 

Ip(N)(ri  • . pN)d 3rl. . 

A specific choice for f might be F1 , the force on ion 1. This f happens 
to be momentum independent, and in terms of V v  is 

F1 (r1  . . . rN) = - V1VN(rl . . . rN) 	 (36) 

where V i  is the gradient operator with respect to r1. If it were re-
quired to compute the mean force on particle 1 at r 1 , when particle 2 
is held fixed at r2 , a distance r12 away, we form the analog of equation 
35 by integrating only over r3 . . . rN , p . . . PAT- 

(1) = (35) 

(Fl) (12) = - 
I (V 1 V N)P(N ) (rl  ... pN)d 3r3. . .d3rNd3pl . . . d3pN  

Ip(N)(ri  • .pN)d 3r3. . . d3rNd3pl. . .d3PN 
(37) 
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where the superscript on the angular brackets indicates the fixing of 
r 1  and r2 , a notation already used for similar averages in Section III, 
equation 15. 

Now upon first taking logarithms in the definition 32, with n = 2, 
of gag  we find that subsequent application of the differential 
operator V 1  to both sides, and comparison with equation 20, leads to 
the identification, 

(F1)(' 2) = 	V 1TVa 2 (ri2) 	 (38) 

One therefore sees that the relation of the average force on particle 
1, when 2 is distance r12  away, to Wav2  in a finite density medium, 
is formally the same as the pair force—pair potential relation when 1 
and 2 are isolated: 

F1 (r12) =- ViVaj (ri2) 	(isolated pair) 	(39) 

It is for this reason that 	(r12) is called the "pair potential of 
mean force" acting between particles 1 and 2. 

A general expression for the thermodynamic energy of a molten 
salt follows from application of relation 26 to the partition function, 
29. In computing the relevant derivatives, it is necessary to remem-
ber that both the Born cavity energies, 

	

(T) 	 (40) 

and the ion pair potentials, 

	

V a (r,T) 	 (41) 

are functions of the temperature (at constant volume) through their 
dependence on dielectric constant. One readily finds 

E = NkT + 	N a  [Ub  + j; (;:)l 
__ 1 fôVafl(r)  	ag + - 	
NaN f d3r I V av(r) + 	V)(11U)),0 1 9 (2)(r) (42) 	- 

1 	' 

2 a,i 	0 

where identical terms arising from the same types of ions, or ion pairs, 
have been grouped together. In this result, use has been made of the 
radial symmetry of each g,3(2).  The integral has been extended to 
infinity (even though the system is finite in extent) without error for 
the bulk liquid energy, on account of the molten salt electroneutrality. 
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The factor 1/2 is necessary in equation 42 to prevent double counting 
of pairs. 

A similar expression is available for the pressure in the molten salt. 
We shall outline an adaptation to molten salt systems of a method 
due to Green (28). The basic idea is simply one which allows con-
venient volume differentiation of the partition function to yield p by 
equation (28). Expression 29 for the Helmholtz free energy of the 
fused salt may be rewritten in the form 

exp 
A N (0)  - A N  
IkT 	ç = 	f exp {_ 

	} 
d3r1  . . . d3rN (43) 

cUN
I) 	1 

where A N (0)  IS the ideal gas value of A N , for N non-interacting point 
particles (V N  0). Although it is not necessary to do so, we shall 
suppose that the container for the system is cubical with edge length 
cU1/3, and that the origin for coordinates r1  to rN 5 located at one 
corner of this cube. Then the limits of integration in equation 43 for 
each of the 3N components of the vectors r1  . . . rN  (which may be 
denoted by rix ,ri, r1Z 7  r2X, . . . ,rN z) may be taken as 0 and 

Next, a set of dimensionless distance variables six . . . SNz are intro-
duced to replace the r's: 

rjx  = 	
1/3 

Six 

. 	 (44) 

1/ 3  
- 

rNZ - U 8Nz 

Each ion pair distance rij occurring in the detailed form of VN,  equa-
tion 23, may thereupon be expressed: 

rij = 	[ (s - 	2 	(s1  - 	2 	(85 - 	2 ]h/2 	(45) 

In terms of these dimensionless variables, the partition function 43, 
now becomes 

(AN(° - A N 	fi 1" 	fi  
exp < 	

kT 	f 	dsi 
j 

ds1 . . . 
	

dSN Z  

I 	VN(sl. . SN; 13)1 

	

X exp <i- 	f (46)  
kT  
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Computation of the pressure is now an elementary matter involving 
only CU-differentiation under the integrals of equation 46, . since the 
limits of integration have been freed of this parameter. 

Since this differentiation is straightforward, we do not reproduce 
it stepwise. It is necessary to remember, though, that V v  depends 
on U not only because this variable occurs in expression 45 for the 
pair distances r15, but in addition because the dielectric properties of 
the melt (Ub,(O and D, specifically) vary as U, or equivalently the 
total particle density p = N/CO, is varied. The final result is found 
to be: 

' PV _ 
	+ E Pa =l   

a=1 	?ip 

{'r OV a (r) 	______ 

- j-; a43-1 
PaPa f d3r - 	

àr 	op 	
g2)fr) (47) 

N a  
Pa 

where definition 32 of the pair correlation functions has once again 
been used. This result is a generalization to the case of effectively 
density-dependent potential energies of an equation of state formula 
that has been known for some time in the statistical-mechanical 
theory of fluids (37) . In practice, it will be necessary to employ 
information about the density dependence of the molten salt dielectric 
constant, such as is provided by equation 22, to compute the pressure 
by equation 47. 

In considering the Born cavity contribution to the molten salt 
pressure, the first sum on the right side of equation 47, it should be 
recognized that not only does the asymptotic dielectric constant D 
exhibit density dependence, but the effective cavity radii ba , in equa-
tion 20, change with p as well. Presumably, as a liquid is compressed, 
the constituent particles must settle into a more regular arrangement 
to utilize the lessened available volume more efficiently; the eventual 
result of this tendency for ordinary liquids is freezing under pressure 
to form the nearly perfectly regular crystal lattice. But since there 
is no Born cavity energy for lattices with each ion a center of sym-
metry, it is necessary to suppose each ba  has become infinitely large 
by the time the ions have been forced into a regular array of this kind. 
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Consequently, it is reasonable to assume that ba  increases as p in-
creases in the liquid, as a reflection of more nearly solid-like stacking. 

As a third example of pair correlation function expressions for 
equilibrium molten salt properties, we develop formulas for the ion 
chemical potentials, a, for each species a. Experimentally, of 
course, these quantities are not individually accessible, on account of 
the restraint of overall liquid electroneutrality. What is measurable, 
though, is the mean chemical potential ; for an elementary salt 
with one anionic (-) and one cationic (+) species, this is 

p/2 	P/L + P44_ 	 (48) 

where p is the total particle density 	+ p_. In general, gj, is the 
number average chemical potential. 

Nevertheless, the operations of statistical mechanics do allow the 
individual ga's to be computed. They are defined to be equal to the 
ideal fluid chemical potential, 

i-'a = kT log 
Na'1a  3

(0) 	
V

(49) 

plus the amount of reversible work necessary to take a single ion of 
the type of interest from isolation at infinity, to the interior of the 
melt. This work may be split into two parts, by regarding insertion 
of the ion into the liquid to occur by the path: 

(a) electrostatic discharge of the ion at infinity; 
(b) insertion of the uncharged ion core into the bulk liquid, with 

formation of a cavity of size suitable to contain this core; 
(c) recharging of the ion to its full initial charge, zae. 

In the first and last steps, charging of the ion against its own field (the 
self-energy work) cancels. The cavity free energy, step (b) 
is very much like what would be encountered in computing the free 
energy of dissolving a noble gas atom, of size equal to the ion core, in 
the fused salt. Computation of WC(a)  is reserved for consideration in 
Section VII. 

The extra charging work encountered in (c) , compared to that for 
the ion in vacuo, (a) , arises from the change in electrostatic potential 
at the ion's center due to the surrounding liquid. This change may 
be associated first with the fact that the salt is a polarizable dielectric 
(yielding thus a Born cavity energy for the partially charged ion), 
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secondly with the charge density (the fused salt "ion atmosphere") 
that spontaneously forms around a charging ion, and finally with the 
interfacial potential drop /',experienced by the average electrostatic 
potential in crossing the interface at the system boundary. If we 
combine all of these contributions, the chemical potential is finally 
found to be 

f
dX 

ct 	L  (a)W(a) + Zae's + 2 	UbC (a)(X) 

+ f
'dXDr 

 f d3r 	[ 	 pzeg 2) (r,X) 
	

(50) 
[  

The variable X stands for the fraction of the full charge zae on the 
a-type ion during the charging process in the liquid. The square-
bracketed sum under the second integral in equation 50 may im-
mediately be identified as the average electrostatic charge density 
surrounding the partially charged central ion. Here, we have taken 
explicit cognizance of the fact that the pair correlation functions will 
generally depend upon the value of fractional charge borne by one 
member of the pair. 

It is interesting to note that upon computing the mean chemical 
potential /2k, the surface potential iJ', is entirely eliminated, by use of 
the electroneutrality condition, 

PaZa  = 0 	 (51) 

Consequently, the experimentally important chemical potential de-
pends only on the structure of the interior of the bulk liquid, and not 
on the interfacial structure. Since this latter can be quite sensitive 
to the particular constitution of the container walls, it is reassuring 
that the properties of the electroneutral salt, deduced from the chem-
ical potential expression (e.g., the liquid—vapor coexistence curve), 
is properly independent of the material out of which the container is 
made. 

Among the fundamental thermodynamic quantities for the molten 
salt, the entropy unfortunately cannot be exhibited straightforwardly 
in terms of the pair correlation functions for the liquid alone. How-
ever, in view of the thermodynamic relationship, 

dA N  = — SdT - pdU 	 (52) 
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one may obtain A N  by integration of the pressure formula (eq. 47) 
along an isothermal volume contraction path, starting with the ideal 
vapor; subsequently, S follows from temperature differentiation at 
constant volume. Equation 27 shows, furthermore, that S may 
alternatively be computed from AN, and the energy expression 42. 

For completeness, we record a final pair correlation function expres-
sion, with central importance in understanding liquid-state equilib-
rium structure, which provides the angular distribution of x radiation 
scattered from the liquid.*  For a sample in which only single scatter-
ing processes are important, the scattered intensity I for an incident 
beam of intensity Io,  observed at large radial distance R from the 
sample, and at angle e to the incident direction is well known to be 
(assuming point radiators) (38): 

f/h I(s) 	
E NaA 2 	NaNAaA 

a, '0 	4R 2  L=1 	 u 13= 1 

X f 4r2dr . 
sin(sr) [g (l) (r) - 1 i} (53) 

 Sr 

4ir . U 
S = - Sin - 

xr 	2 

The A,,  are ionic scattering factors, and Xr is the wavelength of 
the radiation. The integrals occurring here are precisely three-
dimensional Fourier transforms, and as such, could be uniquely in-
verted for liquids containing only a single molecular species, to provide 
an experimentally determined pair correlation function (27) . For 
mixtures, an inversion may still be possible by combining data 
from both x-ray and neutron scattering experiments. In any event, 
theoretically predicted values of the several pair correlation functions 
in a molten salt can be partially checked for accuracy by insertion 
into equation 53, to provide comparison with the measured x-ray 
scattering pattern. 

V. Approximate Theories 

This section is devoted to exposition of three rather distinct and 
independent approaches to the evaluation of the fused salt partition 
function. They are each designed to exploit certain features supposed 

* See chapter by H. A. Levy and M. D. Danford, this volume, p. 109. 
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to be exhibited in common by liquids, with a view toward allowing 
numerical results to be obtained for thermodynamic properties with-
out inordinate expenditure of effort. It is remarkable that the three 
approaches lead to three quite different points of view about the 
proper picture of ion arrangements in the melt. The disparity 
probably reflects mainly on the present incomplete understanding of 
the liquid state.. In developing each of these techniques, we will 
continue implicitly to suppose that the salt under consideration con-
forms to the simple pairwise additive interaction model, which has 
already been suggested for non-associated melts. 

A. THE "SIGNIFICANT STRUCTURES" THEORY 

In a series of publications, Eyring (18,21), Walter (70), and others 
have suggested an evaluation scheme to cope specifically with the 
difficult configuration integral occurring in the fundamental liquid 
(specifically, molten salt) partition function Q v, equation 29. The 
resulting approximate partition function is sufficiently simple to 
allow ready calculation of the usual molten salt thermodynamic 
properties, including the melting, boiling, and critical point param-
eters (when these have not been employed to fix the adjustable 
parameters that arise) . The method has had considerable success in 
reproducing experimental results on equations of state in the liquid 
region for a wide variety of substances, both electrolytic and non-
electrolytic. 

In the crystalline solid phase for salts at low temperatures, each 
ion is surrounded by a symmetrical collection of nearest neighbors, 
under whose confining influence the central ion undergoes harmonic 
vibrations about its equilibrium lattice position. In principle, it is 
possible as well that the ion might become displaced to a new inter-
stitial position at which mechanical equilibrium would likewise be 
attained. But in order to occupy such an unnatural position, a great 
deal of work must be done by way of elastically distorting the lattice 
to accommodate the displaced particle. The number of such inter-
stitial sites per lattice particle depends upon the specific crystal 
structure of the solid. 

As the solid melts, at least so far as salts are concerned, there is 
generally observed about a 20 0/0  volume increase (8) . The x-ray 
scattering patterns that have been observed for simple molten salts 
(46) demonstrate that this overall expansion is not, however, accom 
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panied by a corresponding increase in the nearest neighbor separation 
(the distance at which the first peak of the pair correlation functions 
occurs) . Accordingly, it is supposed in the significant structures 
theory that the melting volume increase must primarily be due to 
introduction of a proper number of volume-consuming dislocations or 
imperfections in the solid structure. Of course, a variety of different 
lattice imperfections are possible; for monatomic liquids (such as 
argon) the most important are probably the vacancy, and the stacking 
faults that occur in failing to maintain one or the other of the close-
packed lattice structures consistently in the "crystal" planes of the 
liquid. Such imperfections would not modify the nearest neighbor 
distance, but at least the former would tend to reduce the average 
coordination number, in qualitative agreement with the observations 
(46). 

With the structure loosening that occurs on melting, as well as 
destruction of true crystalline long-range order, it is probable that 
the liquid-state analogs of the interstitial sites are more numerous, 
as well as considerably less demanding of deformation work for occu 
pation, especially near the imperfections. 

Eyring (21) quotes experimental data on gas permeability of glasses 
( supercooled liquids with presumably much the same structure as 
ordinary liquids in equilibrium) by helium in support of the contention 
that the "dislocations" present in the liquid state are to an important 
extent arranged in tunnels or passageways. Some of these, though, 
are probably as short as one lattice spacing (simple vacancy) and 
unconnected to others, so as to be undetectable in a permeability 
measurement. In any event, if this connectivity is the case, at least 
partially, it is assumed that some of the particles forming the liquid 
are free to "evaporate" into these passageways, and to traverse them 
in a gas-like manner. 

The significant structures theory therefore sets itself a twofold 
task. The first is recognition that the translational motions of the 
particles may be either of two types: (1) "solid-like," for particles 
moving in the harmonic potential well formed by their neighbors, and 
( ) "gas-like," for those particles moving along the passageways in 
the liquid. The "significant structures" therefore are the porous 
pseudo-crystalline framework of harmonically bound particles, and 
the set of gas particles occupying the voids in this framework. The 
second task is formulation of a rule for dividing the total number, 3N, 
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of particle translational degrees of freedom between the two modes of 
motion. 

It is hypothesized that each particle in a solid-like site consumes no 
more room in the liquid than it does in the solid phase at its melting 
point. If the actual liquid volume is U,  and V, is the solid's volume 
at the melting point, then the fraction of the total number N of parti-
cles to be found in solid-like sites is U/v, and the remainder, (U - 
u 3)/o, then must be assigned to gas-like degrees of freedom. 

The procedure for constructing the approximate partition function 
for the liquid therefore consists in writing a product of single-particle 
partition functions for each particle in the solid structure, and multi-
plying the result by the ideal gas partition function for the remaining 
gas-like motions. The particles in the pseudocrystalline framework 
are presumed to conform to the Einstein picture of solids (20), 
whereby each particle is assumed to undergo harmonic oscillations 
about its equilibrium position. If nh represents the number of extra 
"strained" sites available per particle in the solid-like structure, and 
a/nh the common strain energy for those sites (thereby defining a), 
the appropriate single-particle partition function factor is given by 

QsolId 
exp I —E 1/kT - 0/2T 

(1 - exp I —O/T}) 3  
[1 + flh exp I - a/nhk T)1 (54) 

E 1  is the potential energy per particle in the lattice of solid-like parti-
cles, and 0 is related to the Einstein frequency by 

0 - h/1c 	 (55) 

Generally, the harmonic oscillator zero-point energy kO/2 is suffi-
ciently small with respect to kT at molten salt temperatures, that 
0/2T in the numerator of equation 54 may be neglected. 

Carlson et al. (18) take E 1  to be equal to the sublimation energy, 
E3 , of the actual solid, times (O/O)'' to account for the change in 
Coulomb energy for the set of ions constituting the pseudocrystalline 
structure, by virtue of the mean change in linear dimension upon 
melting. Blomgren (4), however, acknowledges the existence of 
both short- and long-range forces between ions, and takes 

E 1  - E1 (
VS)1/3 

+ E2 () 	 (56)
CGI 
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He supposes that the long-range part of E 1, the E1  term, is equal to 
the solid-phase Madelung energy times the ratio of liquid to solid 
phase near-neighbor coordination numbers (4 /6 for KC1, for example). 
E2  is then identified with a noble gas sublimation energy (argon is 
chosen for KC1 because of similar electron structure for the constituent 
particles). The vs/cu factor in the E2  term of equation 56 accounts 
for the number of short-range force "bonds" between neighboring 
particles in a lattice that would be missing if the lattice were expanded 
to the liquid volume by introduction of randomly placed vacancies. 

The proponents of the significant structure theory have found it 
convenient to relate 0 to the value OD  of the solid's Debye tempera-
ture, taken from low-temperature specific heat measurements. As-
suming the solid to be isotropic, homogeneous, and to exhibit no 
acoustic dispersion, it is possible to show that 

0 = 30D/4 	 (57) 

Implicit in assignment of a common 0 to both anions and cations is 
the assumption that they execute harmonic motions at the same 
frequency. More properly, 0 should be regarded as an average over 
species. 

For ions in gas-like motions, Eyring assumes it appropriate to write 
a product of diatomic molecule partition functions, since the normal 
symmetrical salt vapor in equilibrium with the liquid is composed of 
strongly associated complexes of at least a single anion and cation 
(51). Polymers larger than the predominant diatomic molecular 
species, though experimentally detectable, are disregarded. The di-
atomic molecule partition function is taken to be the usual form (44): 

Qgas 
(27rmkT) 31 	8ir2IkT 	exp [—E0/kT] 

h3 
	

h2 	1 - exp [—hv/kT] 
(58) 

The parameters m, v, E0 , and I refer, respectively, to the diatomic 
molecule mass, vibration frequency (this motion is presumed to be 
entirely harmonic), dissociation energy including zero-point vibra-
tional energy, and moment of inertia. It should be pointed out that 
Blomgren (4) considers the alternate partition function formulation 
for the gas-like particles, wherein these latter are treated as free 
monatomic ideal gas particles, rather than associated in pairs. 
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Having thus obtained results 54 and 58 for the two significant 
classes of particle motions, the total liquid partition function may 
immediately be written down, valid for symmetrical salts, 

QN 	
—) 

[(N(o - u)/2u) !] 2 	

NCsl'U [Q 
gas 
	)/2 ) (59) kgas N( j  

The additional factor 1/2 in the exponent of Qas is obviously required 
by the fact that only half as many gas-like diatomic molecules are 
present than the number, N(U - Q,)/U, of ions forming them. The 
factorial factors in equation 59 must be present to avoid the classical 
Gibbs paradox (30) associated with requirement that entropy be an 
extensive property. 

In utilizing equation 59, experimental data on the solid state are 
employed to fix the values of E 1  and 0. In addition, the diatomic 
molecule parameters appearing in Qas are available from spectro-
scopic investigations. Consequently, only nh  and a/nh  remain as 
adjustables. Among the quantities: melting and boiling tempera-
tures, volume increases, and entropies, at atmospheric pressure, which 
have not been used to determine these two adjustable parameters, 
very good prediction of the measured values is obtained in reference 
18. 

In addition, the approximate molten salt partition function (eq. 59), 
also allows one to locate a liquid—vapor critical point, by use of the 
usual conditions on density derivatives of the pressures. Though 
these apparently have never been observed experimentally, they do 
not seem entirely inaccessible,*  and will perhaps ultimately provide 
an interesting test of the significant structures approach. 

It is necessary to stress that "derivation" of the approximate liquid-
state partition function postulated by the significant structures theory 
is on an entirely intuitive basis, rather than proceeding from the 
rigorous expression for QN,  equation 29, by an orderly sequence of 
well-defined mathematical manipulations. As a consequence, it is 
not very easy to provide a priori justification or criticism of the 
approach. It does seem desirable, though, to point out that a number 
of questions are raised by this semiempirical theory, which one ulti-
mately would like to examine in the light of a more fundamental 
analysis: 

* For KBr, for example, Carlson et al. (18) predict T = 3060°K., p, 	118.3 
atm. 
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1. If we could imagine taking an instantaneous photograph of all 
N ion positions, knowing simultaneously their momenta, what objec-
tive criterion should be used in deciding whether a given particle is 
gas-like or solid-like? Does this lead to the splitup postulated? 

2. It is not at all obvious that the set of particles constituting the 
quasi-solid structure should behave as particles in the true unmelted 
solid. In particular, why should the Einstein U be unchanged? 
Since this quasi-solid framework is pictured as riddled with passage-
ways, it has in effect an extremely large internal "surface area." This 
latter should modify markedly the properties of such a material, 
particularly the specific heat, and thereby 0D  and 0. 

3. What is the nature of "strained sites" in the liquid? Why may 
they all be given a common strain energy? 

4. It is not clear what role the fairly complicated dielectric proper-
ties of the melt have in this theory. Are their effects on the pressure, 
for example, entirely implicit in the values ultimately assigned to the 
two adjustable parameters, n, and a/nh? 

5. It is hard to imagine that the gas-like particles are sufficiently 
free to move about in the narrow passageways as the particles of an 
ideal gas. At best they should be subject to a constant average 
potential due to the neighboring solid-like particles. A diatomic 
gas-like molecule should be very seriously hindered in its rotational 
motion, requiring modification of Qas fl equation 58. 

In view of the impressive numerical success of the significant struc-
tures theory, in the face of these several points of ambiguity, it ap-
pears desirable to seek in the future an exhaustive theoretical analysis 
of the fundamental concepts involved in this method. 

B. THE "HOLE" THEORY 

It is evidently possible to adopt a rather different initial picture of 
the fused salt medium from that of the significant structures theory, 
and still predict numerically adequate results for thermodynamic 
properties. Frenkel (24), Altar (1), and FUrth (25) have been in-
strumental in developing this alternate view of the general liquid 
state, and Bockris and Richards (9) have applied the resultant ideas 
specifically to description of molten electrolytes. This second ap-
proximate theory is called the "hole" theory of liquids for reasons that 
will become clear. There is often semantic confusion of the name of 
this approach with that of liquid-state cell theories, in which provision 
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is made for empty cells. Since just such a theory will be outlined in 
Section V.3, we shall be careful always to call voids in this third ap- 
proximate theory "empty cells" or "vacant cells," rather than "holes." 

The hole theory is designed to describe spontaneous density fluctua-
tions of molecular extent that occur in liquids, as the constituent 
particles move about under thermal agitation. In the unmelted 
crystal, one important such density fluctuation that appears in 
equilibrium at elevated temperatures is the unoccupied lattice site, or 
missing particle. On account of the rigid geometrical structure of the 
crystal, such a small low-density region can be equal in size to only 
one (or possibly a small integral number) characteristic elementary 
volume, determined by the crystal structure. Furthermore, motion 
of these empty regions can proceed only by discrete jumps, produced 
by a shift of a particle in the crystal into a neighboring unoccupied 
site. The situation in the liquid is much less restrictive, though, since 
extra freedom of particle movement attending the melting of the rigid 
crystal implies not only a continuum of possible sizes and shapes for 
the low-density regions, or "holes," but movement of these holes may 
occur by a relatively continuous drift, rather than by discrete jumps. 

The specific technique of the hole theory is application of the notions 
of macroscopic fluid dynamics to the surface and surroundings of the 
holes. If, first of all, we may extend our knowledge of macroscopic 
holes—bubbles-----in liquids down to the molecular scale of sizes, a 
hole of a given volume should have as its most stable configuration, 
a spherical shape. As the liquid particles undergo thermal move-
ments, the resulting motions of the spherical hole will be radial size 
increase (the "breathing" mode), as well as translation of the hole 
center through the liquid. It is assumed that the liquid particles 
(the molten salt ions) outside a given hole comprise an ideal incom-
pressible fluid, whose average motion, for a specified movement of the 
hole, is given by solution of the hydrodynamic problem of a radially 
size-varying and translating sphere in this fluid. If the holes are 
not too numerous, it is permissible to regard them as hydrodynami-
cally independent entities .* 

* A really detailed hole theory, beyond what is available at present, would 
have to account for interference between neighboring holes. Besides being 
coupled to one another hydrodynamically, a close "collision" could produce a 
single hole from two, and by microscopic reversibility, the inverse process must be 
admitted. 
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These macroscopic concepts allow deduction of a distribution 
function for a single hole motion and radial size. This distribution, 
f(r,pr,pt) , may be written as a Boltzmann factor, 

- 	 i 	1 

	

 
fh(r,pr,pt) = b exp - - [w(r) +

r
+ 

pt2 
	(60) 

kT 	2m, 2m 

involving the reversible work necessary to create a static cavity of 
radius r, w(r) , plus the kinetic energies associated with radial (r) and 
translatory (t) hole motions. These latter, as shown in equation 60, 
are written in terms of the respective momenta and masses for such 
motion. The constant b is determined by the normalization condi-
tion: 

+co 

1 = f co drf 'co dpr f f f d3ptfh(r,pT1pt) 	 (61) 
Co 

The radial momentum Pr 1S by definition equal to m r  times the 
radial velocity. Mr  is known from classical hydrodynamics (45) to be 

m 7  4irr3p (62) 

where Pm  is the mass density of the liquid. Similarly, Pt is mt times 
the hole center velocity, and the hydrodynamic theory now provides 
the result (52): 

2 
mt - 7rr3 pm 	 (63) 

The reversible hole formation work, w(r) , must be performed both 
against the pressure applied externally to the liquid and (since a new 
surface is being created) against the liquid's surface tension, o- . Ac-
cordingly, it is traditional in the hole theory to adopt a w(r) of the 
form: 

4 -zi-r 3  
- 	 w(r) = 	(p - P0) + 4irr2 	 (64) 

3 

Only the difference between the external pressure, p, and the liquid's 
vapor pressure, Po, is utilized to account for the possibility of evapora- 
tion of liquid particles into the spherical hole, with consequent out- 
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ward pressure.*  As the liquid is heated up to, and just beyond, the 
boiling point, po  just exceeds p, so that large holes begin to become 
probable according to equations 60 and 64; the hole theory identifies 
these large vapor-filled holes with the usual bubbles observed during 
the boiling process. 

If one is interested only in the distribution of hole sizes, Fh (r), 
irrespective of the radial and translatory momenta, it is only necessary 
to integratefh(r,pT,pt) over Pr  and  Pt  to obtain (using eq. 60 forfh): 

+o 
'

ff F, (r) - J _ dpr J 	d3plf(r,p2p) 
- CO

(65) 
'  

= Br6  exp - 
w(r)
-- 

The constant B is determined by normalization condition (eq. 61) to 
he 
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1 (66) 

15/r 4iroJ 

where, for liquids in the neighborhood of the saturation vapor pres- 
sure, we have supposed p po, to leave only the surface tension 
contribution to w(r) in equation 64. The r6  factor appearing in 
Fh (r) occurs because of the r dependence of masses mr and mt. 

Now that an explicit distribution function, Fh , is available for the 
hole sizes (we shall continue to suppose w(r) = 4irr2 0), it is a trivial 
matter to compute the average hole volume, : 

=fTh 	
4r 

ri(r) . 
 3 

32 (kT )
(67)  

157 	0- 

	

= 	

3/2 
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32 
06791 
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* The idea of an included vapor becomes meaningless for holes about the size 
of the particles. Furthermore, the Gibbs-Kelvin equation (29) indicates that 
even for larger holes, the included vapor should have lower average density than 
that of the macroscopic vapor phase in equilibrium with the liquid. These facts 
have not been properly taken into consideration in the hole theories, to the present. 
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Fh(r) 

FA 

Fig. 7. Schematic plot of the peaked hole size distribution function, Fh(r). 

By virtue of appearance of lcT/o in this result for ti, it is perfectly 
clear that the surface tension, tending to reduce hole size, is counter-
balanced by thermal agitation which, by a sort of radial Brownian 
motion, acts statistically to increase hole volumes. 

In a fashion similar to the io calculation, Fh  may also be used to 
compute the average surface area of the holes, . One finds 

7 	
(68) 

(U)
2    

If all holes had identical sizes, 

3)3/2 	(4)3/2 

t 

	

= 10.635 	
(69) 

On the other hand, if the same ratio is formed for the results 67 and 
68, the number obtained is 9.643. The small difference reflects the 
fact that there actually is a finite dispersion in hole sizes. When 
Fh (r) is plotted, as schematically in Figure 7, it is seen to be rather 
peaked about the most probable hole size. This size distribution 
implies that most holes have volumes close to ii. 

For KC1 at 800°C, in equilibrium with saturated vapor, the surface 
tension is 96.8 dynes/cm. (5). With this value, t calculated by equa-
tion 67 is found to be 40 X 10 24  cm. 3. If it is supposed that all 
holes do in fact have the same radius r, this common radius must 
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then be 2.1 A. The holes in this typical alkali halide (similar re-
sults are obtained for other salts) therefore are about the right size 
to accommodate a single ion, and in that sense, are similar to solid-
phase empty lattice sites, or vacancies. This small hole size indicates 
well the considerable extension of macroscopic surface tension and 
hydrodynamic concepts that is necessary into the molecular domain 
of the hole theory. 

By way of homily, it may be remarked that the hole theory leads 
to a picture of liquids reminiscent of a portion of Swiss cheese. The 
holes in this cheese are all about the same size and spherical, and the 
material (cheese) between the holes is of course more dense than the 
entire sample considered as a whole. In molten salts, the ions form-
ing the fluid between holes must be rather closely packed, probably 
at a density comparable to the solid. If this is so, application of 
pressure to the "Swiss cheese" should affect the holes mainly, since 
little decrease in volume is possible for material between holes. 
Similarly, the main contribution to thermal expansion will be due to 
holes, rather than the constantly dense fluid between them. 

If Of  denotes the fraction of the overall liquid volume which is 
occupied by the dense hole-surrounding fluid, then the compressi 
bility, 3, and the thermal expansion, a, of the liquid will be 

f3 = Ih + 0 A 	
(70) 

a = ah + O faf  

The subscripts h and f on a and 3 denote, respectively, the total hole, 
and pure surrounding fluid parameters. 

To evaluate the hole contributions to liquid compressibility and 
thermal expansion, it is necessary to estimate the number of holes 
present, Nh.  The nearest neighbor distance observed in liquids by 
x-ray scattering, which must be characteristic of particle stacking in 
the hole-surrounding fluid, changes little on melting ; the hole theory 
concludes then, that the melting volume increase tYO m  must primarily 
be due to volume consumed by holes introduced into the system upon 
melting. Since it has been found that most holes have volumes very 
near 0, it is reasonable to determine Nh by 

0m = NO 	 (71) 
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At temperatures well above the melting point, Nh may still be oh-
tamed from relation 71, but must be interpreted as the difference 
between the measured liquid volume and the extrapolated volume 
of an hypothetical superheated crystalline solid. 

With this more complete picture as to the number of holes, in addi-
tion to their size distribution, the parameter 0 of equation 70 must 
therefore be 

	

Of 
- o - 
	 (72) 

Also, since near-neighbor pairs in the hole-surrounding fluid are 
arranged much as in the solid, it is supposed that o f  and af are ade-
quately approximated by the solid-phase values extrapolated to the 
temperature of interest. 

Because both Nh and 0 are generally temperature and pressure 
dependent, 

1 (à(Nh i) 
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In application of the hole theory to molten salts, it is assumed that 
all, or nearly all, holes are introduced into the liquid as the solid 
melts, and that temperature and pressure variations in the liquid 
cause negligible changes in Nh . Consequently the last term in each 
of equations 73 and 74 are dropped. 

The remaining partial derivatives occurring in 8h  and ah may be 
evaluated from the definition (eq. 67) of 0. Using the integrated 
form of equation 67, 

3Nh Y 
ah = ;-  	 (75) 
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When the more elaborate pressure-dependent form for w(r) , equation 
64, is inserted in equation 67, 0h  is subsequently found to be 

Nh —  
//z 

= kT 
[V2 	0)2] 	 (76) 

ji is the mean square hole volume. Therefore, 3h  is directly related 
to the dispersion in hole volumes. If the former assumption that 
all holes have precisely the same size were entirely correct, this ex-
pression for j3 would vanish identically. But from the actual dis-
tribution Fh(r) , now without the pressure terms in w(r) , an elementary 
computation yields 

2 

/3k 	0.4713 	
ev 	

(77) 
kT 

Using the concepts and deductions of the simplified hole theory 
outlined here, Bockris and Richards (9) have computed values of fi 
and a for a large number of salts.*  The results are in fair agreement 
with observed values, being generally within 2070 . 

As in the previously sketched significant structures theory, the 
hole theory has not as yet been provided with a systematic derivation 
by clear-cut approximation procedures from the exact liquid partition 
function. The most obvious omission in available expositions of the 
hole theory is precise definition of "holes" in terms of instantaneous 
particle positions. 

It is interesting that no explicit properties of the individual mole-
cules or ions forming the liquid of interest appear in the hole theory 
formalism. Only macroscopic observables—melting volume in-
creases and surface tensions—are used. Specifically, the hole theory 
contains no indication on an a priori basis, that electrostatic forces 
between ions of a fused salt should cause characteristic behavior for 
these liquids, as contrasted with non-electrolytes. 

* Bockris and Richards actually have employed a constant value of = 0.37, 
due to Fürth (25), somewhat different from that quoted in equation 72; this 
magnitude is difficult to reconcile with the apparent model of liquids implied by 
the hole theory. If most of the molten salts' volume changes are attributable to 
variations in i, computed a and 3 would be relatively insensitive to the value 
chosen for O. In addition, the numerical constant 0.4713 used in expression 77 
for 13h  differs from Fürth's multiplicative constant (9/14 = 0.6492)  by about 

27%. 


