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The extension of macroscopic classical hydrodynamics to the micro-
scopic regime is a difficult procedure to evaluate. Since, as shown by 
the numerical example, holes in fused salts are comparable in size to 
the ions forming these liquids, it seems very likely that appreciable 
corrections to the continuum hydrodynamic calculation of m r  and mt 
are necessary. 

Finally, the use of a macroscopic surface tension to describe very 
small spherical interfaces is risky business, though probably correct 
in qualitative features. The curvature corrections to o-  that are 
possible with presently available theory will be discussed in Section 
VII, where surface tensions will be scrutinized at some length. In-
dications are that such refinements are important. 

C. A LATTICE THEORY 

As a final example of an approximate theory of fused salts, we shall 
outline a liquid-state lattice theory for these substances. Unlike 
the significant structures theory and the hole theory, we start from 
the explicit form of the canonical partition function, and stepwise 
proceed in derivation of a lattice theory of simple molten electrolytes, 
making clear at each stage what approximations are necessary. As 
developed here, this molten electrolyte lattice theory is designed 
ultimately to evaluate not only the configurational contribution to 
thermodynamic properties, from fundamentals, but also certain gross 
features of ionic arrangement in the melt. Ideally, this approach 
would have no adjustable parameters, and so should be open to direct 
evaluation as a model for molten salts, without the specious and 
often misleading fit to experimental data that could lead to acceptance 
of incorrectly derived semiempirical theories. 

A motivation for study of a molten salt lattice theory arises from 
the considerable interest in, and success with, liquid-state cell (or 
lattice) theories for non-electrolytes (58) . It is therefore important, 
in a survey of molten salts, to understand what requirements are 
placed upon an application of these methods to assemblies of electro-
statically charged particles. In particular, the use of just nearest 
neighbor interactions, as usually is sufficient in ordinary lattice or 
cell theories, now becomes manifestly impossible. We therefore 
propose here a technique for including the long-range Coulomb 
forces in a lattice theory. 

The basic idea of the lattice theory of liquids is subdivision of the 
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Fig. S. Subdivision scheme of the fused salt volume into identical cells with 
molecular dimensions. Ions are regarded as occupying cells in which their 
centers lie. Some cells are empty on account of liquid-state configurational 
randomness, and resultant microscopic density fluctuations. 

actual physical space occupied by the liquid into a set of small volume 
elements, or cells. This subdivision is represented for an hypo-
thetical two-dimensional fluid in Figure 8. These cells will be chosen 
to form a regular lattice, so they will all be identical in size and shape. 
The cells will be comparable in size to molecular dimensions. 

The rigorous canonical partition function for the molten salt, QN, 
has already been written in equation 29. For the present purposes, 
the Born cavity energy may be subtracted from the total potential 

VN, to leave a partition function, Qcen,  of the form: 
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The integrand now contains only the total particle pair potentials, 
V 75(r) , for a pair of ions i, j of species y and 3, respectively: 

V 7 (r 2) = V 7 0 (r 1) + V ()(r11) 
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(see eq. 24). Since the limits of integration for the variable con-
figuration vectors r 1  . . . rN include all sets of positions inside the con-
tamer volume V, each of the N ions may conceivably occupy at any 
time any one of the cells which O  comprises. 

Each of the cells will be identified by an index j, 1 < j < 2, where 
the number of cells 0 is O divided by the cell volume, w. Qceii  may 
then formally be written as a sum over all ways of placing the N ions 
in the various cells, of integrals over positions of the ions within those 
cells only: 
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Many of the ways of placing ions in the cells result in precisely the 
same value for the integral in equation 79. In particular, it matters 
only what species ion is contained in a given cell, but not which specific 
one of these ions resides there. As a consequence, we may lump 
together all such terms in equation 79, of which there are exactly as 
many as the number of ways of distributing the ions among cells, 
maintaining a constant number of each sort in each cell. 

At this early stage, it proves to be a handy simplification to choose 
the cell size small enough that occupancy by more than just a single 
ion is a sufficiently rare event to neglect. Since double or multiple 
occupancy must be prevented by the short-range repulsive ion core 
forces, the acceptable range of cell sizes will vary according to the salt 
of interest. The number of equivalent distributions of ions so far 
as equation 79 is concerned, is now precisely 

llN a ! 

which cancels an identical factor in the denominator of that equation. 
For a single pure fused salt having only single anionic and cationic 

species, we may assign an "occupation parameter," , to each cell, w2 . 

This parameter will be + 1 if a cation is in cell w, 0 if the cell is empty, 
and - 1 if an anion resides there. The admissible sets of occupation 
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parameters, I 1 , must be consistent with the fixed numbers of anions, 
cations, and vacant cells in the system. 

The advantage of use of the 's is that an effective lattice-theory 
interaction, Vc(i . . . ) , may be defined which allows the integral 
representation of Qceii  (eq. 79) to be replaced entirely by a sum over 
acceptable sets, { }: 

/L 

 () 'Oa
Qii = II —i ) 	: exp - 	V1(E1 ... E2) 	(80) 

 I 	t 1 } 	kT 

The primed summation indicates admittance of only proper sets 

I j  1. If the cells were sufficiently small that position variations of ion 
centers within these cells results in negligible variation in the ion 
pair potentials, V: 1  . . . ) could confidently be set equal to 

N 

E V(r) 
i<3 = 1 

where the various rij  might be taken, say, as the distance between 
centers of cells supposed to be occupied by the corresponding ion 
types, as dictated by I }. Since each integral in equation 79 would 
therefore have an integrand virtually constant over the region of 
integration, and equal to 

exp{_ 	v} 

equation 80 follows immediately. 
However, if w is large enough to allow appreciable interaction 

variations, a more elaborate definition of V Q  is necessary. We may 
first inquire, under this circumstance, what would be the proper form 
of V if all cells were vacant with the exception of co i  and w 3 . In this 
case, reduction of the integral representation of Qceii  (eq. 79) to the 
sum (eq. 80) may be accomplished by taking V q  to be equal to the 
single effective cell pair interaction potential defined by: 
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Clearly the former small-w definition of V, at least for this two-ion 
case, is obtained as the limit of the more general expression (eq. 81) 
as w passes to zero. The subscripts on V1(2)  are intended to identify 
the two cells to which it refers. This effective cell pair potential will 
he somewhat temperature dependent. 

If the system contained more than just one pair of occupied cells, 
and if these distinct pairs were sufficiently far from one another not 
to interfere, V, the total effective cell potential, could be built up of 
a sum of the individual V1/2) ( ): 

V0(6 . . . ) = 	V.(2) 	.) 	 (82) 
i<j=1 

It is attractive to suppose that V u  is always adequately represented 
by such a sum of cell pair effective potentials, in complete analogy 
with the original ion interactions themselves. Of course this cannot 
be rigorously true; V- should strictly include corrections, Vj gk(" (, 

j, Ek) for simultaneous occupation of three cells (if all three 's are 
nonzero): 

exp 
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by ions of types y,  3, and E , respectively; corrections for four and more 
cells would be similarly defined. However, we shall neglect these 
many-cell interaction quantities for the present purposes, and assume, 
therefore, that equation 82 provides an adequate expression for V. 

The definition (eq. 81) of V(2)  permits one to get a qualitative idea 
of the relation of this cell pair function to its ion pair precursor, V. 
If the cells Wj and coj  are far apart, V ij  represents an average only of 
the very slowly varying Coulomb potential between ions of type 'y 
and S. Consequently, V ij  can differ only insignificantly from this 
Coulomb potential at large distances. On the other hand, when c 
and coj  are relatively near neighbors, not only does the ion Coulomb 
potential vary considerably across these cells, but the shorter-ranged 
ion interactions come into play as well. Therefore, at small distances, 
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V.( 2) will probably exhibit deviation from the pure Coulombic inverse 
distance dependence. For a pure symmetrical electrolyte to which 
we shall restrict attention in the remainder of this section, V 5 2  
may thus be written as the asymptotic Coulomb term, plus a function 
of the cell—cell separation r 1, which decays rapidly to zero with in-
creasing r j,: 

- 	
2 	

n(r15; 	, j) 	(84) i71(2)(E, E) - 
Dr15 

The distances r 15  are to be interpreted as the distance between cell 
centers. The short-range cell interaction i vanishes if either 	or 
is zero. As the leading term in equation 84 indicates, the electro-
static charge on the ions of the symmetrical salt is ± ze (z a small 
integer, which, for example, would be + 1 for NaCl, +2 for BaO). 

The cell potential V 1  . . . ) serves to define a normalized prob-
ability, Pceii  Q, . . . ) , which is the lattice theory analog of the com-
plete Gibbs phase space distribution function, (N)  (r1  . . . PN), defined 
originally for the molten salt in equation 24 
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)N 
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For the pure symmetrical electrolyte consisting of equal numbers of 
cationic and anionic particles, the number of species ji is obviously 
two. Pee11 specifies much less information about the detailed state 
of the ionic assembly than does pN),  for through the 's it can tell 
only which cells are occupied by anions or cations, but not where in 
these cells the ions are located, or what their momenta are. For this 
reason, Pceii is a spatially coarse-grained version of the configuration 
part of (N) 

In exactly the same way that (N) led to definition of the ionic 
correlation functions g(n)  (eq. 32) by integration, Pceii may be used to 
define lattice theory correlation functions, y(fl),  by summation, which 
give the probability that the n cells whose centers are at r 1  . . . r are 
simultaneously characterized by occupation parameters . . . : 

In 	
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x Y 
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1 	E' . . . E(r1 . . . r) = E" Pceii(i . . . ) 	 (86) 
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The doubly primed summation is to include all sets I I of occupation 
parameters which not only are consistent with the fixed total number 
of ions and vacancies as before, but which have the fixed values 

for the chosen set of cells. The "cell fractions" x are the 

fixed fractions of the total number of cells which are occupied by 
cations (x+) , anions (x_) or are unoccupied (Xø), 

x++x_+xo=1 	 (87) 

For the chosen symmetrical electrolyte, 

N 
x+ = = = x 

(88) 
xo = 1 - 2x 

The reason for introducing the cell fractions in equation 86, by anal-
ogy with g(fl),  is to normalize each y()  to unity when all chosen n 
cells are far from one another. On account of the relation of Pceii 

to (N) y(n) for a set of n occupied cells represents a spatially coarse-
grained nth-order ion correlation function, g() .  

As in the case of 0) in the uncellularized fundamentals of molten 
salt statistical theory outlined in Section IV, the lattice theory's pair 
correlation function, 7 

(2), plays a central role in the present considera-
tions. We shall not record here each lattice theory version of the 
thermodynamic quantities previously adduced with g(2)  in Section IV, 
except that for the energy. In principle, a knowledge of this energy 
at all temperatures and densities should allow deduction of the re-
mailing thermodynamic functions by means of identities 26-28. 
The average energy (beyond the Born cavity energy) of the molten 
salt, per cell, is composed, as usual, of kinetic and potential energy 
contributions. The former is just /2 kT times the average number 
of particles in a cell (2x). The latter may be obtained from tem-
perature differentiation (see eq. 26) of Qceii  given by equation 80, 
since this latter provides the interaction contribution to the Helm-
holtz free energy measured from the sum of Born cavity energies. 
Using the pairwise additive approximation for V, and referring to 
definition 86 for the cell pair correlation functions, one finally obtains 
the symmetrical salt result: 
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à UbC  N 
- E - - E [UbC  + 

2 	 (6(llkT))a +,_ 

- (3x)kT + 	E E [v1 2 (1, i) + 
(U)~j ,~ j  r 1  

(aVii (Ei si)) "1 
( 2 ) (r ij) (89) X j YE  

Here, t j  and E3 are summed over the three permissible values - 1, 0, 

and +I ,  
and r 3  takes on all values of the distance between the center 

of a specified cell (i) and the other Q - 1 cell centers. 
We turn now to the central problem of the molten salt lattice theory, 

the determination of the cell pair correlation functions y.(r 1 ). 

It will be convenient to abbreviate the content of cells by + , 0, -, 

for cations, vacancies, and anions, respectively. Even for the pure 
symmetrical salt, there are six different correlation functions, 

++2 (r) , y+_(2)  (r) , y(2) (r) , y+o (2)  (r) , y 0 ( 2 ) (r) , yoo ( 2 ) (r) 	(90) 

There is naturally irrelevance regarding subscript order. 
The restraint of no greater than single occupancy in the lattice 

theory implies simple linear relations between these quantities. A 
cell chosen at distance r from another cell, whose content is known, 

must have one of the three states + , 0, - ; since the specified cell 

itself may be in any of these three states of occupation, we arrive at 
the three conditions: 

1 = xy(2) (r) + (1 - 2x)y o (2 (r) + xy_( 2) (r) 

1 = x-yo ( 2 (r) + (1 - 2x)'yoo (2 (r) + x'yo_( 2) (r) 	(91) 

1 = xy_ (2) (r) + (1 - 2x)y_0 (2 (r) + xy__( 2) (r) 

By use of these relations, only three independent quantities remain 
from the original set (eq. 90). 

Although the general ideas of the lattice theory do not demand it, 
a considerable economy of notation results if one can suppose that 
all ions, regardless of charge, interact through the same averaged 

cell short-range interaction 77 ; thus, we shall tentatively assume: 

77 (r; ~ j , 	) = 	(r;1I, IA) 	 (92) 



EQTJILIBRTTJM THEORY OF PURE FUSED SALTS 	 61 

In this event, the lattice model becomes entirely charge-symmetric, 
so that as far as the correlation functions are concerned, nothing can 
distinguish + from - on an absolute basis. As a result, there must 
be the following identities: 

'Y++ (r) = y(2)(r) 
(93) 

7+0 2 (r) = y_ 0 ( 2) (r) 

Since the five equations 91 and 93 together constitute only four inde-
pendent relations, there remain two independent cell pair correlation 
functions. 

If it is the ion core repulsive forces primarily which determine the 
cell short-range function, i, then the subclass of symmetric salts 
containing KF, CsCl, and BaO should conform rather closely to the 
simplified lattice theory as outlined here. For these salts have very 
nearly equal anion and cation radii, and the definition of 77 (eqs. 81 
and 84) should lead to minimal dependence on particle charge .* 

If a large pressure were applied to the molten salt, it would presum-
ably be possible to squeeze out the vacant cells, so each cell would 
contain a single ion. Under this condition, the total correlation, 
ym (r), of ions of either size about a given (occupied) cell, which is the 
average of y++(') (r) and -y +—(') (r), 

TM (r) = '/2 [ ,y++(') (r) + y_( 2)(r)} 	 (94) 

is everywhere unity. Thus, though about a central cell we should 
generally expect that shells of neighboring cells would contain varying 
compositions, the resultant fluctuations in ++2 and in 
equation 94 completely cancel one another. The extreme case of this 
cancellation would be encountered in the case of a perfectly ordered 
crystal, with cells centered about the lattice positions, for then con-
centric shells would be entirely one species or the other, but -y m  is still 
identically unity. 

In the ordinary liquid range, there will, however, exist a certain 
fraction, 1 - 2x, of empty cells. In this case the cancellation in-
herent in the definition of Ym  will not be quite complete. But for 

* It should be pointed out in this connection that a choice of cells, as in one of 
the close-packed arrays, produces individual cells which are nearly spherical. An 
average of the Coulomb potential over a spherical region is, of course, equal to 
the Coulomb potential at the center of this region, so the electrostatic contribution 
to will in any event be small for these compact cells. 
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fairly large cell center pair distances r, where it is essentially the 
electrostatic interactions alone which determine the occupation 
probabilities, a certain amount of cancellation still can be anticipated. 
Thus, for a given r, a like ion pair might experience a net positive 
mean electrostatic interaction (and hence less such pairs would be 
found at this distance than on a random basis) , but an unlike pair 
would exhibit enhanced probability by virtue of charge sign change, 
with resultant average interaction sign change. As a consequence, 
the mean cell pair correlation function Ym  5 expected to attain its 
asymptotic value unity, as r increases, much more rapidly than do 
either y++ (2)  or 

On the other hand, the ratio of 'y++ (2) to 7+_(2)  will fluctuate as r 
increases with even greater amplitude than either its numerator or 
denominator, since as already acknowledged, when one is small rela-
tive to unity, the other should be large. Therefore, if a function is 
defined by the relation, 

exp

{

2(ze) 2 (r)' 'y(2 (r) 

- DkT j = y+_2(r) (95) 

the behavior of this new quantity should alone be virtually sufficient 
to characterize the order imposed upon the liquid assembly of ions 
attributable to their electrostatic charges. 

Equations 94 and 95 may be solved simultaneously to yield: 

2ym(r) 
1++ 'J - 	

j'2(ze)2(r)l 
exp 	

D/CT 	
(96) 

(ze)2c'(r) 	
(large I r) 1 - - DkT 

y+_ 2 (r) = 
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2ym (r) exp 	

DkT 

f2(ze) 2 ç(r) 
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(large I r) DkT 

(97) 

, 	(2)(r) - 
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The asymptotic behaviors follow immediately from the long-range 
decay character of ç(r) vs. 'ym (r) . Utilizing next the normalization 
and charge symmetry conditions eqs. 91 and 93, the remaining cell 
correlation functions must in turn be expressible in terms of the funda-
mental quantities T. and SE'. Interestingly, the latter does not ap-
pear: 

7+0 
(2) 	

2x
(r) = 1 - 	[ym(r) - 1] 

1 - 2x 
(98) 

4x2  
TOO ( 2)(r) = 1 + (1 - 

2x)2 [y
m (r) - 1] 

That only Ym  S involved is consistent with the fact that an uncharged 
vacant cell should not be subject directly to electrostatic correlation. 

A variable A is now introduced (analogous to the similar param-
eter in eq. 50), which has the effect of allowing continuous variation 
of the electrostatic charge on an ion contained in a given cell (identi-
fied arbitrarily as cell 1) . The "physical" value of the charge, 1ze, is 
thus replaced formally by X 1ze. As A varies continuously between 
- 1 and +I, when this cell 1 contains an ion, the effect is to change 
this ion from a cation to an anion, or vice versa. Setting A = 0 dis-
charges the ion electrostatically, so it may interact with its neighbors 
only through the short-range cell interaction, (r). This discharged 
ion core then appears to act very much like a dissolved noble gas 
atom. For arbitrary X, the cell potential V u  must now be written: 

C 

VC(l... C; X) = 
j=2 

C 

+: 
i<a= 

[ 	

1(ze)2 
 A 

Dr1 	
(99) 

[3(ze)2 
+ 	Ei)] 

2 	Dr 13  

Furthermore, it is this A-dependent potential which must be used in 
the definition of the various y()  (eq. 86) for cell correlation functions 
of any order, when cell 1 is variably charged. 

If cell 1 is vacant, obviously variations in A can produce no ob-
servable change in the properties of the cellularized system. Specifi 
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cally, the cell pair correlation functions for this empty cell and another 
cell with any state of occupation are independent of X: *  

y0(2)(r, X) = y0 (21 (r, 1) 

To- ( 2) (r, X) = 70_(2)(r, 1) 	 (100) 

TOO ( 2)(r, A) = 700 (2) (r, 1) 

On the other hand, if cell 1 is not vacant, the actual charge variation 
produces change in the corresponding -y(2)'S. One can easily see, for 
this simple charge symmetric lattice model, the following relations 
are valid: 

y++(2(r, A = —1) = -y_+( 2) (r, A = +1) 
(101) 

= 'Y+- (2) (r, X = + 1) = 	( 2)  

In view of definitions 94 and 95, it must be admitted that Ym  and 
likewise are explicitly A-dependent, when they refer to correlations 
between cell pairs including cell 1; 

7M (r, A) 	(r, X) 

But by virtue once again of the charge symmetry of the simple fused 
salt model we are considering, 

y m (r, —X) = 'Ym(r, X) 
(102) 

In particular, this last equality implies 

(r, A = 0) = 0 	 (103) 

We are now in a position to deduce a functional equation for de-
termination of the fundamental electrostatic correlation quantity 

;E'. From its definition (eq. 95), for arbitrary X, one has the identity 

DkTrx 
(r12, X) = ( 2 Jo dX' 

X 	
_i9g y_( 2)(r12, A') _ a log y(2)(r12,X') 	

104 ax' 	 ax' 	) I 
* Although the original -y (2) 2s were invariant to the subscript order, before intro-

duction of X, we now conventionally suppose that the first subscript refers to the 
species of the content of cell 1 (when X - 1), and that the second subscript refers 
to the content of the cell whose center is at relative displacement r from cell 1. 
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The two X' derivatives may be obtained from equation 86, upon 
setting n = 2, and using a X-dependent Pee11. With the aid of equa-
tion 86 again, to identify triple cell correlation functions, one finally 
obtains 

- 	A 	x 	(IX 	, 1 [y+++ ( 3)(123, X') 
ço(r12, A) = - + - L1 I dX - 	

( i 	(2) r12 	2 r3(r1,r2) 	° 	r13 L Y++ 	12, A F ) 

- 	
_(3)(l23 ,  XF) 	7+—+  (3)(123, AF) 	'y_ 3)(123, X") 	

(105) 
++ ( 2)(12, V) 	7+_(2)(12, X F) 	 +_( 2)(l2 ,  X F)  

(123) = (r 1 , r2 , r3) 
The summation over cell centers r 3  is to include all cells of the system 
with the exception of the chosen pair (at r 1  and r2) for which is to 
be evaluated. 

The central quantity obviously has two contributions, as may 
be seen from equation 105. The first, X/r12, represents precisely the 
correlation in content between cells 1 and 2, as a result of the direct 
Coulomb interaction between these cells. The second is provided 
by the integral term in equation 105, and is the modification ("shield-
jug") of the direct interaction between 1 and 2 by the variable distri-
bution of ions and vacancies among cells surrounding 1 and 2. 

Having once adopted the total cell—space interaction energy VU 
in form 99, the functional equation 105 for follows as a rigorous 
consequence. Its immediate utility, though, is limited by the fact 
that it contains the yet undetermined y(3)'.  However, a plausible 
set of approximations for the y(3)  may be proposed by which equation 
105 will lead to a determinate equation for '. We postulate 

Y afl6 ( ( 123, X') 	ya (2) (12, X#) + ya 2 ( 13, A') + 

1(
2)(23) 	2 (106) 

a, 0, ô = +, 0, - 

Here, Tp (2)(23) refers to an assembly in which A has been set equal to 
its "physical" value, + 1. This is the simplest approximation for 
the Y(')'s in terms of -Y(')'s which not only satisfies the normalization 
conditions: 

E 	XF) 

: Xya5 3 ( 123, X") = Y C'S  2(13, XF) 	 (107) 

: X7aô 3 (123 2 X') = 7ap2(122 XF)  
a 
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(these are the generalization to the 7(3)  case of conditions 91), but 
additionally reduces to the proper y(2)  when one cell of the triplet is 
sufficiently far from the other two to be randomly occupied. It may 
be shown (67), furthermore, that equation 106 is exact if the number 
of vacant cells is negligibly small (x = 1/2) . A reduction of the triplet 
correlation functions to a linear combination of pair functions, rather 
than a product of the three pair functions [the Kirkwood superposi-
tion approximation (40)] which fails to satisfy equations 107, thus 
seems more appropriate in this lattice theory. 

When approximation 106 is used to eliminate the triplet cell cor-
relation functions from the equation, this latter is found to be ex-
pressible solely in terms of this unknown function itself, as well as 
the mean correlation function, Ym: 

	

{x + xf dX' [cosh (2(
ze)2(12 X')) 	

i]} 
r12 	 o 	 DkT 

+ 
D " 

	

dX' 	
€(x') 	sinh [2(ze) 2 c,(12 X') 

2 (ze) 2  J 	X'ym (12, A') 	 DkT 	I 
I ? 	cosh  [2(ze)2ç(12,  X')/D1cTfl 

-X 	X
dX' 

t 	 'ym (12 1  X') 

ym(23) 	

I

(ze)2(23) I  x E 	tanh 
	DkT 	

(108) 
r3(~ rl,r2) 	r13 

Once again, functions without explicit appearance of X as an argument 
are to be taken at X = + 1 . The position-independent quantity 

(x) is the purely Coulombic part of the average interaction energy 
of a partially charged cation with its surroundings: 

	

2(ze) 2xX 	y,(l3, X) 	r 	

D/CT 

(ze) 2 (13, A) 1  
c(A) = - 	E 	tanh [- 	_] 

(109) 
. 	 D 	r(øri) 	r13  

The equation 108, even now that triple cell correlations have 
been eliminated, is still unwieldy. First, it is nonlinear in the desired 

'; and second, Ym  15 not precisely known. In the interests of obtain-
ing an explicit, albeit approximate, solution for , we shall choose to 
circumvent these barriers by supposing that is sufficiently small 
that equation 108 may be linearized with respect to it, and that #ym  

is identically unity (as it is when no vacant cells are present) . This 
latter assumption is equivalent to supposing that vacant cells are 
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randomly mixed among the entire set of cells. When these simplifi-
cations are employed, equation 108 reduces to 

(r12) = ! 	: -- (r23) 	 (110) 
r12 	47W r3(Xrl,r2)  r13 

where X has been set equal to + 1 to correspond to the fully coupled 
ion set. The Debye-HUckel parameter for the symmetrical salt has 
been introduced: 

K 2  = 

8irx(ze)2 	
(111) 

DkTw 

Once solution for has been effected in this X = + 1 case, the result 
may be utilized in solving analogously the arbitrary X equation, ob -
tained from equation 108 by the same approximations as was 110; 
we shall not dwell on this slight procedural generalization. 

The positional summation restriction on r 3  in the linear equation 
110 may be removed by defining a function 1(r) equal, at all relative 
cell center positions r, to r', except when r = 0: 

1 
1(r) = ;: 	I r 	0 

(112) 
=0 	rI= 0  

Therefore, 

K 2W 
(r12) = (1 + )1(r12) - - 

	
1(r13)  - (r23) 

47r r3 
(113) 

r = - (o) 
4ir 

The constant - is arbitrary so far as equation 113 is concerned. 
Mathematically, a solution exists for every . But physically, a 
single value of r must eventually be chosen to yield a unique c which 
satisfies a local electroneutrality condition. This latter demands 
that the total average electrostatic charge surrounding an occupied 
central cell must precisely counterbalance (and hence completely 
shield) that central cell's charge. The precise statement of this 
condition in terms of Ym  and is easily found to be 

(ze) 
y 	

2(r)  I  m (r) tanh 
	

(114) 
2x 	r~O 
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which may be obtained from expression of the average ionic (and 
hence charge) densities near an occupied cell in terms of the individual 
y 2 's. 

The set of cells spanning the molten salt volume has been chosen 
so that their centers form a regular lattice. This lattice of centers 
may be regarded as a reciprocal lattice for a certain unit cell 'r (the 
first Brillouin zone for the r lattice) in the three-dimensional space 
of vectors, k. r is completely specified as usual by the conditions 
(12) : (a) r and its periodicity images completely fill k space (k = 0 
is taken as the center of r) ; (b) if k13  is a vector connecting equivalent 
points of two such k space cells ri  and r, then 

exp {ir.k 13 ] = 1 

for all members r of the original lattice of centers; (c) T'S circum-
scribed sphere is a minimum. 

The general solution to linear equation 113 may now be accom-
plished by a Fourier transform method. For any function f(r) 
defined on the lattice of cell centers r, we have the following simul-
taneous pair of equations: 

F 	- E exp [ik.rjf(r) 
r 	

(115) 

f(r) = f exp [ — ir . k]F(k)d 3k 
T r 

These are the adaptation, to present circumstances, of the Fourier 
integral identities in three dimensions (61), which would be obtained 
for an infinitely dense set of positions r. 

Applying the summation operation of the first of equations 115 
to both sides of 113, solving the resultant algebraic equation for the 
transform of , then finally inverting by means of the second of 
equations 115, the desired solution is obtained in the form: 

1 + 
fr 

L(k) exp [ — ir . k] d3k  
T 	

1+—L(k) 
4ir 

(116) 
L(k) = E exp [ik . rJl(r) 

r 
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This last summation must be carefully performed; to avoid diver-
gence, it is sufficient to place in the summand an extra convergence 
factor exp ( - ar) , then after (the now uniformly convergent) summa-
tion is accomplished, allow a to approach zero. 

The sum L(k) generally cannot be put into closed form. However, 
it may be closely approximated by an integral which can explicitly 
be carried out. For this reason, we shall replace L(k) by an integral 
of exp [i:k • r]/r, which is the value of the summand in equation 116 
at all lattice points except the origin, outside of a sphere of volume 

4r 
r03  

3 

equal to the volume of the central cell (for which 1 vanishes). 

L 	lim
fir l 

d3r 
exp [ik.r - ar  

(_o a—O 	~ ro 	 r 
(117) 

4ii- 
= 

i;-:; cos (icro) 

Sphericalization of the original unit cell is not at all a drastic modifica-
tion if the original lattice were one of the close-packed structures, 
for cells in those cases are already nearly spherical. 

In the inversion integral (eq. 116), the reciprocal space unit cell r 
likewise is sphericalized, maintaining its volume 

T = (2-)/w 

Use of this last simplification finally permits the desired (r) to be 
expressed as a simple quadrature: 

- 	 r' 
	C 

dl 1 
cos 1 sin {(r/ro)l} 

(r)=  
( r/ro) 0 	12 + (Kro) 2  cos 1 

(118) 
C = (9 r/2) 113 	2.418 

r ' 

 

is once again an arbitrary multiplicative constant whose value must 
be chosen to satisfy the local electroneutrality condition (eq. 114). 

For molten salts near their normal melting points, 2 is around 
100. With these values, the denominator in integral 118 will have a 
simple root at 

lo+ 	"r

()2 	
(119) 
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The large typical values of icr0 , for which this is an asymptotic esti-
mate, yield a root 10  well within the interval of integration of equation 
118. In this situation, it is necessary to specify the sense of integra-
tion across this pole in the complex 1 plane. In the following section 
on the theory of the complete (uncellularized) pair correlation func-
tion, we shall see by analogy that the appropriate interpretation is 
such to remove the long-range contributions to arising from this 
singularity. The analogy leads one to rewrite 118 in the form: 

	

W+ 

	1 cos 1 exp [—i(r/ro)l] 
j 	

dl 	 (120) 

	

2(r/ro) — C 	 12 + (Kro) 2  cos 1 

where the contour is to be deformed below the real axis at the two 
singularities of the integrand at ±l, as shown in Figure 9. In form 
120, sin [(r/ro)l] in equation 118 has been converted to its exponential 
representation. Alternatively, the two infinitesimal portions of the 
contour at =L lo  may explicitly be integrated to leave a Cauchy princi-
ple value integral (CPV): 

-, 	{irlo  cos 10  cos [(r/ro)lo ] (r) = 	
21 - (Kro) 2 sin

1   

l 
cos 1 sin [(r/ro)l]} 	

(CPV) (121) + f dl 
12 + (Kro) 2  cos 1 

In view of the several approximations used in derivation of formula 
121, or its equivalent (eq. 120), it can only be regarded as a rather 
crude estimate of . It should ultimately prove useful, though, as a 
first step in iterative schemes designed to construct self-consistent 
solutions to the more exact nonlinear sum (eq. 108) . In any event, 
it will provide a qualitatively instructive expression for '. 

Even without having to perform explicit numerical integration of 
equation 120 or 121, the gross character of çp may be deduced. Aside 
from the sine factor, the integrand of equation 121 is positive over 
virtually the entire range of integration; the sine factor, however, 
implies then that the integral oscillates as r increases, and ap-
proaches zero for large r. This behavior is exhibited schematically in 
Figure 10. 

Referring to definitions 96 and 97, and remembering that Ym  has 
been treated as identically unity for Irl > 0, we see that this simple 
calculation predicts alternating shells of anionic and cationic cells 
around a central occupied cell. Since the distance between successive 
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Fig. 9. Integration contour employed in equation 120 of the molten salt lattice 
theory. Crosses on the real axis indicate positions of the roots of 12 + ( Kro )2  

X cos 1 = 0 just below which the integration must be deformed into the lower half 
complex plane. 

Fig. 10. Qualitative behavior of the lattice theory's electrostatic correlation 
quantity, . 
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crests and troughs of is indicated by 121 to be comparable to r0, it 
is predicted that dense molten electrolytes have ions arranged on the 
average in much the same way as do the corresponding crystalline 
solids, where also successive shells of neighbors differ in charge sign. 
Of course, there is much more disorder in the liquid state which 
amounts in the lattice theory not only to the larger number of vacan-
cies, many of which are introduced on melting, but probably as well 
to less complete "sorting" of ions in the successive shells. It is 
nevertheless interesting that the salt can take advantage of a rudi-
mentary solid-like alternation of anions and cations to lower its elec-
trostatic energy. It is characteristic of such vestigial order in liquids 
to appear in the distribution of particle pairs rather than as long-
range order in the solid-state sense of average single-particle-center 
density regularity. 

Although this rough computation of on a lattice theory basis is 
not sufficient to demonstrate the fact, *  the persistence of order (in cell 
pair space) outward from a central cell is much less in liquids than in 
the strongly ordered crystal. This behavior is more aptly discussed 
in the complete pair correlation function theory, and will therefore be 
analyzed in the next section. 

At sufficiently high temperatures, Kr0 becomes small enough that 
the integrand of equation 118 has no pole in the interval of integra-
tion. In this limit, it is easy to show that is equal to 

- 	exp ( - Kr) 
ç(r) = A 	 (122) 

r 

so that this lattice theory properly produces the Debye-HUckel 
description of electrolytes in the appropriate limits (T - , or x - 
0). 

VI. Properties of the Complete Ionic Pair Correlation Functions 

The preceding lattice theory is interesting in that it can predict 
rather easily at least the dominant characteristics of the microscopic 
structure of fused salts. In fact, many of the lattice theory ideas 
can be freed from the special requirements of that theory, and applied 
with little modification to analysis of the more informative particle 
( rather than cell) correlation functions, g (2) .  

* Presumably a self-consistent solution to the complete nonlinear equation 108 
would be more accurate in this regard. 
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In the demanding regime of exact properties of the gfl(2),  it has 
not yet been possible to adduce rigorous relations by which these 
fundamental quantities may be precisely determined. Nevertheless, 
the partial information which is available from approximate formula-
tion of the theory is helpful in supporting the general picture of molten 
salt ionic arrangement. Additionally, the approximate analysis 
should be amenable to reasonably accurate numerical solution, at 
least for simple salts, and it points out as well what information is 
still required to attain exact solution. 

On account of the resulting compactness of notation, we will 
restrict attention initially to the elementary class of monatomic salts 
(KF, CsC1, BaO) which are not only charge symmetric, but which 
can also be regarded as displaying identical ion core forces between 
all ion pairs (equal ion sizes) . Generalization to description of less 
regular salts will be suggested by the specialized theory, and its re-
quirements will be outlined briefly later. 

In the same manner as in the lattice theory, it proves useful to 
introduce a continuously variable charging parameter X, attached 
now to a specific ion, ion 1, rather than to a specific cell. For the 
elementary salt model, there are only two independent ion pair cor-
relation functions, involving this electrostatically partially coupled 
ion (we assume A = + 1 produces a fully charged cation, X = - 1 an 
anion) ; they are g++(2) (r, A) and gJ2) (r, X). Following the lead of 
the cruder lattice theory, we define a mean correlation function, 
ç/m(r, X), and an electrostatic correlation quantity, ço(r, X), by the 
relations: 

	

9,. (r, X) = 1/2[g++2(r, A) + g+_(2) (r, X) ] 	(123) 

exp [ 
	

2(r, x)1 	9++121  (r, 	
(124) 

X) - 	
kT ] = 9+_(2 (r, X)  

Inversely, 

2gm (r, X) 

[2ccr, 
X)1+ 1 ex 	

kT 

I2gm (r, X) exp 
2(r, X) 

	

 lcT 	

I 

 

[2co(r, X)j 
ex 	

kT 

g++(2)  (r, X) = 

(125) 

9_(2)(r, A) = 
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It is to be expected once again that the individual fluctuations of 

9++ (2) and g_(2)  about unity cancel to a large extent in g,  as r 
increases, whereas they reinforce one another in ç'. These fluctua-
tions are larger than in the corresponding cell quantities under iden-
tical conditions of temperature and density; the latter, it must be 
remembered, represent spatial averages of ionic densities over the 
cell regions. 

The mean correlation function gm  may be constructed in a way 
which shows that it is rigorously the pair correlation function acting 
between a partially coupled particle, and another particle in a fluid 
composed of N - 2 particles all identical with the second, and all 
interacting only through short-range forces. In fact, the molten 
salt is equivalent in all thermodynamic respects to this single-com- 
ponent fluid with (when X 1) a single, somewhat modified particle, 
the one numbered 1. The configuration integral appearing in the 
canonical partition function (eq. 29) includes in its region of integra-
tion all positions of the N ions within the container. Specifically, for 
any given set of positions r1  . . . rN for the ions, all other permutations 
of the ions among these fixed positions are included as well. There-
fore, the value of the configuration integral is necessarily unchanged, 
if one were to replace the integrand for a given r 1  . . . rN, by its average 
over all different ways of distributing the fully coupled ions 2 . . . N 
over the sites r2  . . . rN (generally not forming a regular array, of 
course) . The ion 1 at r 1  is to be exempted from this averaging pro-
cedure to retain this unusually charged particle at a fixed site. 

The mean correlation function as defined by equation 123 is a 
straight arithmetic mean of g(2)  and  g_(2).  Since there are 
essentially equal numbers of anions and cations among the N - 1 
ions numbered 2 . . . N, we may also take g(r,  X) to be the average of 
all pair correlation functions between ion 1 and each of 2 . . . N in 
turn. This latter average may be written (see eq. 32): 

	

ij2 	N f gmfrio, A) = 
	

dr2  . . . f d3 rN (r - r0) 
(N - 1)Z N (X) i=2U 	 V 

X exp
[ 	

V N (rl. . . rN, x)1 - 	
kT 	_I 	(126) 

ZN(X) = f'U d3r1. ..  fV 
d3rN  exp -

VN(rl 

kT 
rN, 

 L  
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For each member of the sum in the first equation, the Dirac delta 
function constrains the corresponding ion to be at position r 0, so that 
the average involves only g 2 's with identical distance arguments. 

Let N and Na respectively denote the number of cations (charge 
+ze) and anions (—ze) among the set 2 . . . N. We have claimed in 
effect that averaging 

- V

N (rl .. . rN, X) 
exp I 	I lo 

over all ways of assigning signs of E2 . . . N to the sites r2  . . . r, where 
ion j had originally charge Eze, will not change the value of the 
integrals in equation 126. Since there are exactly (Na  + N) !/ 
Na !N c ! such distinct assignments possible, a pseudopotential 'J'N(rl . . 

rN, X, T) is defined by this averaging procedure: 

r 	1 
exp[- j-; 'I'N(rl. . . rN, X, T) 

Na !N c ! 	 r 	1 	 1 = 	 L 	exp I - - V N (rl... rN, 1. . .N) I (127) 
(Na  + N) ! E2. . . EN = 1 	L kT 	 J 

As indicated by the prime, the summation must maintain N 's 
which are + 1 and Na 5 equal to - 1, among the set 2- . . N; aside 
from the insignificant variable charge Xze on ion 1, this is precisely the 
system electroneutrality condition. With this definition, 1N  is 
clearly symmetric with respect to interchange of pairs of positions 
r2  . . . rN. Hence, the integral expression for g,  after the integrand is 
averaged by equation 127, has all N - 1 members of the sum in equa-
tion 126 identical. Accordingly, one may write: 

2 	

• • • f d3rN  exp 
[ 	

N(n1 . . • rN, X, T)] 
ZN(X) fu fJmfrl2, X) = 	d3r 

(128) 

ZN(X) = f'o d3r1  . . . fI d3rN  exp 
— 	

N(r1 . . . rN, , T)] 

The configuration integral ZN (X) (or equivalently the entire canonical 
partition function) and the mean correlation function therefore cor- 
respond to a fluid of N particles, all of which but one are identical. 
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For the fully coupled case, X = + 1, '1N  becomes completely sym-
metric in all its N configuration arguments, for the elementary class 
of salts considered, and so in this limit all N particles of the equivalent 
fluid are identical. 

It is possible to provide at least a partial characterization of the 
pseudopotential 'JN  beyond the formal definition (eq. 127). A tem-
perature differentiation of this definition yields a differential equation 
for 'I'N : 

ô['I'N(X, T)/IcT] 
(VN(X))T 

ô(1/kT) 
(129) 

i exp 
[_ 

VN(2 .. . N, 

(f)T 	
2. . EN 1 	 k  

E l  	exp 
[ -

VN(E2 . . . EN, X)] 

	

E2. EN' 	 kT 

The averages, denoted by angular brackets with a temperature sub-
script, serve as before to distribute anions and cations 2 . . . N in all 
possible ways over positions r 2  . . . rN. Unlike the previous case in 
definition of N, though, the various distributions are not equally 
represented, but are weighted according to the corresponding inter-
action via a Boltzmann factor. This present average thus is a tem-
perature-dependent operation, and is equal to the former only as T 
becomes infinite. 

The standard form (eq. 23) for the molten salt potential energy, 

VN, contains a Born cavity energy for each particle. But since these 
are independent of position, they can have no effect on the arrange-
ment of ions in the melt, and in particular do not affect the ionic pair 
correlation functions. In the considerations of this section, therefore, 
it is convenient to disregard the total Born cavity energy, and so to 
suppose that the zero of energy is chosen to make VN a sum only of 
the remaining particle pair potentials: 

(ze) 2 N 	N 
 + 	

__j1 

	

Z X
~j 

VN(A) = VN(s) + 	
j=2 r1 	i<j=2 	

f 
	

(130) 

where by assumption the total short-range ion core interaction V v (s )  
is a sum of identical pair functions, independent of species. If this 
detailed form of VN i s substituted into the 'TiN  differential equation, 
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= VN (8) + 	J 	(X 3.)T 	 (ij)T 	
(131) à['I'N(X, T)/kT] 	 (ze)2 	 + 1: 

j=2 r11 	i<j=2 	5 (1/IcT) 

The fact has been used here that VN (8) is independent of how anions 
and cations are distributed on r2  . . . rN. 

The temperature-dependent coefficient of each inverse distance 
term on the right side of equation 131 represents the charge correlation 
on the corresponding pair of sites under the averaging process( )T, 

defined in equation 129. It is to be expected that a pair of sites 
separated by a large distance will possess virtually independent 
charges, so each term will in that case essentially vanish. In addi-
tion, these charge correlations also will vanish in the high temperature 
limit, for then all distributions of charges over r 2  . . . rN  are equally 
likely (random mixing), and no type of pair will predominate. As a 
result of this latter fact, one deduces that the appropriate boundary 
condition for integration of differential equation 131 is 

	

lim 'I'N(X, T) = 	 (132) 
T--->- Co 

and so 

	

(ze)2kT N 
i 	1/kT 

N(X, T) = VN(s) + D 
	

E 	f 	(Xj)T'd () 
j=2 r13 kT' 

N 	1//cT 

+ E - .i: 	(iJ)T'd ()} (133) 
i<j=2 ij kT' 

Each charge correlation, (15)T  and (XEJ)T,  is in a rigorous sense very 
complicated, because it depends not only upon the position of the 
two sites on which the charges being considered reside, but also on 
where the remaining N - 2 sites are placed in the neighborhood of 
this pair. On the other hand, in dense fluids such as molten salts, a 
given pair of sites will virtually always be surrounded closely by many 
other sites which in concert should behave much like the actual fused 
salt medium. In this sense, we choose to replace the instantaneous 
effect of the N - 2 sites around a given pair, by their time average 
effect in the liquid. With this approximate interpretation, the 
averaged products may be taken as those for pairs of sites surrounded 
by the thermally "smeared" molten salt, and consequently may be 
evaluated in terms of the molten salt pair correlation functions at 
temperature T: 



78 	 FRANK H. STILLINGER, JR. 

g++ 	X) - g_(2) (r15, X) 1 
(AEJ)T 	A 

-9++( 2 ) (rij, X) + gJ2)(ri1,  A)] 
(134) 

- 
9++  (2)  (r.) 	g_(2) (r.) 

( EJ)T - 	(2) 
++ (r) + g(2)(rjj) 

With these approximations for charge correlations, the pseudo-
potential becomes a sum of pairwise additive contributions entirely: 

N 	 N 

"N(X, T) = VN(8) + E VI(rij, A) + 57, ql(r ij, 1) 
j==2 

- 	
Dr fo 	tanh 	

' 

T')] 
d ()(135) 

(r, 
A) - - X(ze)2kT l/kT 

kT' 

Here the individual pair correlation functions have been eliminated 
by equation 125 in favor of the more convenient ç. The /"s are the 
temperature-dependent corrections to the actual ion short-range core 
potential that should be taken into account in computing gm.  In 
order to make such corrections, çp must be known, and an equation 
for ço will presently be displayed. This ç o equation, however, will be 
found to contain g, SO an iterative solution for Qm  and ç, to obtain 
self-consistent values, is in the strict sense a necessity. The advan-
tage of the present formulation however is this: At liquid densities 
the repulsive ion cores are quite closely packed and (if they may 
roughly be regarded as properly sized rigid spheres) hence impose 
stringent geometrical restrictions on possible ion arrangements. 
Modification of VN (s) by the 's in equation 135 consequently can 
cause little re-shuffling of the ion cores (/' is found to be a predomi-
nantly attractive short-range force). cm  therefore is little different 
from the pair correlation function computed on the basis of VN' 
alone. If this is the case, the iteration procedure for g  and çp should 
converge very rapidly, and in fact a fairly good description of the 
melt should be obtained without ever correcting the initial approxi-
mation to g. 

The hypothesis that urn  5 the pair correlation function in a fluid 
thermodynamically equivalent to the molten salt can be subjected to 
experimental test. In particular, it has been found convenient to 
compare measured isothermal compressibilities with those predicted 
on the basis of a non-electrolytic fluid of rigid spheres, because this 
latter may be directly expressed in terms of g,, (66). The anion- 
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TABLE I 
Values of the Anion-Cation Collision Diameter Computed From the Fused 

Salt Isothermal Compressibilities. 
(The corresponding sums of Pauling ionic crystal radii appear in parentheses. 

All distances are in angstrom units.) 

T, °C. = 600 	700 800 900 1000 

LiCl (2.41) 2.31 2.26 2.20 2.14 
NaCl (2.76) 2.47 2.41 2.34 

KC1 (3.14) 2.70 2.63 2.55 
CsC1 (3.50) 3.01 2.93 2.84 2.74 
LiBr (2.55) 2.55 	2.49 2.43 2.38 2.31 

NaBr (2.90) 2.63 2.58 2.51 
KBr (3.28) 2.85 2.78 2.70 
CsBr (3.64) 3.06 2.98 2.88 2.75 
NaT (3.11) 2.88 2.82 2.74 2.66 
KI (3.49) 3.09 3.01 2.93 2.82 

CdC12  (2.78) 2.50 	2.45 2.39 

cation collision diameters estimated for a series of salts in this manner 
are presented in Table I. The agreement between these computed 
values and the corresponding sum of Pauling ion radii (realizing 
that this latter strictly corresponds to solid-state pair potential well 
minima, rather than the somewhat smaller distances required for 
strong repulsion) constitutes clear support for our Om  identification. 

The functional equation for <p may be derived by essentially the 
same technique as was used in the lattice theory to obtain a equa-
tion (eq. 105) in the preceding section (68). One now starts with the 
identity: 

kT (X 	[-a In çj_(2) (r,X') 	ô In g (2)(r , X ') 
(r, X) = --. 

j0 
dX 	

- 	ax' 	j (136) 

and inserts computed values for the X' derivatives obtained by 
differentiation of the definitions (eq. 32) of the respective g 2 's. 

Quite analogously to the lattice theory result, the integral equation 
thus obtained for ç' involves triplet correlation functions g (3) .  

To have any hope of utilizing the integral equation in determination 
of ' explicitly, it is necessary to eliminate the g 3 's, and to this end, 
we elect to invoke the superposition hypothesis (40) whereby each 
g(3) is replaced by a product of g 2' s: 

g,9.y(3) (ri,r2,r3) 	g,9(2) (ri2)gay (2  (r13)g, (2)  (r23) 	( 137) 
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With the aid of this replacement, the integral equation for cp is found 
to be:* 	 - 

p(r12 ,X) •- 	
)2 	2Xc(ze) 2  1' 

d3 
 g(r13 ,X) 	 [ 

7-Ei

(r23)1 
- 

Dr12 	D 	J 	
r3 	9.(r23) tanh 

--] 	 - Ti3 

(138) 

g(r,X) = 
f0 

gm (r,X')dX', 	C 	N/2 

Once again we shall adhere to the convention that g  and without 
X appearing explicitly as argument refer to the fully coupled situation, 
X = +1. If the previous conjecture is valid that g is practically 
equal to the pair correlation function determined by VN (s) alone, 
then g  is X-independent and identical with g. The position integral 
in equation 138, replacing the discrete sum in equation 108 of the 
corresponding lattice theory relation, is over all configurations of a 
third ion in the vicinity of the chosen pair 1,2 for which çp is being 
computed; this integral arises strictly from the medium rearrange-
ment which causes the pair potentials of mean force in dense fluids to 
deviate significantly from the isolated ion pair potential, as remarked 
in Section IV. 

The nature of solutions to nonlinear integral equation 138 may in 
some measure be determined by a Fourier transform technique. 
The hyperbolic tangent in the integrand of equation 138 may be 
linearized if ç(r23) is sufficiently small. This is the case when 7,23 

is large. If we examine for the moment those configurations which 
also have r12  large, then the only positions of ion 3, r 3, for which the 
linearization procedure is invalid, is when 3 is near 2, i.e., r13  likewise 
must be large. But in this event, 9(r13 ,X) differs imperceptibly from 
its rapidly attained asymptotic value unity. For these configura-
tions, 3 close to 2, then, the integrand will automatically vanish if the 
Laplacian differential operator with respect to r 1  is applied to it: 

V12 J--  gm (r23) tanh Li1} = 0 
	(r13  large) (139) 

r (r 

l 	r13  

Since this vanishing result is not altered by linearization of the 
hyperbolic tangent, we see that if r12  is large and if V 1 2  has been 

* The reader is referred to reference 68 for details, 


