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applied to both sides of equation 138, this equation may be linearized 
with respect to co(r23) for all r3 , and 11rn(r23)  may be replaced by unity: 

XK 2 	1' 	g(r13  X) 

	

V i 2ç(r12,X) = - - V 1 2 	d3r3 	p(r23) 
471- 	J 	r13  

(140) 
8irc(ze) 2  
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(r12  large) 

On account of the demand that r12  be large in derivation of the 
linear and homogeneous integrodifferential equation (eq. 140), 
this cannot be the proper form of an equation satisfied by when 
r12  is small. Nevertheless, there will exist some function h(r12,X)/r 12  
which may be added to the right-hand side of equation 140 which will 
convert it into a relation satisfied exactly by ç' for all r12 : 

h(r12 ,X) 	XK2 	f 	g(r13,X) 
V 1 2 (r12,X) = 	- - .V 1 2 	d3r3 	(P (r23) 	(141) 

r12 	4ii 	 r13  

An explicit form for this inhomogeneous function may be immediately 
obtained by comparison of this last equation with the nonlinear 
equation 138. Its most important characteristic for present purposes 
is simply that it decays to zero with increasing r12  sufficiently fast 
that only the homogeneous equation 140 remains at large 12. 

When A is set equal to + 1, utilization of a one-dimensional Fourier 
transform on equation 141 leads to a solution for c(7.12) as the integral 
(68): 

1 f+ ° 2iz - H(z)
ç(r12) = 	 exp ( - ir12z)dz 

2irr12 	2  z + 1 /2 2 • (z) 

H(z) 	2 f h(r12)  sin (zr12)dr12 	 (142) 

j(z) = 2 + 2z fo Co 

[g(r12) - 1 ] sin (zr12)dri2  

The constant x is arbitrary insofar as the first of these last equations 
represents a solution to integrodifferential equation 141. Its value, 
however, must be selected ultimately to satisfy the local electro 
neutrality condition, which in the present circumstances takes the 
form: 

(r) 

i:r
2grn (r) tanh II dr 	 (143) 

87rC 
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this is analogous to the corresponding lattice theory relation, equation 
114. 

The contour of integration in equation 142 is along the real axis of 
the z plane except at poles of the integrand on the real axis. What-
ever choice is ultimately adopted for the contour at these singularities, 
we may close the contour along the infinite semicircle in the lower 
half z plane (as indicated in Fig. 11) ,  without changing the integral's 
value. Subsequently, the calculus of residues (71) may be used to 
express cp as an exponential series: 

(r12) = I E Bk  exp (- izkrl2) 
r12  le 

(144) 
2ixz - H(z)1 

B k 	lim [(z - Zk) 2 	
1/2K(Z) j Z - Zk 

The complex constants Zk are the poles of the integrand, for the 
first integral in equation 142, which lie within the closed contour. 

For zn's which lie below the real axis, and therefore have negative 
imaginary parts, the corresponding term in çp damps exponentially 
to zero as r12  increases. But a Zk  on the real axis will give rise to no 
such exponential damping, and the ion pair correlation functions 
obtained from such a çp would indicate order in the liquid at very 
large distances of pair separation. Wojtowicz (72) has shown that 
if such terms are retained in the sum for (eq. 144) , then subsequent 
computation of the molten salt x-ray scattering pattern by equation 
53 will predict strong Bragg-like reflections at certain angles, such as 
crystalline solids exhibit. Since the scattering patterns of molten 
salts are normal, however, in that the scattered radiation is much 
more diffusely distributed than from crystalline solids (see chapter 
by H. A. Levy), these non-exponentially damped contributions to 
cp should not be present. They may be eliminated by the simple 
expedient of deforming the integration path below each real singu-
larity of the integrand as shown in Figure 11. t Therefore, since the 

* It has tacitly been assumed that all the poles are simple, but accidental mul-
tiplicity can occur for certain isolated values of the relevant physical parameters, 
(temperature, density). In this event, expression 144 for Bk must be modified in 
the usual way to yield the residue at this higher order pole. 

t It is by analogy with this prescription that the lattice theory integral contour 
in equation 120 could be specified with similar deformation. 
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Fig. 11. Integration path in the inversion integral (eq. 142) for (P in the com-
plete pair correlation function theory. The path is closed along the lower infinite 
semicircle. Crosses indicate the integrand's singularities. It should be noted 
that the contour must be deformed below several singularities on the real axis 
outside the range of integration of the cell theory integral for (Fig. 10). 

resulting ç(r i ) decays exponentially to zero as r12  increases, the 
molten salt will exhibit electrostatically induced order for ion pairs 
only at moderate relative distances, which is in contrast with the 
long-range order covering the entire sample in the crystalline solid. 

It was characteristic of the spatially coarse-grained lattice theory 
that the integral expression for, in comparison with that for ç' 
in the present analysis, had a finite integration interval which en-
countered only a pair of singularities. On the other hand, expression 
142 for ço entails integration from minus to plus infinity, and the 
number of singularities below which deformation must occur is 
considerably larger (72), as indicated in Figure 11. 

Detailed numerical calculations by the procedure outlined here 
have not yet been performed for the basic quantity ço. Such a pro-
gram, however, does seem to be within the range of modern electronic 
computing facilities. To initiate such computations, it would be 
necessary to use pair correlation functions for fluids interacting with 
just the ion core potential, V N (s). There are available such pair 
correlation functions for both rigid spheres (43) and for Lennard-
Jones 12-6 particles (14), which should be valuable in this con-
nection. 



84 	 FRANK H. STILLINGER, JR. 

The remaining terms in the sum (eq. 144) combine to produce a 
real function of r12 which, aside from the r12' factor, is a sum of 
exponentially damped sinusoids. In view of this fact, and also in 
analogy with the closely allied lattice theory, one is led anew to 
picture the molten salt as possessing alternate shells of ions about a 
given ion, which alternate in sign of charge, but lose distinctiveness 
rapidly as distance increases from the central ion. Since true crystals 
retain sharply defined shells of neighbors at all distances, this loss of 
order appears to be characteristic of liquids. 

It has previously been remarked that the lattice theory auto-
matically reduces to a correct Debye-Huckel limiting description 
for fluid electrolytes when ic is very small. It may likewise be shown 
on very general grounds (68) that equation 144 for çp also reproduces 
this result. It is the potential power and generality of the pair 
correlation function theory outlined in this section that it may 
comprehensively describe the full transition from the Debye-Mickel 
regime (where ion charge atmospheres have the simple monotonic 
decay form) to the normal molten salts, with ions shielded by con-
centric shells of charge of alternating sign. 

In order to evaluate the molten salt chemical potentials, by formula 
50, it is necessary to have available the g(2)'s  over the entire range 
0 < X < 1. Once cp has been obtained for X - 1, as represented by 
equation 144, this result may be inserted under the integral of the 
nonlinear equation 138 to yield the full X dependence of ç'. 

We shall close this section on prediction of fused salt pair cor-
relation functions with a few comments concerning generalization 
of the procedure to salts with ions having unlike short-range pair 
forces. It has been pointed out (68) that for ions which do not 
differ drastically in size, it is almost exclusively opposite types of 
ions which come close enough into contact for the details of core 
forces to matter; the electrostatic repulsions between two ions 
of the same type make close encounters a rare event. This surmise 
is supported by observation of vestigial solid-like ordering for the 
elementary class of salts, with the nearest neighboring shell composed 
of ions of the type opposite the central ion. As a result, the prop-
erties of the salt appear to depend almost exclusively on the short-
range force law between unlike, rather than like, pairs, and so as-
sumption that all short-range interactions are of the former type 
should commit little error. The statistical mechanical problem then 
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would amount to just that for the ideal class of salts considered above 
in detail.* 

On the other hand, salts possessing an extreme ion size ratio, such 
as Lii, seem to require a considerable elaboration of the computational 
scheme. In this case, the larger ions can easily be "in contact" 
with their own kind, the smaller ions simply fitting into the interstices. 
The use of a common core force then is entirely inappropriate. One 
no longer has appeal to the simplification of equality of g(2)  and 
g__(2) ,  so there are three independent pair correlation functions to be 
determined, rather than just two, as in the charge-symmetric model 
for the simple class of salts. Furthermore, the average of a like and 
an unlike pair correlation function, used to define g  in equation 
123, will no longer suffice to cause cancellation of the electrostatic 
correlations at moderate and large distances. 

The case of an unsymmetrical electrolyte, for any ion core short-
range forces, is similarly complicated by independence of g (2) ,  

g _(2) , g (2) This likewise requires generalization of the fore-
going procedure. 

If the large r fluctuations of each of g (2) , g _(2) , and  g__(2)  in 
the general fused salt are characterized by essentially the same 
damped sinusoid (though with arbitrary phase and amplitude), 
then there will exist constants A and B such that if 

ijmfr) = 	 [Ag (2)  (r) + g _- ( 2) (r) + Bg_ 2  (r)] (145) 
A+1+B 

then the fluctuations at large r will have cancelled to leave, as before, 
g(r) differing from unity only at small r. If this g m  may then be 
identified as the pair correlation function in a non-electrolyte, only 

* Recognition of these facts forms the basis for a recent corresponding states 
treatment of molten salts [H. Reiss, S. W. Mayer, and J. Katz, J. Chem. Phys., 35, 
820 (1961)]. Of course, the original theory of corresponding states was intended 
to apply only to single-component systems, but Reiss, Mayer, and Katz point out 
that for the special case of molten salts, only a single length parameter (the anion—
cation distance of closest approach) is significant. Accordingly, the original argu-
ments in corresponding state theory adapt easily to the two-particle salt. In 
spite of possible ambiguity arising from disregard of dielectric constant complica-
tions (as illustrated, for example, by explicit appearance of density derivatives in 
our equation of state, eq. 47), the resulting reduction of selected thermodynamic 
data leads to good consistency between salts. 
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two unknowns remain to be found. They may be denoted by c'+ 
and 	: 	 - 

9+(2)(r) 
= 	

(146) 

	

exp [ 
2 +(r)1 	 - 

g+— (2) (r) 	- kT J  
g_(2)(r) 

= exp [ 

2p_(rfl 	
(147) 

g_ 2 (r) 	- 	j U 

A straightforward generalization of the procedure used earlier for 
derivation of the çp equation now leads to a simultaneous pair of 
nonlinear integral equations for '+ and , each involving gm.  On 
account of the coupling between these equations, the task of nu-
merically constructing simultaneous self-consistent solutions, + 
and ç, is correspondingly more difficult, though probably within the 

, range of possibility. 
The trouble in this procedure is that A and B are undetermined. 

We only know that A and B both approach 1/2  as the ion core forces 
become identical in charge-symmetric salts. In the absence of knowl-
edge of A and B, it is provisionally possible to suppose that g  is to be 
defined as the correlation function for all particle pairs regardless 
of species. A and B then are simple rational numbers determined 
by the ion valences, or what amounts to the same thing for these 
electroneutral liquids, the fraction of the total number of particles 
which are of each type. The specific form for g  to be used in 
constructing c+  and ç would be the total particle correlation func-
tion for the non-electrolyte mixture of discharged ion cores. 

In conclusion, it is necessary to stress what appear to be the major 
tasks of the future for the theory of fused salt pair correlation func-
tions: 

( 1) Construction of accurate solutions p to the non-linear integral 
equation 138 with gm's  corresponding to several reasonable choices 
for the short-range interactions. 

(2) Investigation of the accuracy of the superposition approx-
imation (eq. 137) in electrolytes. 

(3) Analysis of the theory of the correlation functions for general 
salts either to place our conjecture of the proper definition of g 
on a firmer basis, or to propose a more suitable alternative. 

* For a 2-1 salt such as CaC12 , for instance: 

gm(r) 	9 9 	(r) + g—(2)(r)  + .g__(2)(r) 
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VII. Molten Salt Surface Tensions and the Solubility of Noble Gases 

Section V.2 on the "hole" theory indicated the relevance of a 
liquid's surface tension to the molecular nature of bulk properties for 
that liquid. In particular, this theory claims that under ordinary 
pressure conditions, it is almost exclusively the surface tension 
contribution toward their formation that determines the size dis-
tribution of "holes" in the liquid. We now shall take up in some 

ZG 

pv 	 p1 	 p 

Fig. 12. Total ion density profile, p(z), in the liquid—vapor interfacial region. 

ZG 5 the position of the equimolar dividing surface. 

detail the problem of what is involved in computing molten salt 
surface tensions from first principles, and simultaneously arrive at 
information that may be used to evaluate some of the hypotheses 
underlying the hole theory. Specifically, the average amount of 
work necessary to create a spherical cavity in the fluid (which is 
required by the hole theory), may be found by a detailed molecular 
computation. This latter quantity may in turn be related to a 
Henry's law constant for solubility of noble gases in the melt. 

We begin this discussion with a review of the basic thermodynamics 
of the planar liquid—vapor interface. Figure 12 shows a typical plot 
of total ion density p(z) , depending on vertical coordinate z, as we 
pass upward in a two-phase system through the interface. Gravity, 
of course, constrains the denser liquid to the lower region of the vessel. 
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P is a sum of the individual z-dependent densities, Pa,  for each ionic 
species present, 

P  = : pa  (Z) 	 (148) 

and each of these quantities is virtually independent of z except for a 
narrow transition region of perhaps several ionic diameters width 
under normal conditions of liquid—vapor coexistence. As the critical 
point is approached, the liquid and vapor phase bulk densities p 
and Pv approach one another, and simultaneously the transition 
region is presumed to become arbitrarily wide. Just above the 
ordinary melting point, though, the fused salt density profile p(z) 
should be very nearly discontinuous. 

The equimolar Gibbs dividing surface, a plane parallel to the 
interface at height z, is defined by the condition that if p(z) were 
truly discontinuous from pi  to Pv across this plane, the total number 
of particles in the system implied by this density would be equal to 
the actual number, N. In more explicit terms, ZG is the solution of 
the equation: 

ZG 
dz + Pv 

fzZT
dz = i: p(z)dz 	(149)P1 j  

where ZB and ZT are the values of z at the bottom and the top of the 
vessel, respectively. Since each of p(z), pi, and Pv are positive, the 
value ZG 5 uniquely defined by equation 149. 

If the bulk thermodynamic properties of the vapor (v) and liquid 
(1) phases persisted rigorously up to the Gibbs dividing surface, the 
energy differential for the entire system would by definition be that 
for the two phases separately: 

dE = Td8 - pdV + pdNv 	
(150) 

dE 1  = Td81  - pdVi + A±dN i  

Here, Nv  and N 1  are to be interpreted as the total number of ionic 
particles in the vapor or liquid phase, respectively, and so /.I± is the 
mean chemical potential per particle. Thermodynamically, of 
course, the overall electroneutrality condition on electrolytes de-
mands that the pure molten salt be considered as a single component. 
,g± and T are equal in the two phases as a general result of thermo-
dynamic equilibrium, and p is likewise the same for planar interfaces, 
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if one neglects gravitationally induced hydrostatic heads. As usual, 
the phase entropies are denoted by Sv and Si. 

The true energy differential, dE, for the actual two-phase system, 
where properties change continuously through the interfacial region, 
is not just given by the sum of dEv  and dE1 . There is additionally 
an excess interfacial contribution to the energy associated with the 
resistance of the system to increase of interfacial area €. If o- denotes 
the surface tension, the actual expression for dE must be 

dE = TdS - pd  + j.idN + odt 	(151) 

where 

v=vv+v1, N=N+N1 

S is the actual system entropy which, on account of possible peculiar 
arrangements of ions in the transition region, cannot be set equal to 
Sv + S1. 

If both equations 150 are subtracted from equations 151, we obtain 
a relation between the specifically interfacial quantities: 

d(E - E - E 1) = Td(S - S - S) + odi 	(152) 

The parameters T and a are intensive variables, i.e., they do not 
depend on the size of the two-phase system. Accordingly, dif-
ferential relation 152 may be integrated along a path of constant T 
and o- from zero system size to the actual container size, giving* 

E—E—Ei=T(S--S—Si)+cra 	(153) 

or 

Ea  = TSa  + O 	 (154) 

where subscripts a refer to excess surface quantities per unit area: 

Ea 	(E - E - E1) 

(155) 

Sa(85v81) 

* Operationally, this amounts to addition of particles to the system one by one, 
with concomitant volume increases to maintain constant fraction of material in 
each of the two phases. 
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If one takes the total derivative in equation 153 and compares the 
result with equation 152, there is obtained a result first derived by 
Gibbs (26): 

	

Sa 	d/dT 	 (156) 

The temperature variation of the surface tension therefore is a 
direct and experimentally accessible measure for the excess ionic 
order induced by the presence of a liquid—vapor interface. When 
equation 155 is utilized in elimination of Sa from 154, we see in 
addition that the surface excess energy likewise may be obtained 
from measured surface tensions: 

Ea 	0 	T(do-/dT) 
(157) 

d(o/T) 
- 

d(11T) 

The general statistical mechanical theory of surface tension is 
well understood, and several comprehensive review articles are 
available on the subject (16,31,54). We sketch here the derivation 
of a general surface tension formula, for a fluid of particles with 
pairwise interactions, which involves the pair correlation functions 

L 	 EL 

' 

Vapor 	
_______ .......................... ......... 

	

............. 	..............

: 	

Liquid 

Fig. 13. Cubical vessel containing molten salt and saturated vapor, the rectangular 
distortion of which is considered in calculating surface tension. 
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in the transition region. Buff (15) was the first to apply an adapta-
tion, to the surface case, of the procedure of Born and Green outlined 
in Section IV for obtaining the homogeneous system equation of 
state. The derivation will be presented in a form most appropriate 
to pure molten salts. 

As shown in Figure 13, it will be assumed that the molten salt in 
equilibrium with saturated vapor is contained in a cubical vessel 
with side L = 	One proceeds to apply an infinitesimal distortion 
to the cube. Its vertical (z) dimension will be shrunk to (1 - 
while simultaneously the horizontal x dimension of the container 
will be stretched to (1 + )L. To order C2,  which may be assumed 
negligibly small, the volume is constant at U = L 3  during this dis-
tortion. On the other hand, the liquid—vapor interface increases in 
area by L. If this increase is carried out isothermally, the reversible 
work required is just o- €L. Specifically, this work represents the 
difference in Helmholtz free energy, AN,  of the system in the dis-
torted and undistorted states: 

o€L = AN (c) - AN (0) 	 (158) 

Since € is infinitesimal, 

1   (6AN ) 
cr=i—;--=0 	 (159) 

The derivative of A N  may, in principle, be computed from the 
canonical partition function. Analogous to the procedure in Section 
Iv, dimensionless configuration vectors s i  are introduced for each 
ion, with components running between limits 0 and 1 for 
positions inside the distorted (arbitrary €) container. Thus, to 
order E2 

r A N ( E) 1 	L 3 	

f ds1  . . . f 
1 

dsN exp 
	kT j = 	

1 

Na ! X a3 
  

al 

X exp [- 
	1 

V o (rii)] (160) 

(particle i's species is denoted by 'y, j's by ). The Born cavity free 
energies which were shown in Section III to be a part of the total 
interaction energy have here been suppressed on the basis that the 
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constant volume distortion process does not change the dielectric 
constant of either phase. 

Each pair distance r11  must be regarded as a function of the reduced 
vectors s 1  and s3 , as well as of E. Since it is necessary only to work 
to linear order in €, we take 

rij  = {(x - 12 + (y - i 2  + (z - 	2 ]1/2 

= L I [(1 + ) (s - s) ] 2  + (s5  - 	2 	[(1 - f) (s - s) ] 2 }'/Z 

{, + (

s - 1 2 	(s - 1 
L 	

2 
- 	 (161) 

Sjj  

sij = (s - s) 2  .4... (sf11  _ s) 2 f (s 3 	s) 2  

If this form for the r i/s is inserted into the partition function (eq. 
160), the derivative indicated in equation 159 may be computed in a 
formal sense immediately. 

To cast the resulting surface tension expression into a convenient 
form, use may be made of definitions of the z-dependent densities 
Pa(z), as well as of the pair correlation function in the interfacial 
region, in terms of the total canonical ensemble phase space density, 
PN (eq. 24) . In formulating these definitions, one may transcribe 
the considerations of Section IV for the homogeneous system pair 
correlation functions to the same function in the heterogeneous 
case; for pa (Z) , however, one inquires about the occupation prob-
ability by an a-species particle of a single infinitesimal volume ele-
ment at height z, and in the present case of the two-phase the 
requisite pair of volume elements may be located near the transition 
region. One readily finds 

pa (Zi) = Na f PN (rl . . . pN)d3r2 . . . d3PN 	(162) 

where integration is over all momenta, and over all positions save 
that of a particle of type a, here numbered 1. The normalization is 
such that pa (Z) properly reduces to the respective homogeneous phase 
density when z is well within either the liquid or the vapor. The 
pair correlation function result is 

2) (11,r2) = 	NaNi 	

f PN (rl. . . pN)d 3r3. . . d 3pN 	(163) g  
pa(Zi)Pí2) 
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(the particle numbered 2 is type ). The effect of dividing by 
pa (Zi) pfl (Z2) 111 this expression is to retain the property of g(2)  of 
becoming unity when Ir2  - ri l is large compared to the range of 
intermolecular forces, even when one or both of r 1 , r2  is in the interface. 
It is important to realize that the correlation of pairs in the interface 
is no longer spherically symmetric, as it is well within the bulk of 
either fluid phase. In the homogeneous case, equation 162 reduces 
to N a/1) and equation 163 to the spherically symmetric pair cor-
relation function previously discussed. 

In view of definitions 162 and 163, it is only a matter of standard 
manipulation of equations 159 and 160 to show that the surface 
tension is given by 

0- = 	f-it-: dz1  f d3r12 
2 

C" 0 

X12 2 	Z12 2  dV a (r12) 

r12 	dr12  

X Pa(Zi) pj (z2 ) g 2) (z i , r12) 	( 164) 

r12  = (X12, Y12, Z12) 

For convenience, the interfacial pair correlation function has been 
written as a function of the height z 1  only of one particle, as well as 
the relative position r12  of the other particle. In deriving this result 
for o- , we have passed to the limit of infinite system size, intensive 
variables being held constant. On account of the qualitative features 
of Pa, P3, and g(2),  the d 3r12  integral in (164) is essentially vanishing 
unless z 1  is in the transition region. As expected, therefore, the sur-
face tension arises entirely in this transition region, and may be 
associated with the anisotropy of distribution of pairs there. 

For molten salts at or just above their ordinary melting points, the 
saturated vapor is very dilute. The surface of the liquid may be 
viewed approximately as a sharp discontinuity from constant liquid 
density (Pa= Ca, independent of z, is the bulk liquid number density 
for species a) for values of z below the equimolar dividing surface, 
Z = ZG, to zero density above. Furthermore, if g(2)  retains its 
spherically symmetric bulk liquid form for all pairs of positions below 

ZG, then general equation 164 reduces to a particularly simple form: 

0- = 8 
	

CaC 	
dr f dr r4 

dVa(r) 
 9(2)(r) 	(165) 

a , 	0  
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This result, for single-component systems, was first derived by Fowler 
(23). In this approximation, a knowledge of the pair correlation 
functions for the bulk liquid then suffices to allow estimation of the 
molten salt surface tension. Equation 165 is expected to break 
down as the critical point is approached on account of non-negligible 
vapor density, as well as widening of the transition region. 

The attraction of Fowler's expression for a- is that it avoids the very 
difficult problem of computing details of each pa(Z), and the non-
spherically symmetric interfacial pair correlation functions. Fur-
thermore, we may deduce from it an interesting relation for the 
surface tension of a special class of salts. For those salts which are 
of the symmetrical valence type, and whose ions have identical 
short-range pair interaction V(s)(r),  the ion pair potentials may be 
written: 

(ze) 2  
V. #(r) = V(s)(r) + 	aEfl 

(166) 

Inserting this into Fowler's expression (eq. 165) , with e +  - c_ = c 
for this symmetrical electrolyte, 

7C   f co  drr4 
dV(r) 

 gm (r) - 
ir(cze)2 

2 	 dr 	 4D 

X fco drr2 {g4(r) _ g(r)] (167) 

Use has been made here of the definition of the mean correlation 
function gm  (eq. 123) and the identity of g 2  and g(2)  for this 
simple class of salts. 

The second integral in the last equation is exactly that occurring 
in the local electroneutrality condition (eq. 143) and on this basis 
may be eliminated. The first integral, involving V(s),  also may be 
simplified if this short-range potential is assumed equal to that for 
pairs of rigid spheres with diameter a: 

V( )  (r) = + cD 	7< a 
(168) 

=0 	r>a 
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Although this specific choice for 	formally makes the first integral 
in equation 167 undefined, a careful analysis (42) shows that if the 
rigid sphere interaction is treated as the limit of a well-behaved (i.e., 
bounded and differentiable) function, the integral properly approaches 
a finite limit: 

	

f w

dr r4 
dV('(r) 

 g(r) - - kTa 4gm (a) 	(169) 
 dr 

Only that value of g  occurs corresponding to contact between 
the rigid cores. Upon utilizing these two identifications, the surface 
tension becomes 

	

,rkTc 2a4 	c(ze) 2  
= - 

	
g. (a) + 	 (170) 

2  

According to the ideas of Section VI, gm (a) should virtually be equal 
to the pair correlation function for the set of uncharged hard sphere 
(HS) ion cores in the same volume C&)  as the molten salt: 

	

gm (a) 	9Hs 2 (a) 	 (171) 

The interesting feature of result 170 is the extremely simple way in 
which the effect of Coulomb interactions appears; specifically, it is 
just the second term, c(ze) 2/16D. The leading, non-electrostatic 
contribution should be nothing more than the surface tension re-
maining, 011S, when all the ions have been discharged. One must 
realize in this case it is conceptually necessary to maintain the sharp 
interface between a negligible density vapor and the liquid by means 
of a rigid retaining wall, for in the absence of Coulomb forces, no 
liquid—vapor coexistence is possible. 

In connectionwith evaluation of UHS, it should be noted that gHS 2  (a) 
is a well-known and extensively investigated quantity. By its 
definition, it must obviously be positive, so UHS is predicted to be 
always negative. From the theory of the rigid sphere equation of 
state (35), gHs 2 (a) may be rigorously and simply exhibited in terms 
of the pressure for that fluid: 

gHs 2 (a) = 	 - 1] 	 (172) 
3[() 

	

2irpa3 	pPT HS 

P denotes the total liquid-phase density of rigid spheres, 2c. This 
contact correlation presumably may be estimated by high-tem 
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perature equation of state measurements on noble gases at the proper 
density. Alternatively, we may use the very accurate results for 
this quantity computed by Reiss et al. (60): 

4-2y+,2  
gHs 2

(a) = 4(1 - y)3 	
(173) 

T
T3 = — ca3  Y=;P 

In view of identification 171, the simple surface tension expression 
(eq. 170) exhibits temperature dependence from four sources. First, 
there is the explicit appearance of T in this expression. Secondly, 
thermal expansion of the liquid causes a small variation in c. Addi-
tionally, this change in c brings about changes in 9HS 2  (a), and in the 
dielectric constant, D. Since the thermal expansion of molten 
salts is not large, one may suppose that the temperature change 
of o-  arises predominantly from the first source, and so a means is 
readily available for estimating coefficients in the linear temperature 
law (6) observed for molten salt surface tensions. 

Consistent with the Fowler picture of a discontinuous density at 
the interface would be a simple direct computation of the surface 
energy, Ea. Neglecting the salt's thermal expansion, with consequent 
temperature variation of 9Hs 2 (a) and D, insertion of equation 170 
into equation 157 yields 

2 

Ea 	 (174) 

The rigid core thus gives no contribution to the excess surface energy. 
This simple expression indicates that Ea  should exhibit temperature 
variation only to the very small extent induced by liquid thermal 
expansion. If general relation 157 is utilized in computing Ea  from 
experimentally measured surface tensions, the results should be 
considerably more constant over a wide temperature range than the 
surface tensions themselves. Such behavior has in fact been noticed 
by Bloom et al. (7), and the present analysis constitutes at least a 
partial theoretical explanation. 

Reiss, Frisch, Helfand, and Lebowitz (RFHL) (59) have developed 
a statistical mechanical theory for the amount of reversible work, 
W(r), necessary to introduce a spherical cavity of radius r into a 
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liquid, the interior of which is rigorously free of molecules. Not 
only is it possible to deduce a surface tension from their results (for 
the cavity—liquid interface), but in addition, the small-cavity work 
may be compared with the same quantity occurring in the "hole 
theory." Although this latter approach, as indicated in Section V.2, 
usually claims to permit the possibility of evaporation into the 
cavities, or holes, ordinary molten salts have such low vapor pressures 
that these events may be presumed unlikely. As a consequence, the 
RFHL cavity formation work should be very closely identifiable 
with the hole formation work. 

Finally, this reversible cavity creation work may be used to cal-
culate the solubility of simple gases in the fused salt, since a major 
contribution to the free energy of solution is the free energy as-
sociated with displacement of liquid particles to form a region of 
sufficient size to contain the dissolved atom or molecule (59) . The 
RFHL analysis up to the present has been developed only for liquids 
whose particles conform to an equal sized rigid molecular core model; 
the "soft" portion of the pair potentials need not generally be speci -

fied, though for the molten salt case they must obviously be at least 
partially Coulombic. 

\ 	
/ \ 	

/ 

-- --- 

Cavity' 	 -- 	 / 	Exclusion limit 

Fig. 14. Diagram illustrating the rigorous exclusion of other molecular centers, 
such as 2 , when one molecular core 1, of diameter a is centered within the cavity 
of radius r :!~ a/2. 
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We shall briefly review the RFHL method. If the rigid core 
diameter of liquid particles is once again denoted by a, the value of 
W(r) for 0 < r :;; a/2 may be written down exactly. This fact 
results from observation that for these small values of r, at most one 
molecular center could have been contained within the spherical 
cavity region, were it not for the condition that this region be empty. 
When one particle has its center there, its repulsive core force range 
completely overlaps the cavity, and so rigorously excludes other 
particles from this region (see Fig. 14). For all values of r, W(r) 
is related to qo,  the probability that a spontaneous local density 
fluctuation has emptied the fixed cavity region, by a Boltzmann 
expression: 

r W (r)1 

	

exp [- -j 
 
-j;-] = 	q 	 (175) 

But for the special case 0 < r < a/2, qo  is unity minus the single 
particle occupation probability, q: 

qO  
(176) 

4irr3  
=1-----p 

Consequently, 

	

W(r) -  - kT In (i - 
4irr3 p) 
	0 < r < a/2 	(177) _ 	

\ 

For large values of r, we know from macroscopic considerations 
that the asymptotic form of W(r) is just the sum of volume expansion 
and surface tension works: 

	

W(?) '-) 4r2  + 4/3irpr3 	(large r) 	(178) 

as already used in the hole theory, equation 64. It may generally 
be demonstrated, though, that o should begin to show a curvature 
dependence for spherical interfaces (the cavity surface) whose radii 
of curvature are comparable with the range of molecular sizes. The 
consequence so far as W(r) is concerned is that expression 178 be-
comes inadequate for r comparable with a, if o-  is taken to be an r-
independent constant. The scheme devised by RFHL is to take the 
curvature dependence of o explicitly into account by writing W(r) 
in the form: 
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W(r) - K 0  + K1r  + 4rur2  + 4/3 "rpr3 	(179) 

for all r > a/2, where QD S the asymptotic value of o-  for infinite 
radii of curvature (planar interface). 

It may be shown on a very general basis (59) that W(r) , as well as 
its first and second r derivatives, must be continuous at r = a/2. 
These conditions are sufficient to determine K0  and K 1 , when the 
exact form (eq. 177) for W(r) is used for r < a/2. Simultaneously, 
the planar cavity—liquid interfacial tension is obtained in terms 
of the total particle density p (or equivalently, y - 1/ 6 'irpa3) and the 
pressure p. One finds: 

	

/ 	\2 
Ko =kT—ln(1 —y) 	

9 	y 	irpa3

) - 

k ( 6y 	I_ y \ 21 
K 1  = - 	 + 18 ( 	I + 7rpa2 	(180) 

a 	— y 	\l—y/) 

	

3k  y(2 - y) 	pa 
oo = 	

(1 - y)2 

The implication behind this calculation, as in application of the 
Fowler method, is that the sharp density discontinuity at the cavity 

TABLE II 
Comparison of Alkali Halide Surface Tensions Computed by Means of Equation 
180 with Experimental Values. [From H. Reiss and S. W. Mayer, J. Chem. Phys., 

341  2001 (1961).] Units are dynes/cm. 

---- 
T, °C. q (ohs.) (Cale.) 

NaCl 1000 98 . 	 111 
NaBr 900 91 95 
NaT 700 84 75 
KC1 900 90 96 
KBr 800 85 87 
KI 

800 69 76 
RbC1 828 89 81 
RbBr 831 81 83 
RbI 772 72 72 
CsF 826 96 85 
CsCI 830 78 79 
CsBr 808 72 76 
CSI 821 63 70 
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boundary, for cavities sufficiently large to approach locally a planar 
surface, may adequately represent the liquid—vapor interface. One 
may therefore compare surface tensions computed from the last 
of equations 180 with the measured values for molten salts with 
equal sized cores. If, furthermore, the ideas of the preceding section 
are correct, concerning application of the equal-sized ion model to 
the wider class of salts with moderately differing anion and cation 
sizes, then the formula should still be useful if a is interpreted as 
the anion—cation distance of nearest approach. Table II presents a 
comparison of experimental data with numerical results obtained on 
this basis by Reiss and Mayer. 

It is interesting to note that surface tensions that have been 
computed for single-component non-electrolytes (59) from equation 
180 are invariably high, though reasonably accurate. This trend is not 
difficult to understand and is connected with use of an unphysical 
density discontinuity to represent the interface. If one imagines first 
an impenetrable planar membrane enforcing this rigorous discontin-
uity, then removal of this constraint would immediately be followed 
by a spontaneous motion of interfacial material, in the form of widen-
ing of the transition region. This spontaneous relaxation process 
must be equivalent to a decrease in free energy, so that the true 
surface tension (since it is a surface free energy per unit area) must 
be less than that for a sharp interface. When, finally, equation 180 
is applied to fused salts, each computed should be regarded 
as an upper bound for the corresponding experimental quantity. 

Aside from the discontinuity simplification inherent in both the 
Fowler and the RFHL procedures, we notice that only the former 
finds it necessary to assume a very special form for the correlation of 
particle pairs in the interfacial region. This fairly drastic assumption 
probably implies that Fowler's formula (eq. 165) for surface tension 
is generally less reliable than u in equation 180. In this connection, 
it is informative to compare OHS, the leading term of equation 170 
where g gHS, with the value of T 0  predicted for uncharged hard 
spheres using equations 172 and 173 for the hard sphere pressure: 

HS = - 
9lcTy 2  4 - 2y+ y2 	(Fowler) 
8a2 	(1 - y)3 	

(181) 
9kTy 2  4 + 4y 

 y)  I (0)s = - 
87ra 2  • (1 - 	

(RFHL) 
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Both results agree to lowest order in y and are always negative when 
y is in the range of physically accessible values 0 < y < 0.740 (close- 
packed spheres). By way of indicating the order of magnitude 

- 

	

	error inherent in the interface pair correlation approximation of 
Fowler's method, Table III compares these two surface tensions for 

TABLE III 
Comparison of the Rigid Sphere Surface Tensions Computed on the Basis of 

Fowler's Formula (middle column), and the RFHL Theory (last column) 

87ra2 	 8ira2
omsy - 

i;- 	

- 	 ( t7,)5 

0.1 0.052 0.060 
0.2 0.248 0.375 
0.3 0.916 1.365 
0.4 2.489 4.148 
0.5 6.500 12.000 
0.6 17.770 36.000 
0.7 56.078 123.407 

various y. For dense fluids, there is a discrepancy amounting to 
about a factor of 2. This fact suggests that improvement of equation 
170 would result (at least for discontinuous density interfaces) if 

(0,00 HS is used in place of the leading term in this expression. 
In discussing the hole theory in Section V.2, it was pointed out 

that the mean hole size in molten salts should be roughly comparable 
to the ions forming the liquid. If this is the case, then the curvature 
dependence of the surface tension should be rather important in the 
formation work for most holes, though traditionally this curvature 
dependence is disregarded. If, for example, one computes the 
work W(r = a) necessary to open up a cavity in the uncharged rigid 
sphere fluid just big enough to contain one more sphere, first without 

(W 1) and then with (W 2) curvature corrections, 

W i  = 4.34kT 

W 2 = 7.77/cT 	
(182) 

These numbers refer to the half close-packed density for the spheres, 
y = 0.370, corresponding to dense liquids. As a result, one must 
conclude that the curvature corrections are not negligible (the error 
in this example is 44 0/0). It therefore seems worthwhile to have the 
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hole theory reformulated with these corrections. Of course, the 
results (eqs. 182) refer only to the special rigid sphere non-elec-
trolyte, but it is hard to believe that similar discrepancies are not to 
be found for fused salts, or for that matter, in any real liquid. 

Besides providing a certain amount of information about possible 
hole theory refinements, the cavity creation work W(r) is useful in 
another connection. It is possible to obtain an estimate of the 
Henry's law constant, k 11 , for solution of gases in the melt (59). 
k 11  is defined as the ratio of dissolving gas partial pressure, g, in the 
dilute gas phase, to the concentration dissolved in the melt, g: 

k 11  = pg/pg (183) 

The condition which determines at equilibrium simultaneous values 
of p,, and Pg is that the chemical potential for the dissolving substance 
be the same in vapor and liquid phases. We may suppose that this 
substance is an ideal gas in the vapor phase so, its chemical potential 
there is 

11  
(v) 	k T In [pgX g3/1c. T] 	 (184) 

Xg  is the mean thermal deBroglie wavelength for the dissolving gas. 
In the liquid, the solute chemical potential may be taken as the form 

appropriate to dilute solutions: 

Mg 
(1) = k T In PgX g 3  + 	 ( 185) 

The quantity W C  represents the isothermal reversible work required 
to transfer one of the gas particles to the interior of the liquid phase. 

Three contributions to W may be distinguished, 

= Y1  + Y2  + Y3 	 (186) 

In order that the solute particle be able to fit into the liquid medium, 
it is necessary that the constituent particles of the solvent be moved 
aside to make room for it. This work, Y 1 , is thus a cavity creation 
work; if the solute particle has short-range repulsive forces which 
act sufficiently like a sphere of diameter ag , while those of the salt 
ions are still characterized by rigid sphere diameter a, then we may 
take 

=w

(

a
Y,

g 

+ a\ 

2 1 	 (187) 

using equation 179 for W. 
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In addition, the solute particle will have short-range forces outside 
the closest approach distance to the ions. These latter interactions, 
which we might denote by V ga  (r) for the pair potential between the 
gas particle and an a-species ion, will be predominantly attractive, 
and we shall suppose by definition this interaction does not include 
polarization forces. For many gases, V g  (r) will be rather small in 
magnitude compared with k T at molten salt temperatures. There-
fore the average arrangement of ions around the solute particle will 
be virtually unchanged by the presence of V g,(') (r) outside the hard 
core; as a consequence, the extra free energy of placing the solute 
particle in the fused salt arising from V ga  5 just the energy of inter-
action: 

Co 

V2  = 4T 	Ca 
fag+a)/2 

V ga (s) (7)gg(2) (r)r2dr 	(188) 
al 

The gga  (r) are the pair correlation functions acting in the fused 
salt between the dissolved gas atom and a-species ions. 

The final contribution to 	Y 3 , is associated with the fluctuating 
electric field present at the position of the dissolved particle, and due 
to thermal motions of the neighboring ions. If we suppose that the 
only effect of this fluctuating field E is to induce instantaneously a 
dipole agE in the dissolved molecule (its polarizability is ag), then the 
mean polarization energy of this gas molecule is 

V - -" 3 	/2 ag(E) 	 (189) -  

which requires knowledge only of the mean square field (B 2) at its 
center, rather than other details of E. 

To complete the picture, it is necessary to point out that (E 2) 

has a straightforward representation in terms of the distribution of 
ions around the central solute particle. Since the instantaneous 
value of E is 

IV 

E = - V rg  E 
ze 

i=1 Drgj 
(190) 

rgj  = Iri - rg  

when the solute particle is located at r g, and the N ions at r 1  . . . rN, a 
canonical ensemble average of E2  by the techniques of Section IV 
lead at once to the expression required: 
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(E 2) = 

()2 

{ 	
CaEa2 f rga4 gg(2)(rg)d3r 

+ E CaCflaE 	rga2rg2 gga3)(rg,ra,)d3rad3rs} (191) 
2 	

f 
UgaUg 

a,f3=1 

Uga  
rga 	 Ugj _ rgfl - 

I rg 1-;:; a  

Rigorous evaluation of (E 2) therefore demands not only the solute-
ion pair correlation functions, but the solute-ion-ion triplet functions 

99
(3)  as well. Although apparently no serious use of equation 191 

has yet been made in computing gas solubilities, it will presumably be 
necessary in doing so to use a superposition approximation to reduce 
such a(S)  to a product of g(2)'S.  In this event, a further demonstration 
of the utility and informative nature of molten salt pair correlation 
functions is provided. 

The final form of the Henry's law constant, obtained by equating 
liquid and vapor phase chemical potentials, is 

k 11  kT exp Ik (Y1  + Y2  + Y3)] 	(192) 

No direct experimental confirmation of this detailed solubility theory 
is yet available for pure salts. However, Blander et al. (2) have 
measured noble gas solubilities in mixed fluoride melts. The relevant 
k11 have been computed neglecting V 2  and Y3, and estimating V1  
as just the product of the macroscopic liquid-vapor planar inter-
facial tension, times the surface area of the solute-containing cavity. 
Agreement is obtained only in correct order of magnitude. 

In conclusion, we must acknowledge that in these surface tension 
considerations it has implicitly been assumed that the ions were 
subject to the same type of potential energy as was adopted for the 
bulk liquid, i.e., a sum of pairwise additive interactions supplemented 
by the position-independent Born cavity energies. It will be re-
called, though, that the dielectric properties as examined in Section 
III supposed that the molten salt medium was both homogeneous 
and isotropic. This is obviously appropriate for the interior of a 
single liquid phase, but if the computation is repeated in the presence 
of a liquid-vapor interface, two modifications are in the strict sense 
required for the potential energy of the system. In the first place, 
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each Born cavity energy, 	changes continuously as the interface 
is traversed from its position-independent negative value in the 
interior of the liquid, to generally a much different value in the dilute 
vapor. For fairly large distances from the interface on the liquid 
side, this modification yields the so-called "image potential" of a charge 
near a planar dielectric discontinuity, familiar from elementary 
electrostatics (64) . On this basis, ions at the interface would ex-
perience a less negative Born cavity energy (that is, they are repelled 
from the interface) , and since an increase in surface area increases the 
number of such ions, one concludes that this modification is in the 
direction of increasing surface tension. 

The second modification required is that each ion pair interaction 
V a (r) is itself subject to variation in the interfacial region (from its 
bulk liquid form) because it, too, depends upon dielectric properties 
there. Once again this change, for r not too small, and if the ions 
are not too near the interface, may be interpreted in terms of images. 
Qualitatively, the result amounts to interaction of one ion in the 
chosen pair with the image of the other, and vice versa. Because 
this implies enhanced negative interaction for unlike ion pairs (the 
most common nearest neighbor type), the tendency is for these pairs 
to be attracted to the interface, so this second modification should 
have the opposite effect on the surface tension as the first. 

A scrupulously detailed theory of the molten salt interfacial 
properties naturally would have to take account of these elaborations. 
But in view of the present quantitatively uncertain position of the 
theory in dealing with these surfaces, it seems worthwhile to present 
the simpler results for evaluation first, before refinements are added. 

* The relevant computations for both modifications have been carried out in 
connection with surface properties of electrolytic solutions (17). 
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