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where ~N and ~o are the spin-orbit coupling constants 
for the nitrogen and oxygen atoms, respectively. 

The g values are evaluated from the Kramers 
doublet and the following matrix elements (± I L I ± ) 
and (± I L I =F) must be evaluated where the angular 
momentum, L, is measured about a particular point 
in the molecule, for example, the nitrogen atom. We 
now show that, since only p electrons are being con­
sidered, (Xa" I L I Xb")= (Xa" 11 I Xb"), where Xa" and 
Xb" are any two oxygen orbitals on the same atom and 
1 is the angular momentum about the oxygen nucleus. 

Now 

L.I Xb")= -fti{Xi. _yi.} I Xb") 
ay ax 

=fti{X'i. -y'!,} I Xb")+fti{C!, -d~} I x/'), ay ax ay ax' 
where x and yare referred to the nitrogen atom and 
x', y' are the new coordinates referred to the oxygen 
atom and x=x'-c and y=y'-d. 
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Therefore L. I xb")=l. I xb")+(dmx-cmy) I Xb"), 
where mx and my are the linear momentum operators. 
Similar expressions can be obtained for Lx I Xb") and 
Ly I Xb"). 

Considering only p atomic orbitals, (Xa" I L I Xb")= 
(Xa" III Xb") since (Xa" I m I Xb")= 0 provided the 
atomic orbitals are of the same parity.34 

Hence with these assumptions 

g.=2-221(ki Xk/)/(Ei - Ek )], 

i 

where 
3 

k;=~NaiaK(X/ /1• I XK')+~oLnnibnK(Xn/' /1. I XnK") 
n=l 

and 
3 

k/ = aiaK (x/ /1• I XK') + LbnibnK (Xn/' /1• IXnK") 
n=l 

with similar expressions for gx and gy. 

34 We would like to thank Dr. J. P. Colpa for this proof. 
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By classifying particle center positions with a hexagonal grid, evaluation of the two-dimensional rigid 
sphere partition function is reduced to a special lattice statistics problem, with precisely defined nearest­
neighbor effective pair interactions. The hexagonal cell size is chosen to be the maximum consistent with no 
more than double occupancy. Since the resulting lattice partition function (with three states per site) con­
tains a collectively determined many-cell effective interaction ~*, as well as nearest-neighbor contributions, 
it becomes necessary to examine in detail the statistical geometry of available phase space for the original 
spheres, under varying restraints of nearest-neighbor cell distribution. Accordingly, we obtain for the first 
time an unambiguous definition of "random close-packed" or "glassy" arrangements of spheres (which how­
ever are not themselves equilibrium states), and to relations between properties of these arrangements, and 
of ~*. The key features which subsequently allow description of rigid sphere order-disorder behavior are: 
(1) the observation that certain nearest-neighbor cell pairs which occur in the glassy state (both unoccupied 
and both doubly occupied) are geometrically excluded completely in the ordered, close-packed arrangement; 
(2) ~ * sensitively depends upon these pair distributions. In spite of the fact that ~ * is thereby assigned a 
specially generalized free-volume form, the theory leads to a proper virial series development at low density. 

In addition, we report some preliminary results for the effective cell interactions, for glassy state param­
eters, and some calculations designed to reveal the structure of ~*. 

Although this analysis does not yet represent a full quantitative theory of the two-dimensional rigid disk 
system, it does lead to a novel qualitative explanation of how a fluid-solid transition can occur, and sugges­
tions are given for completing the quantification. 

I. INTRODUCTION 

THE recent Alder-Wainwright calculations! on the 
equation of state of the two-dimensional rigid 

sphere (disk) system lend support to the proposed 
fluid-solid phase transition for this system (and by 
implication for the three-dimensiona!2 analog as well), 

* Present address: Polymer Physics Section, National Bureau 
of Standards, Washington, D.C. 20234. 

1 B. J. Alder and T. E. Wainwright, Phys. Rev. 127, 359 (1962). 
2 B. J. Alder and T. E. Wainwright, J. Chern. Phys. 33, 1439 

(1960) . 

and indicate that this transition is first order. On the 
basis of the relatively small number of particles at 
the "surface" of the periodic unit cell used in these 
molecular-dynamic calculations, as well as the fact 
that distinct phases are clearly observed to coexist 
side by side, it seems very likely that the calculated 
equation of state for the number of particles employed 
(N = 870) is substantially identical with the N-,;oo 

limit. 
Of course it is unfortunate that regardless of how 
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extensive such machine calculations might be, they 
can never rigorously settle questions about how near 
to the N~oo limit one has approached, or if the phase 
space sampling has been adequate to approximate the 
partition function closely. In particular, it is not cer­
tain that the apparent finite volume change between 
the two phases might not vanish in the appropriate 
infinite case, to leave a second-order transition.3 

Our motivation in this exploratory paper is a desire 
to supplement the machine calculations by a direct 
evaluation of the two-dimensional rigid sphere parti­
tion function (in the N~oo limit) from first princi­
ples. Although it must clearly be stated at the outset 
that this paper does not represent yet a quantitative 
achievement of this very difficult goal (and is cur­
rently unable to prove or disprove the existence of a 
first-order phase transition), it does however suggest 
feasible machine calculations on constrained sets of 
spheres which would complete the program. Of equal 
importance is the fact that if one is willing to accept 
the existence of the transition as having been suffi­
ciently convincingly demonstrated (in Ref. 1), then 
the following considerations already supply a vivid 
qualitative explanation of how it comes about. 

It is indeed fortunate that the model which is easiest 
to examine by molecular dynamics also possesses fea­
tures which materially simplify our theoretical ap­
proach. In spite of this fact, however, we have found 
no reason to believe that corresponding investigation 
of phase change in three-dimensional rigid spheres re­
quires a substantial deepening of analytical techniques. 

At least the initial transformations on the continuum 
system partition function are carried out for arbitrary 
dimensionality, and unspecified spherically-symmetric 
pairwise-additive potentials. As a result, a general 
exact equivalence between the original partition func­
tion, and one for a lattice system (with the appropriate 
number of site states) can always be established. But 
it is for the two-dimensional hard sphere case that 
these first formal manipulations, which are in them­
selves devoid of physical content, constitute a frame­
work into which the relevant further information about 
sphere arrangements in two dimensions most neatly 
fits. 

The reference lattice of cells chosen is the regular 
hexagonal array. So as to maximize the contribution 
of interactions between nearest-neighbor cells, without 
unduly increasing the number of possible states for a 
cell, the cell size is picked to correspond exactly to the 
regular close-packed arrangement of the spheres. This 
choice is the largest which permits a maximum of two 
spheres to have their centers in a cell, without over­
lapping, but still with freedom of motion. 

Many lattice or cell theories of dense fluids intro­
duce in effect spurious periodic density distributions, 

3 H. L. Frisch, "The Equation of State of the Classical Hard 
Sphere Fluid," (in a contributed chapter, to be published), 
Advan. Chem. Phys. 

with the periodicity of the reference lattice.4 The pres­
ent approach, however, carefully avoids irrelevant im­
position of crystalline order. The possibility that cal­
culations based on our approach might predict a fluid­
solid phase change cannot be a direct artifact of the 
special cell choice. 

One possible drawback of the present technique is 
that even if pressure or free energy predictions exhibit 
phase change behavior, there is no way of establishing 
whether or not the high density phase is an ordered 
crystalline solid. It is still generally unknown, though, 
whether the finite density of defects that must neces­
sarily be present at equilibrium in a slightly expanded 
"regular" phase still permit true long-range order in 
the N~oo limit, or whether periodic positional order 
persists only over a finite distance.5 Even aside from 
the possible order-destroying role of defects, one may 
adopt standard arguments6 to the two-dimensional 
solid to show that long-wavelength density fluctua­
tions apparently prevent true long-range order. 

In spite of the fact that a large part of the non­
ideality of the original continuum system leads to 
nearest-neighbor cell interactions in the equivalent 
lattice problem, there appear as well in the latter im­
portant interactions which are not decomposable into 
nearest-neighbor cell pair terms. It is absolutely nec­
essary to take the totality of these many-cell terms 
(denoted by A * below) into account; one result of its 
neglect would be the possibility that every cell would 
be double-occupied under sufficient pressure, which 
corresponds to precisely twice the close-packed den­
sity. It is argued below that the important character­
istics of this many-cell quantity may be deduced from 
examination of the available multidimensional con­
figuration space for the rigid spheres. In proposing a 
form for this quantity, we are naturally led to consid­
eration of random packings of spheres, and specifically, 
a precise definition of "random close-packed structure" 
arises, which bears closely on Bernal's view of the liquid 
state.7 

An especially important ingredient in the following 
development is recognition that the configurational 
disorder in the assembly may be measured by the dis­
tribution of nearest-neighbor cell-pair occupation types. 
In particular, a random packing of disks permits oc­
currence of both neighboring pairs of empty, and 
of doubly-occupied cells, whereas a regular hexagonal 
array of packed disks (even when subsequently ex­
panded homogeneously to the lower density of the 
"glassy" random arrangement) exhibits none of either, 
as a result of purely geometrical restrictions. Conse-

4 J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular 
Theory of Gases and Liquids (John Wiley & Sons, Inc., New York, 
1954), pp. 271-320. 

5 This finite persistence length certainly must be large in any 
event, and tend to infinity as the density is increased to its abso­
lute maximum. 

S L. D. Landau and E. M. Lifshitz, Statistical Physics (Addison­
Wesley Publishing Company, Reading, Massachusetts, 1958), 
Sec. 125. 

7 J. D. Bernal, Pmc. Roy. Inst. G. Brit. 37, 355 (1959). 
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quently, we are led to postulate essentially a free­
volume form for Il *, as is required asymptotically when 
one approaches "jammed" densities, with a variable 
maximum density depending on the nearest-neighbor 
cell-pair distribution. It is in this "movable divergence" 
character of Il * that one expects to find possible phase 
transition behavior. 

The last section of this paper contains computed 
results for the doubly occupied cell, and cell-pair, en­
tropies required in the lattice theory. In addition, our 
preliminary rough determinations of glassy state pa­
rameters needed for Il * are presented as well. Also, 
to emphasize the central role of Il *, the equation of 
state predicted by this theory in the absence of this 
quantity has been calculated. 

Although the rough outlines of the functional form 
of Il * begin to emerge in this initial investigation there 
still remain too many quantitatively unanswered ques­
tions about this function to permit a convincing analy­
sis of rigid disk phase transition behavior, short of 
unabashed curve-fitting to the published results.! How­
ever, the present theory is so arranged that these 
questions can themselves be answered by molecular­
dynamic or Monte Carlo calculations on the properties 
of suitably constrained sphere packings; when utilized 
in this context, machine calculations on rigid sphere 
equations of state avoid the improper phase space 
sampling, and finite system size criticisms. 

Until the very extensive computations directed to­
ward detailed delineation of Il * become available we 
feel that the point of view expressed in the follo~ing 
will be useful in furthering at least qualitative under­
standing of liquids, and of fluid-solid transitions· it 
is for this reason that we offer the exploratory anal~sis 
below. 

II. GENERAL RELATIONS 

Let there be N molecules under constant tempera­
ture conditions confined to a region V of dimensionality 
D. We postulate at the outset that these molecules are 
to interact only in pairs according to a short-range 
spherically symmetric potential function v(r). It is 
well known that the thermodynamic behavior of this 
assembly may be obtained from the canonical partition 
function 

N 

Xexp[ -f3 L: v(rii)]; 
i<;'==1 

A=h/(27rmkT)t. (1) 

The mUltiple configuration integrations span the re­
gion V only. The connection with thermodynamic 
measurables, specifically, the Helmholtz free energy 

AN, is provided by the identity 

(2) 

The inherent difficulty of making a general evalua­
tion of QN({3) is also well known. Our present approach 
is initiated by dividing V into a regular array of n 
identical cells, each with content w: 

w=v/n. 

The available configurations for the N molecules may 
be classified according to the numbers, nl, n2, •.. , n{] 
of molecular centers falling, respectively, within cells 
numbered 1, 2, .•. , n. Clearly any pair of configura­
tions differing only by permutation of particles be­
tween cells leaves the set of occupation numbers In;} 
invariant. The total number of such permutations is 

(J 

NVIIn;!. (3) 
i=l 

Using this combinatorial factor, QN may be rewritten 
as a sum over permissible sets (denoted by a prime) of 
cell occupation numbers: 

N 

·exp[ -(3 L: v(rkl)], (4) 
k<I==1 

where the center dot indicates application of the inte­
gration operation. The allowed sets I n;) satisfy num­
ber conservation: 

(J 

L:ni=N. (5) 
i=l 

In Eq. (4), the vector position rii stands for the jth 
particle in Cell i, and the integrations cover all posi­
tions in the cells without allowing any cell walls to be 
crossed. 

For a given member of the I n;) sum in Eq. (4), we 
denote the partial configuration space integral by8: 

N 

oexp[ -(3 L: Vhl)]. (6) 
k<l==! 

If the N-molecule system were noninteracting, f3v could 
be written as a sum of contributions from each cell 

8 If the cell size is sufficiently small, the averaged potential 
energy v would be just the sum: 2:v (rkl), since the original pair 
potential function v would vary insignificantly over distances 
comparable to the diameter of w. 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.112.66.66 On: Wed, 11 Dec 2013 04:43:56



RIGID DISK PHASE TRANSITION 1567 

[log (n;!) ]. In the realistic case of interacting particles, 
though, it is necessary to develop v in a series, whose 
leading contribution once again is a set of single-cell 
tenns, but which generally must also include contribu­
tions from correlated cell pairs, triplets, etc.: 

u u 
v( In;) = 2:)(I) (n;) + L vi/2)(ni, nj) 

i=l i<j=l 

u 
+ L Vijk(3) (ni' nj, nk) +"'. (7) 

i<i<k=l 

This series in principal tenninates only with v(n)'s of 
the same order as the number of occupied cells. In 
this identity, (3 dependence has been suppressed for 
convenience, and subscripts (specifying the cells in­
volved) do not appear on v(I)'s due to cell identity. 

The series in Eq. (7) is intended to be arranged in 
such a way that the leading v(I) tenns are to correspond 
to isolated cells, the subsequent V(2) contributions are 
to represent corrections computed as though each pair 
of cells interacted statistically with no other occupied 
cells nearby, etc. Thus, one takes for the single-cell 
quantities 

exp[ -(3v(I) (ni)]= (ni!wni)-1!..dr1'" i.drn; 
-, , 

ni 
Xexp[ -(3 L v(rkl)]' (8) 

k<l=l 

Although it is obvious that 

the v(I)'s for two or more particles in the same cell are 
generally nontrivial quantities. The V(2)'S next are de­
fined by deviations of the joint configuration integral 
for n; particles in Cell i, and ni in Cell j, from the 
product of the corresponding factors from Eq. (8): 

expl-(3[v(l) (ni) +v(I) (ni) +V;/2) (ni' ni)]l 

= (ndni!wn;+n;)-11 dr1" '1 drn·1 drni+1" '1 drni+n; 
("Ii Wi Wi Wi 

ni+nj 

Xexp[ -(3 L v(rkl)]. (9) 
k<l=l 

The systematic recursive definition of the higher order 
v's follows in a perfectly analogous way. It is easy to 
see that if one or more of n cells are empty, the corre· 
sponding v(n) vanishes. 

For a given cell size w, it is clear that the strong 
repulsive forces acting between molecules at small dis­
stances will have the eventual effect of making v(I) (ni) 
diverge to infinity as n increases. 

III. HARD SPHERES IN TWO DIMENSIONS 

Only single-cell, and nearest-neighbor cell-pair v's 
would appear in QN((3) if the cell size w were chosen 
sufficiently large, for then the short-range potential 
vCr) could traverse only a single cell wall. On the other 
hand, the v(I) integrals appearing in Eq. (8), for large 
w, present precisely the same sort of evaluation diffi­
culty as does the original partition function. In con­
sidering, therefore, the specific two-dimensional rigid 
sphere model, we shall try to strike a compromise 
between having too many particles in a cell on the 
one hand, and too many of the effective multiple-cell 
interactions of nonnearest-neighbor character (as would 
be the case with very small w) on the other hand. 

In particular, we select the cells to fonn a regular 
hexagonal array on which (with proper orientation) a 
regular close-packed arrangement of the spheres fits 
with exactly one sphere per hexagon.9 If we denote the 
sphere diameter by a, then 

With this choice, there can be 0, 1, or 2 molecular 
centers within a single cell, without any spheres over­
lapping one another, and still with movement freedom. 
Furthennore, this cell size is the maximum possible 
with no more than two freely contained particles, for 
it just pennits three particle centers to lie at alternate 
vertices of the hexagon; since there is no movement 
freedom, though, the corresponding v(I) (3) [as well as 
v(I) (4), etc.] is infinite. Accordingly, each cell has only 
three occupation states that contribute to QN((3). 

Although the regular array of hexagonal cells cor­
responds exactly to the close-packed array of spheres, 
in which one center lies in each cell, a reorientation of 
the" crystal" of spheres can destroy this unifonn single 
occupancy, as Fig. 1 shows. Of course in a large sample 
it is necessary that equal numbers of empty and doubly­
occupied cells thereupon must appear.l° Although rela­
tive motion of the crystal and hexagonal cell array 
allows empty and doubly-occupied cells to move about 
(as well as to appear and disappear), not all arrange­
ments of empty and doubly-occupied cells are possible. 
The most striking facts we note in this connection are 
that the geometry of close-packing absolutely excludes 
any pair of nearest-neighbor cells from being both 
empty or both doubly-occupied. 

The techniques for handling nearest-neighbor lattice 
statistics have become sufficiently well developed tools 

9 Unlike the situation in three dimensions, this hexagonal 
arrangement has rigorously been proven to have the largest ob­
tainable density: C. A. Rogers, Proc. London Math. Soc. (3) 8, 
609 (1958). 

10 Although empty and doubly-occupied cells appear in pairs, 
we have not been able to establish whether this duality for the 
close-packed arrangement extends even to the average pair 
distributions of these entities, though it would be instructive and 
interesting to settle this question. 
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FIG. 1. A reorien­
tation of the close­
packed sphere ar­
rangement over the 
hexagonal cell array, 
giving rise to both 
empty and doubly­
occupied cells. 

in classical statistical mechanics to have successfully 
elucidated selected aspects of the over-all phase tran­
sition problem.!l For this reason, we shall proceed to 
develop the general expressions of the preceding sec­
tion in as similar a way as possible, for rigid spheres 
in two dimensions. 

Let No, N 1, and N 2, respectively, denote the number 
of empty, singly-occupied, and doubly-occupied cells, 
for a given set {n;J. The restriction (5) is obviously 
equivalent to 

(10) 

and of course 

(11) 

From the standpoint of order-disorder theory, we need 
further to classify the sets {n.} according to the quan­
tities 

N oo, N Ol, N u , 

giving the total numbers of the various possible nearest­
neighbor pairs of cells containing, respectively, both no 
particles (Noo), none and one particle (NOl ), etc. The 
six parameters (12) are not independent of No, N 1, 

and N 2, but are related to them by: 

N o= (2Noo+NOl+No2)/6, 

N1= (NOI+2Nu+NI2)/6, 

N2= (N02+NI2+2N22)/6. 

These last three equations are quantitative statements 
of the fact that each cell contributes six subscripts to 
a complete listing of all nearest-neighbor pair types in 
the lattice. 
~ In view of the restrictions (10), (11), and (13), we 
may conveniently choose a foreshortened list of inde­
pendent order-disorder variables to be 

N, N oo, Nu, (14) 

In terms of this set, the restraints may easily be solved 

11 The methods of order-disorder theory are extensively re­
viewed in G. F. Newell and E. W. Montroll, Rev. Mod. Phys. 25, 
353 (1953); also C. Domb, Advan. Phys. 9, 149-361 (1960). 

for the remaining dependent quantities: 

No=Q-N+N2, 

N1=N-2N2, 

NOI = 3Q-6N2 - N 00-N u+ N 22, 

N02=3Q-6N + 12N2-Noo+Nu - N 22, 

N 12= -3Q+6N -6N2+Noo-Nu-N22. (15) 

The terms in the full expansion (7) of v that may 
rigorously be expressed in terms of the variables (14) 
are of course the single cell VO)'s, and those ViP)'S 
pertaining to pairs of cells which are nearest neighbors. 
For rigid spheres with our particular choice of cell size, 
pairs of particles can overlap even when their centers 
lie within next-nearest-neighbor cells,t2 so that there 
do exist nonvanishing Vi/2)'S whose contribution to v 
cannot directly be expressed in terms of the above 
parameters, for a given {nd. We therefore collect all 
such ViP)'S, as well as every higher order v(n), into a 
quantity ~({ n;}) : 

o 
v({nd) = Lv(1)(ni) + LVi/2) (ni' ni)+~((ni}), (16) 

i=l n,n. 

where "n.n." denotes summation over all pairs of cells 
which are nearest neighbors. 

Next, for fixed values of the independent param­
eters (14), we let a doubly-primed In;} summation 
run through all distinct sets of the Q occupation num­
bers nl'" no which are consistent with those values. 
The number of such distinct sets is 

g(N, N2, N oo, Nu, N22 ) = L"1. (17) 
Inil 

This combinatorial factor g is the number of distin­
guishable ways of distributing the given number of 
voids and single and double occupancies over the lat­
tice with chosen nearest-neighbor distribution. If ~ *, 
a suitable average of ~, is defined by 

=[g(N .. ·N22)]-IL" exp[ -11~((ni})J, (18) 
Inil 

we are finally able to effect a formally exact transfor­
mation of the hard sphere partition function to a mul­
tiple sum over N2, Noo, Nu, and N22 : 

QN=WN X.-2N L g(N, N 2,· 'N22) 
N 2 • .. N 22 

Xexp{ -11[N2v(1) (2) +NUV(2) (1, 1) 

+N12 (N,· ,N22)V(2) (1, 2) 

+N22V(2)(2, 2) +~ *(N .. ,N22) Jl. (19) 

J2 But no overlap is possible for pairs of cells separated farther 
than second neighbors. 
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This now has the same form as partition functions 
usually encountered in order-disorder theory,13 and as 
is now permissible, we have dropped subscripts on the 
remaining ij(2)'S. 

IV. AVAILABLE CONFIGURATION SPACE 

The rigid sphere system free energy may be ob­
tained in principle from Eq. (19) by a maximum term 
method, but before such a calculation is possible, it 
is necessary to have explicit expressions for the com­
binatorial factor g(N· .. N22), and the average many­
cell interference quantity .1*. Although exact results 
are available for neither of these functions, there do 
exist for the former, at least, extensively investigated 
and reasonably reliable approximate constructions. Our 
point of view, therefore, will be that at least as far as 
g is concerned, the Guggenheim quasichemical approxi­
mation/3 or a Kikuchi extension,14 should suffice for 
qualitative investigation of fluid-solid phase transition 
behavior. Consequently, we focus attention in this 
section on properties of the rigid sphere system rele­
vant to determination of .1 *. 

The .1* contribution to the partition function, and 
therefore the equation of state, is necessary even on 
qualitative grounds. In its absence, there is nothing 
to prevent double occupancy of every hexagonal cell 
in the system, in spite of the fact that this would 
correspond to twice the close-packed density. At the 
very least, .1 * must make the pressure and Helmholtz 
free energy diverge at the correct density. Later, we 
shall additionally find that no fluid-solid phase tran­
sition occurs in the absence of .1 *. 

The basic ingredients in a lattice description of 
fluid-solid transitions must be recognition of some pa­
rameter which measures degree of order, and which 
changes in some singular way during the transition. 
Hence it is a primary task of the present theory to 
identify among the variables N··· N22 a reflection of 
the geometrical change in type of sphere arrangements 
encountered, on the average, as density is increased 
from zero to the close-packed limit. 

FIG. 2. Random 
sphere packing 
which shows the oc­
currence of square 
and pentagonal sets 
of centers. 

13 E. A. Guggenheim, Mixtures (The Clarendon Press, Oxford, 
England, 1952). 

14R. Kikuchi, Phys. Rev. 81, 988 (1951). 

FIG. 3. Slightly irregular "crystal" possessing long-range order, 
but with over-all expansion to the random packing density. The 
polygons formed by connecting neighbors are almost exclusively 
triangles and hexagons, with no squares or pentagons as shown in 
the random arrangement of Fig. 2. 

Figures 2 and 3 exhibit, respectively, portions of a 
random" glassy" packing of spheres, and a relatively 
regular hexagonal arrangement which has been slightly 
expanded, and which includes a few vacancies, suffi­
cient to bring the density down to that of the" glassy" 
structure. If one were to draw lines connecting the 
centers of neighboring particles in the latter,15 the re­
sulting polygons would be primarily triangles, with a 
few hexagons (surrounding vacancies). The random 
structure, besides leading to triangles and hexagons, 
characteristically has particles forming squares and 
pentagons as well. 

BernaF .16 has stressed the importance of local five­
fold symmetry in liquid structures. Within our present 
lattice theory context, however, there seems to be no 
clear-cut way of identifying specifically pentagonal ar­
rangements through the occupation numbers No·· ·N22 • 

The situation fortunately is different for square ar­
rangements, and it is these that we shall take as diag­
nostic for randomness in packing. It is only for this 
sort of polygonal arrangement that a pair of nearest­
neighbor cells may both be doubly-occupied, as shown 
in Fig. 4. Of course only a small fraction of squares of 
spheres will be properly oriented so as to fit two and 
two into nearest-neighbor cells, but that fact is not 
worrisome. The important conclusion is that N22 will 
be positive for packing disorder in the system; this 
parameter acts as an analog to a chemist's pH indi­
cator, present in small amount, but sensitive to ran­
domness in the present case, rather than acidity. 

In order to put these rough structural ideas on a 
more precise basis, it is necessary to examine closely 
the geometry of the multidimensional configuration 
space available to a set of N rigid spheres confined to 
a finite box. To be able to follow changes in the size 
and shape of the accessible region without varying 
dimensionality, as the dimensionless system density 
N a2/V varies, it is convenient to hold N fixed, and 

15 If, for this construction, all pair distances less than V'la are 
drawn, the nonoverlap of spheres prevents any pair of lines in the 
plane from intersecting. 

16 J. D. Bernal, Sci. Am. 203, 124 (August 1960). 
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FIG. 4. (a) Possible occur­
rence of double occupancy in 
a cell adjacent to one already 
doubly-occupied, as a result 
of properly oriented square of 
spheres. (b) Impossibility of 
a pair of nearest-neighbor 
cells both doubly-occupied 
when the particles are in the 
regular hexagonal arrange­
ment. 

allow the hard sphere collision diameter a to change. 
Obviously if the sphere size varies, so must the hexag­
onal cell size, and at the edge of the system there will 
be some incomplete hexagons. But since we are inter­
ested only in bulk properties of the system, and not 
in surface corrections, this need not be of concern. 

For any set of sphere positions rl' , 'rN, the poten­
tial energy is either zero or infinity, and the totality 
of positions leading to the former is the accessible 
portion of configuration space. For a given set of N 
sphere-center positions, obviously any permutation of 
the particles leaves the potential energy unchanged. 
Since there are N! such independent permutations, the 
accessible configuration space must consist of N! iden­
tical portions. It will be sufficient to examine the geo­
metrical character of only one of these portions. 

Figure 5 presents a highly schematic diagram of the 
(2N+1)-dimensional space formed from the 2N con­
figuration coordinates for the spheres and the variable 
collision diameter. The continuous curve (really a mul­
tidimensional "surface") separates the region of ac­
cessibility (above) from the unallowed region (below), 
and this boundary is the set of all points for which at 
least one rij equals a, but none less than a. The avail­
able configuration space R(a) for a given density (i.e., 
a specific sphere size) is obtained by taking a horizontal 
section through the diagram. 

Any set of positions corresponding to a point within 

FIG. 5. Simplified diagram of one of the N! identical portions of 
the joint configuration-diameter space of 2N + 1 dimensions. The 
horizontal axis labeled U r " stands for the entire set of position 
variables, and the hard sphere diameter a increases downward. 
The jagged curve is the boundary between accessible (upper) and 
inaccessible (lower) configurations. 

FIG. 6. Freely mova­
ble particle (marked 
with X) enclosed in an 
otherwise rigidly 
locked structure. 

the accessible region, and not at the boundary, natu­
rally allows at least small displacements of all particles 
separately without causing the potential energy to 
become infinite. However, as a is increased and the . ' partlcles are moved about somewhat to accommodate 
that increase without overlap, the freedom of move­
ment of particles becomes less and less, until finally a 
value of a is reached where the spheres are tightly 
"jammed" into the system. These jammed states are 
represented in Fig. 5 by the sharp minima in the bound­
ary curve. Depending upon which "pocket" in the 
accessible region the system found itself just before a 
~ttain~d the jamming value, there will be many ways 
III whIch the spheres can be locked in position and 
their density will by no means be the same. In pa~ticu­
lar, as shown in the diagram, there will be one pocket 
exhibiting a maximum density, with particles arranged 
in the regular hexagonal array. 

Although the pocket bottoms have been drawn in 
Fig. 5 as points, some may still have a freedom for 
particle movement, and hence have a higher dimen­
sionality (though considerably less than the 2N for 
full freedom in the system). Figure 6 illustrates the 
possibility of freely movable" inclusions" in an other­
wise rigidly locked arrangement of spheres. If there 
were n such particles at a given pocket bottom, the 
corresponding dimensionality would of course be 2n, 
Since the rigid" cage" surrounding a free particle must 
contain seven or more very carefully placed spheres, 

FIG. 7. Expande~ view of tw~ neighboring pockets, showing the 
dee!? and narrow mterconnectmg channels. Although it is not 
feaSIble to represent such detail in this drawing it is known!7 that 
the. po~ket surface consists of sets of many '(order N) hyper­
cylmdncal surfaces convex outward from the inaccessible region. 
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RIGID DISK PHASE TRANSITION 1571 

these occurrences are probably very rare. For at least 
one pocket (the one corresponding to the maximum 
density regular packing) no loose particles appear. 

As Fig. 5 indicates, there should be a very large 
number of pockets for the system, even discounting 
particle permutations. When considering rigid sphere 
packings, most of which are random, it seems plausible 
that arrangements in neighboring regions of macro­
scopic size are essentially independent of one another. 
The total number of packings for the system then is 
approximately the product of the numbers for the 
separate macroscopic subdivisions. As a result, the 
total number (aside from permutations) of rigidly 
jammed packings for N spheres, P(N), should behave 
in an extensive way: 

10gP(N) "'''IN, (20) 

in the large N limit, where "I is a positive constant. 
Any diagram such as Fig. 5 can hardly do justice to 
the intricate topography of the bounding surface im­
plied by this result. 

For any pocket, there will exist by definition an 
interval of values of a such that the immediate neigh­
borhood of the bottom configuration becomes discon­
nected from the rest of the available configuration 
space (i.e., the particles are effectively locked in place). 
When a is thus very close to its value where the pocket 
closes off, a free volume argument is validl7 for estima­
tion of the limiting magnitude of the content, rea), of 
the disconnected region, with result 

logr(a) '" - 2(N -n) lIog[l- (OIOb) !J+const J. (21) 

Here, 0 stands for the reduced density (0:::;0:::; 1) : 

O=NIQ(a), (22) 

and Ob is its value when a just makes rea) vanish. The 
additive constant is of order one, rather than N, and 
clearly the logarithmic term dominates as O~Ob from 
below. 

Figure 7 presents a somewhat more detailed version 
of a portion of the boundary separating accessible from 
forbidden space. The simplified representation of con­
figuration space has now been expanded to two dimen­
sions. Each of the two pockets shown have sides inter­
rupted by deep and narrow gashes which serve to 
connect neighboring pockets. Even if a were somewhat 
less than the value at which a specific rCa) becomes 
disconnected from other pockets, the connecting paths 
from this pocket to other pockets will be very narrow 
in the constant-a hyperplane. The fact that these 

17 Z. W. Salsburg and W. W. Wood, J. Chern. Phys. 37, 798 
(1962) . 

channels are narrow (which means they subtend a 
small angle with vertex at the configuration coordinate 
value of the pocket bottom) is due simply to the fact 
that cooperative movement of more and more particles 
each in the direction outward from a position where 
freeing of particles for reshuffling is to take place, is 
necessary as a approaches the rea) separation value. 
Therefore, in spite of the fact that the bottoms of 
channels approach closer and closer to the pocket bot­
toms as N increases,17 the content of these channels 
remains extremely small, and Eq. (21) should provide 
a good estimate of the interior size of a pocket not too 
near its bottom, even though its walls may be gashed 
by many channels. 

Next, we shall assign all sets of particle configura­
tions to pockets in a unique fashion, irrespective of the 
value of a. In the elementary terms of Fig. 5, the pocket 
may be assigned by starting at a chosen point on the 
r (configuration) axis, moving downward parallel to 
the a axis until the surface is encountered, and then 
sliding down the surface into the pocket bottom. How­
ever, in view of the very complicated shape of the 
surface in the actual (2N + 1) -dimensional space, the 
process of "sliding" needs precise definition. The most 
obvious choice, which we adopt, of course is the path 
of steepest descent on the surface. By means of this 
construction, we may define a function Ob(rl'" rN) 
which equals the value of the reduced density at the 
pocket bottom corresponding to any initial configura­
tion of particles rl" ,rN. 

The concept of random packing density18,19 may now 
be made precise. For this purpose, imagine starting 
with a randomly selected set of points r l , , ,rN within 
the region V of the physical system, then begin to 
expand a circle about each point. During this expan­
sion, there will occur a first contact between the circles 
surrounding the nearest original pair of points. As the 
circles are further expanded, move this pair apart (each 
member at an equal rate along the center line) just to 
maintain the contact. Other pairs in the system simi­
larly will come into contact, and will be rearranged 
by the same prescription. As the process proceeds, 
triplets, and larger sets of circles will touch, and sub­
sequently should be moved by a generalization of the 
pair procedure; namely, if one has a set of n circles in 
contact at rl" ,rn (so that for each i in 1 <i<n there 
exists a j in l:::;j:::;n such that I r;-r; I-==~) the 
changes dr," 'drn , which maintain contacts under the 
diameter increase da, should be selected to minimize 
the positive definite form 

t(dri)2 
;=1 da 

(23) 

18 O. K. Rice, J. Chern. Phys. 12, 1 (1944). 
19 H. S. M, Coxeter, Introduction to Geometry (John Wiley & 

Sons, Inc., New York, 1961), p. 410. 
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FIG. 8. Solution of the sphere rearrangement problem for three 
in contact, as their diameters, a, increase. It is easy to calculate 
that the displacement vectors sand t, for unit increase in a, have 
lengths 

2 cos(I/;/2) 
S= , 

1 +2 cos2 (1/;/2) 

subject to those constraints. Figure 8 illustrates the 
resulting motion for a set of three circles in contact.20 

Of course this minimization procedure is nothing 
but a restatement of the steepest-descent problem, and 
the point at which increase in a is no longer possible 
consistent with the constraints corresponds to the 
pocket bottom into which the system has "fallen" 
from the original set of positions r I· •• rN. If this sphere 
expansion operation is repeated many times, with no 
preference for initial positions, the set of pockets be· 
comes statistically sampled uniformly, and a distribu­
tion of final (h's may be obtained. The average bottom 
density {}g may be written 

{}g 

= fv··· fv(h(ri .. ·rN)drl·· ·drN / fv··· fvdri .. ·drN. 

(24) 

For very large N, the chance of selecting (at ran­
dom) a set of initial positions that would lead to 
jamming in the regular close-packed array becomes 
very small. In fact, the few primitive experimentsl8 •I9 

that have been performed on sphere packing from 
random initial conditions indicate that typical results 
are a random" glassy" arrangement with a rather re­
producible density lower than that of close-packing 
(though apparently these experiments have been al­
ways three-, rather than two-dimensional). We shall 
therefore suppose that the (h distribution is sharply 
peaked about the mean random packing value (}g. 

20 It is instructive to recognize that the resulting particle motion 
is that which corresponds to their sliding with ideal friction on a 
surface, and that the variational problem then arises precisely 
from a suitable formulation of the dissipative mechanics In which 
power dissipation is minimized. In the interest of suggesting 
actual experimental construction of two-dimensional random 
pac-kings, one notes that homogeneous disks placed on an iso­
tropically stretched, and subsequently contracted, rubber sheet 
constitute essentially the same system. 

In the order-disorder treatment of our two-dimen­
sional hard sphere problem, we are naturally interested 
in classifying configurations by cell, and cell-pair, oc­
cupation numbers. For a given value of a for the N 
particles, therefore, introduce a multidimensional unit 
step function Ua(r I N 2, N oo, N ll, N 22 ) which is zero 
for all r= (rl, r2, .•. , rN), except those giving the 
indicated independent occupation parameters, for which 
it is unity. As a varies, the same r will not correspond 
to fixed occupation parameters, since the cell grid ex­
pands or contracts. It is now possible to examine only 
the subset of pocket bottoms for which the initial r 
has a constrained cell distribution; in particular, the 
mean bottom density {}c for this constrained situation is 

r (}b(r) Ua(r I N 2, 1Voo, Nn, ;V22)dr 
JR(al 

(25) 

In view of the extremely large number of pockets, it 
is reasonable to assume the {}b distribution obtained 
from the constrained initial configurations, is also very 
highly peaked, but now about a shifted mean {}e. Since 
sphere stacking properties, for large N, should be in­
tensive in character, 8e can alternatively, and more 
conveniently, be regarded as a function of intensive 
variables explicitly independent of a: 

{} {}- - --( 
;\'2 Noo lfn 1V22) 

, 'Q' n ' Q ' Q . 
(26) 

The variables for {}c indicated in (26) are "concen­
trations" of the various cell, and cell-pair states. By 
selecting correct values for these quantities, it should 
be possible to get {}e to approach unity, so that the 
constrained initial configurations should invariably 
slide into the pocket for regular hexagonal packing. 
Consistent with earlier comments, this would require 

Noo/Q~O, (27) 

and N 2/Q and Nll/Q would have to be assigned values 
equal to their averages for that regular arrangement. 
Also, {}o could be made to approach {}g by using dilute 
gas limits for the variables 

(28) 

The function ec reflects important features of the 
accessible configuration space which are relevant to 
the phase transition problem. It is necessary next to 
relate ~ * to {}c. 
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V. FORM OF ..:l* 

If the pockets containing the constrained set of con­
figurations are indeed highly peaked in their (h's about 
some (Je, then it is permissible to treat this set of pockets 
as if all its bottoms were at (Je. Thus as a approaches 
a value corresponding to (Je from below, the content of 
each pocket, and hence the total content of all of them, 
should tend to vanish in the same free-volume way as 
exhibited in Eq. (21). Also, then, the "volume" of 
that portion of accessible configuration space corre­
sponding to the constraints (since it must lie within 
these pockets) must vanish in essentially the same 
way, as (J-(Je from below: 

n-1log [ Ua(r I N2, Noo, Nll, N22 )dr 
iR(a) 

where the "constants," though possibly somewhat de­
pendent on (J, "', N 22/n, are nevertheless of order 
unity. 

The logarithmic divergence of Expression (29) must 
be precisely a logarithmic divergence of -{3t.*/n, since 
the single-cell and cell-pair effective potentials are 
well-behaved. We therefore arrive at a suggested form 
in which to write {3t. *: 

The function h will approach unity as (J' •• N 22/n ap­
proach values appropriate to the regular hexagonal 
close packing. In the zero density limit,h must vanish. 
In addition, we know that the entire expression (30) 
must be expandible in integral powers of the basic 
variables (J •• ·N22/n, so as to lead to a virial expansion 
of free energy at low densities. In particular, then, /1 
may contain half-integral powers of (J. 

The physical significance of Eq. (30) is clear; the 
cell and cell-pair occupancy constraints generally add 
a certain amount of disorder to the system which pre­
vents the spheres from settling into the most efficient 
((Je= 1) packing arrangement. As previously remarked, 
this must obviously be the case if N 22/n is greater than 
zero. Even with a certain amount of configurational 
disorder forced upon the system, we have in effect 
concluded that free volume estimates of the correspond­
ing phase space extent are valid, but with a lower 
maximum density. 

The randomly packed glassy state, for which a vari­
ational construction has already been specified, pro-

vides a convenient reference state for discussion of 
sphere disorder. The randomness in this state implies 
that its average density of packing, (Jo, will be signifi­
cantly less than unity. Consequently, we choose to 
write the general packing density function 8e as an 
interpolation between 1 (no disorder) and (Jo (maxi­
mum disorder) : 

(J(J- - --( 
N2 cYoo Nll N22) 

C 'n' n ' n ' n 

= 1 + ((J -1) h((J N2 Noo Nll 1'122
). (31) 

o 'n'n'n'n 

The assignments of Variables (27) and (28) therefore 
make h equal to 0 and 1, respectively. 

Obviously, there is insufficient information currently 
available for precise specification of h. However one 
of its most important variations should result from 
changes in the geometrically identified disorder-pro­
ducing variable N22/n. One might therefore be tempted 
to write a simplified version of Eq. (31) as a strictly 
linear interpolation, between the glassy and regular 
packings, involving just pairs of doubly-occupied cells: 

here, N22(u) stands for the average of N22 in the well­
defined glassy state. A moment's reflection, though, 
reveals that this expression is a bit too simple, for in 
the glassy state squares of particles are held firmly in 
contact, whereas in the real equilibrium system they 
are not. In view of this fact, as a set of spheres is 
decompressed from a jammed state (by decreasing a 
slightly, say), many members of square arrangements 
will drift across boundaries of the originally doubly­
occupied cells (since they must have been very close 
to a boundary to begin with). A considerable reduction 
in N22 thus results, even though the total number of 
"squares" of particles may change very little. It is 
thus meaningful to "normalize" N22 by a factor 1]((J, 8e) 

which increases to unity as (J increases to (Je. The modi­
fica tion of Eq. (3 2a) reads 

which of course requires that one solve for the now 
implicitly defined (Je after assignment of the function 1] 

(perhaps an exponential decay in (Je-(J). 

It is now possible to specify the mechanism by which 
t. * can produce a fluid-solid phase transition. At low 
density, particles will by chance produce pairs of 
nearest-neighbor doubly occupied cells, the number of 
which rises rapidly as (J increases. The corresponding 
(JC' at which the system is tending to jam up, will 
be significantly less than unity, and the equilibrium 
pressure will rise with increasing density accordingly. 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.112.66.66 On: Wed, 11 Dec 2013 04:43:56



1574 STILLINGER, DIMARZIO, AND KORNEGAY 

o 

I 
I 

I 
I 

I 
I 

I 
I 

I 

-7 
I 

/ 
" 

• I 
I 

(Ie 
I 

I 

o 

(I 

FIG. 9. Postulated behaviors, assuming simultaneous maxima in 
the partition function, of the high and low density solutions for 
the average number of nearest-neighbor doubly occupied cell 
pairs (dotted curves), and the value of the jamming density (Jc 

corresponding to the average values of N2/fl, Noo/fl, Nn/fl, N22/fl 
as a function of (J (solid curves). The low density (Jc curve should 
be roughly equal to (Jo, the high density one should equal very 
nearly unity. Vertical scales differ for the two functions. 

By virtue of the assumed structure of .Q. * and (Je, the 
problem of computing the free energy by picking the 
maximum term in Eq. (19) is sufficiently nonlinear 
that another type of solution is possible. As one ap­
proaches (J= 1, it becomes feasible to reduce the num­
ber of available lattice occupation states, as expressed 
by g, in order to gain additional sphere movement 
freedom by decreasing N22, and thus increasing (Je to­
ward unity. This latter order-disorder solution. with 
low N22 values, should be the solid phase, and since 
(Je should be larger than the fluid phase values the 
pressure isotherm will lie below the extension of the 
fluid phase isotherm to high density. Figure 9 illus­
trates this postulated behavior for the average value 
of N22/(I in the equilibrium system, and (Je evaluated 
for equilibrium values of the basic variables. Figure 10 
schematically shows the corresponding expected free 
energy curves, with Maxwell double tangent for the 
first-order phase transition. 

Expression (32b) for (Je, or some variant thereof 
(again with only N22 appearing explicitly from among 
all the Nil), is probably adequate over nearly the 
entire density range, and appears sufficient to explain 
the occurrence of a phase transition. It does not how­
ever force N 00/(1 to vanish as (J-+ 1 (as it does for 
N 22/(I) even though this is a geometrical necessity, as 
noted earlier. The exact (Je must therefore exhibit some 
Noo dependence when (J is near 1, but the general 
difficulty in building this variable into (Je is that at 
low and intermediate densities, many neighboring cells 
will happen both to be empty simply because of scarce­
ness of spheres, and these events cannot be regarded 
as characteristic of packing disorder. Equation (32b) 
is heuristically adequate for present purposes. 

VI. PRELIMINARY CALCULATIONS AND TENTATIVE 
CONCLUSIONS 

In order to make at least a beginning toward placing 
the preceding ideas on a quantitative basis, the v(n) 

effective cell interactions, which are not absorbed in 
.Q. *, were computed numerically. For two particles in 
one cell [v(!)(2)J, and for one in each of two neighbor­
ing cells [v(2)(I, 1)J, a direct numerical integration of 
the multiple configuration integrals led to the results 

exp[ -,Bv(!) (2) J"'1.39X 10-3, 

exp[ _,BV(2) (1, 1) J"'0.583. (33) 

The estimated errors in these results, respectively, were 
less than 1 % and 2%.21 It is the presence of hexag­
onal boundaries which makes analytical evaluations 
unfeasible. 

In the case of two particles in one cell and one in a 
neighboring cell [V(2) (1, 2)], and two particles in each 
of a pair of neighboring cells [v(2)(2, 2)J, the number 
of position variables has increased beyond the point 
where direct integrations may be carried out in a rea­
sonable amount of time, even with the fastest avail­
able computers. The Monte Carlo method, originally 
applied to statistical mechanical multiple configura­
tion integrals by Metropolis et al.,22 therefore was 
utilized as a suitable alternative. For the calculation, 
the particles were allowed to diffuse in their own cell, 
with a small jump length, subject to reflection from 
cell walls and from another particle in the same cell 
(if any). These latter two effective interactions were 
then taken to be the fraction of times that no overlap 

lnQN 
--N-

8-' 

FIG. 1.0' ?chematic free. energy curves, with Maxwell double 
ta~gent m~:hca~ed for locatIOn of transition densities. On account 
o.f ~ts (J, b~mg slgmfica~tl~ less than unity, the fluid branch begins 
rIsmg rapidly, as denSity mcreases, sooner than the solid branch. 

21 All calculations reported in this section were performed on 
the IBM 7090 at Murray Hill. 

22 N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, and A. 
H. Teller, J. Chern. Phys. 21, 1087 (1953). 
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occurred between particles in the two different cells 
(since overlap was ruled out, by the method of calcu­
lation, between particles in the same cell). It was 
found that 

exp[ _j3V(2) (1, 2) J:::0.281, 

exp[ _j3V(2) (2, 2)J""0.019. (34) 

The errors, estimated by the magnitude of fluctuation 
in accumulated results near the end of the calculations, 
were 10% for the first of these quantities, and 30% for 
the second. 

Having thus obtained at least rough quantitative 
results for the required v(n), the partition function was 
evaluated without d *, to establish a measure of the 
importance of this many-cell quantity over the entire 
density range. The quasichemical approximation to 
the combinatorial factor g was employed,23 and the 
free energy was minimized by calculating the change 
in this quantity as the basic order-disorder variables 
were systematically varied, until stationarity to pre­
assigned accuracy was achieved. The corresponding 
pressure results are plotted in Fig. 11, which contains 
as well the Helfand-Frisch-Lebowitz isotherm24 (sub­
stantially correct for the fluid phase), as well as the 
computed first-order phase transition breaks for ap­
pearance of the solid phase.! The most obvious facts 
one notices about the results are that the pressure 
predicted without d * is well-defined up to twice close 
packing (consistent with earlier remarks), and that 
no breaks characteristic of phase change appear. As 
anticipated, therefore, d * provides the mechanism for 
the transition. 

Relevant to determination of d *, certain properties 
of the random glassy packing of spheres in two dimen­
sions were investigated as well, by a rather primitive 
experimental method. Several hundred Lucite disks, 
carefully machined to a diameter of 1.5 in., were pre­
pared with dearly visible small center indentations. 
These were placed on a large (30 in.X40 in.) stiff 
cardboard sheet on which the appropriate hexagonal 
grid had been drafted. It was then easy to simulate 
various allowed partide arrangements, and to observe 
the corresponding distribution of cell occupation num­
bers. The random glassy packings were constructed 
just by manually jamming disks together, from an 
initially expanded configuration, until the conglomera­
tion seemed to resist further uniform25 compression. 

The mean density of the glassy arrangements, 8g , 

23 This approximation to g represents a straightforward exten­
sion (for three site states) of: D. Ter Haar, Elements of Statistical 
Mechanics (Rinehart and Company, New York, 1954), p. 269. 

24 E. Helland, H. L. Frisch, and J. L. Lebowitz, J. Chern. Phys. 
34, 1037 (1961). 

25 Sufficient agitation, especially involving shearing motion, 
will bring the spheres into a close-packed regular arrangement. 
Such shearing motion is not consistent with the variational 
definition of the glassy state, and was avoided as well as possible. 
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FIG. 11. Behavior of the two-dimensional rigid sphere pressure 
(the curves labeled QC) computed with neglect of the important 
many-cell interaction function 11*. The Helfand-Frisch-Lebowitz 
(HFL) curve,24 supplemented by the Alder-Wainwright1 first­
order phase transition behavior (A W) is regarded as adequately 
representing the exact equation of state. 

was then measured by throwing down at random on 
the disks a sheet of paper, and counting the number 
of centers lying under it; the same was done after the 
disks had been hexagonally dose-packed, and eg was 
identified with the average ratio for several dozen 
trials. Thus it was found 

8g""'0.89 (35) 

within about a percent or two. 
By means of the hexagonal grid it was also possible 

to observe the glassy state values of empty, singly­
occupied, and doubly-occupied cell concentrations. The 
approximate determination yielded 

Unfortunately these rough experiments were neither 
sufficiently discriminating nor involved adequately ex­
tensive sampling to permit evaluation of the various 
Ni/g) In. The most important of these, N 22(g) In, though, 
may be estimated in order of magnitude by computing 
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first three times the square of N 2(o) In (which would 
equal N 22(o) In if the doubly occupied cells in the glassy 
state mixed randomly), and then multiplying by 
exp[ -(3f/2) (2, 2)J from Eq. (34) to eliminate overlaps 
between the cells: 

N 22(Y) In"-'3(0.04)2(0.019) 

=9.1XlO-5• (37) 

The neighboring pairs of doubly-occupied cells are 
therefore on the average well separated in the ran­
domly packed arrangement. According to the argu· 
ment leading to introduction of TJ in Eq. (32b), the 
equilibrium average of N 22/n in the dense fluid should 
be significantly less even than this value. 

It is perfectly clear that these glassy state parameter 
estimates need to be sharpened a great deal. The fun­
damental importance of liquid state and of phase tran­
sition theory provides strong motivation for eventually 
programming a computer to construct randomly packed 
sphere samples properly by the variational prescrip­
tion, and subsequently to evaluate the averages: 

No(Y) IfJ, 

N l1(o)/fJ, 

It would additionally be instructive to carry out par­
tial phase space Monte Carlo or molecular-dynamic 
integrations on the constrained sphere system to test 
the aptness of the A * expression (30), and to deter­
mine as well as possible the functions appearing in it 
(ft, h, ee). Besides the reasons mentioned in the intro­
duction for devoting calculating effort to this special 
task, rather than immediately to the complete partition 

function evaluation, it should be stressed that the re­
sulting information about the structure of available 
phase space would be especially revealing as to why a 
transition occurs for spheres in two dimensions, and 
should lead to hints about the behavior of systems of 
higher dimensionality, and with more general particle 
interactions. 

It might briefly be mentioned that the three-dimen­
sional rigid sphere system, for which one would like to 
be able to provide a similar analysis, poses at the out­
set a technical problem as to choice of the basic cell. 
It is not yet known what the structure of the densest 
packing is, or whether even if it is an ordered crystal.9 

If by analogy it were elected to use the nearest-neighbor 
polyhedron corresponding to the face-centered cubic 
lattice,26 there would be a maximum of three sphere 
centers allowed within a cell, still with motion freedom, 
demanding a four-state order-disorder treatment. It is 
as yet unknown what nearest-neighbor cell-pair states 
would be characteristic of disorder, as N22 is in two 
dimensions. 

In summary, it may be stated that the preceding 
considerations are intended to provide a common point 
of view for description of both fluid and solid phases, 
and consequently of the transition between them as 
well. In view of the several central quantities in this 
approach which are as yet quantitatively uncertain, the 
foregoing does not yet constitute a full" theory" of the 
fluid-solid phase change. But since there is no alterna­
tive technique currently available which to the same 
extent aspires to the role of a fundamental theory, 
this approach merits further development. 

26 A picture of this "free volume" polyhedron appears in 0. K. 
Rice, J. Chern. Phys. 31, 987 (1959). 
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