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Solvents can exert strong effects on chemical reaction rates. The interaction of solvent with reactant species causes shifts in 
transition states, replacing the gas phase saddle point with a distribution of saddle points differing in height, extent of asymmetry, 
curvatures, etc. The effect of such a distribution on measured reaction rates can be assessed with an extension of the Stillinger- 
Weber inherent structure theory. This theory uses a mass-weighted descent mapping to partition the multidimensional contigu- 
ration space into distinct potential energy “basins”; in the present work these are classified by the numbers of reactant and product 
species present at the minima. Chemical transition states are flanked by pairs of “gateway” basins. We have implemented this 
formalism numerically and located the actual chemical transition states for a molecular dynamics model of the exchange reaction 
F + F2 it F2 + F in liquid argon. In the dense solution, the frequency of trajectory recrossings through the transition state exceeds 
that in the gas phase reaction. Most of this difference stems from the changes in geometry of reactants at the distribution of 
reactive saddle points. 

F+F2eFz+F Cl.11 
1. Introduction 

The presence of solvent often exerts a profound in- 
fluence on the attainable products of chemical reac- 
tions, and on the rates at which those products are 
created. The theory of chemical kinetics historically 
offers numerous and diverse attempts to explain sol- 
vent effects; perhaps the most notable are the Kra- 
mers theory [ 11, and the Eyring “absolute rate the- 
ory” adapted to solutions [ 21. The scientific literature 
abounds in extensions and reinterpretations of these 
approaches [ 3 1. More recently, equilibrium autocor- 
relation function expressions for reaction rates have 
been adduced [ 4-6 1, analogous to the Mori-Kubo- 
Zwanzig formulas for linear transport coefficients 
[ 7 1. In addition, computer simulation studies of se- 
lected chemically reactive systems have begun to play 
an important conceptual role in this field [ 8- 10 1. 

The primary objective of the present study has been 
to examine chemical reactions in solvents at the most 
basic molecular level. The inherent structure theory 
of condensed phases supplies the necessary concep- 
tual framework [ 1 1 - 14 1, and guides the formulation 
of a modernized “absolute rate theory”. To give con- 
crete meaning to our approach we report specific re- 
sults for a computer study of the exchange reaction 

in liquid argon. While this is molecularly a simple 
case, it serves nevertheless to illustrate important 
general principles expected to apply to all condensed 
phase chemical reactions. 

Section 2 introduces the inherent structure formal- 
ism as it applies to chemically reactive systems. Sec- 
tion 3 presents details of the fluorine-argon model, 
and section 4 outlines the various numerical simula- 
tion and analysis procedures employed in its study. 
Section 5 contains a collection of quantitative results 
obtained for the model. Section 6 illustrates the ap- 
plication of the inherent structure theory to the sys- 
tem. The concluding section 7 discusses implications 
of the present study for the general kinetic theory of 
reaction rates in solvents, and indicates principal 
useful directions for future work. 

2. Inherent structmes in reacting systems 

In order to keep the following discussion as clear 
and straightforward as possible, we shall suppose that 
the system of interest consists of Ns inert solvent 
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molecules in which the following generic reversible 
chemical reactions occur: 

(2.1) 
x+yz z xu+z 

We assume that the numbers of distinct chemical 
species N,(t), Nv(0, N,(t), N&t), Nxz(Q, and 

Nyz( t) can be uniquely determined from the system 
dynamics at any time t. 

A further assumption will be invoked, namely that 
the chemically reacting system remains on its Bom- 
Oppenheimer ground-electronic-state energy hyper- 
surface. Generalization of the following to include 
excited-state surfaces and associated transitions is 
certainly possible [ 15 ] but entails technical compli- 
cations that are not germane to our specific applica- 
tion in section 3 et seq. 

Let Q(R) represent the potential energy function 
for the chemically reacting system. Here R comprises 
all configurational coordinates needed to specify the 
positions of solvent, reactant, and product particles; 
in the event that constant pressure conditions are used 
(rather than constant volume) R will also include 
volume Vas a coordinate [ 161. 

The central strategy of the inherent structure ap- 
proach is to relate the instantaneous system configu- 
ration R(t) to that of a nearby relative potential en- 
ergy minimum, say R,. For this purpose it has been 
natural to employ the mapping to minima induced 
by solutions to the mass-weighted descent equations 
[ 161: 

mdR/du= -V@(R). (2.2) 

Here m is the mass tensor and u is a virtual time pa- 
rameter. Except for initial conditions with measure 
zero, the solutions to eq. (2.2) converge onto local 
minima of @ as U+ + 00. The collection of all Rs that 
map onto the R, for a given local @ minimum de- 
lines the potential energy “basin” B,. The collection 
of all R,s for a given system comprises its “inherent 
structures”. The mapping of the continuous dynam- 
ical configuration R(t) onto the piecewise constant 
inherent structure configurations Ract, constitutes a 
natural coarse-graining of the system dynamics. 

Prior simulation studies of chemically reactive sys- 
tems [ 17,181 indicate that identification of chemical 
species is especially simple at the inherent structure 

configurations. We shall therefore take the point of 
view that the species numbers Nx, . . . . Nvz applicable 
for the configuration R, are the same throughout the 
entire basin B,. In other words, intrabasin displace- 
ments are never regarded as producing a change in 
the numbers of chemical species. 

The number of distinct inherent structures (poten- 
tial energy minima) is expected to rise exponentially 
with N, the number of particles in the system, in the 
large system limit [ 111. Consequently the collection 
of distinct inherent structures for a macroscopic sys- 
tem where N is of order Avogadro’s number is indeed 
enormous. This situation permits a formal simplifi- 
cation in the description of thermal equilibrium be- 
cause the potential energy minima and their basins 
can be classified by a small number of intensive order 
parameters, and measurable properties expressed in 
terms of distributions of basins over these order 
parameters. 

At the simplest level of description one can utilize 
a single relevant order parameter, a convenient choice 
of which is the basin depth on a per-particle basis: 

$=@(R,)lN. (2.3) 

In concordance with a preceding remark, the distri- 
bution of distinct basins with respect to Q is expected 
to have the form 

ewtNd$)l, d@)aO, (2.4) 

where d is N-independent in the large-Nlimit, with a 
form that depends on the specific solvent present. It 
is then straightforward to show that the free energy 
ofthesystemisgivenby [ll-141 

8= lIkei’-, (2.5) 
where F. collects contributions to the free energy not 
stemming from interparticle interactions. The mean 
vibrational free energy per particle, for those basins 
with depth N#, has been denoted by fV. The varia- 
tional minimum in eq. (2.5) locates the depth of 
those basins which dominate at the prevailing 
temperature. 

In the case of slowly relaxing degrees of freedom, 
eq. (2.5 ) can be extended to describe the resulting 
quasistatic regime. This demands that a larger set of 
descriptive order parameters be introduced [ 16 1. If 
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the slow degrees of freedom arc only those associated 
with the chemical relaxations in the reaction set (2.1), 
one can employ the four intensive order parameters 

r= (4, Cx, CY, Cz), (2.6) 

where Cx= Nx/ V, etc. The distribution of basins in 
the extended order parameter space becomes 

exp!Nc(<) I, 

and eq. (2.5 ) becomes replaced by 

(2.7) 

This yields the equilibrium free energy in agreement 
with the corresponding result from eq. (2.5), but in 
addition the values of Cx, C,, and Cz at the mini- 
mum give the equilibrium constants for the reacting 
systems. By carrying out a constrained minimization 
only over @, 

MC,, CY, Cz) 

the resulting free energy at fixed chemical composi- 
tion (i.e. “frozen” reactions) gives the thermody- 
namic driving force for chemical relaxation. 

Fundamental system transitions between contig- 
uous basins in the multidimensional configuration 
space occur as R(t) crosses a shared basin boundary. 
These transitions have been found to correspond to 
localized rearrangements of a small subset of parti- 
cles in three dimensions [ 19,201. At low tempera- 
ture the R ( t ) crossing point is expected to occur close 
to a simple saddle point (transition state) embedded 
in the shared basin boundary. 

If the chemically reactive species form a dilute so- 
lution in the inert solvent, the majority of the inter- 
basin transitions will merely produce physical rear- 
rangements of the solvent, but will not involve 
chemical change. However some of the interbasin 
transitions correspond to shifts in the pattern of co- 
valent bonds, i.e. to chemical reaction. 

Fig. 1 provides a schematic diagram of a portion of 
the basins in configuration space, particularly those 
neighboring an extended surface across which the 
lowest reaction in (2.1) changes the affected species 
numbers by ? 1. Obviously each transition state 
(saddle point) in this extended boundary is flanked 

x t YZ 

Fig. 1. Schematic diagram of a portion of the multidimensional 
configuration space showing minima, basins, and an extended 
surface across which reaction occurs. Chemically relevant tran- 
sition states occur in this extended surface, and are flanked by 
pairs of “gateway” basins. Each basin contains a single local min- 
imum of the potential energy, with a position denoted by a dot. 

by a pair of “gateway” basins. The transition states 
and flanking basins will vary in their properties, such 
as barrier height, curvatures, anharmonicities, re- 
crossing probabilities, etc. The chemical reaction rates 
clearly depend upon the distributions of these char- 
acteristics, which are induced by the presence of the 
solvent. A proper and complete theory of solvation 
effects on reaction rates must account for these dis- 
tributions in a detailed way. Contributing to this ob- 
jective is the goal of the specific simulation reported 
in the following sections. 

The inherent structure formalism suggests a natu- 
ral form for rate constants. We will compare this form 
to the “variational” theory of reactions in solution 
for an atom-diatom exchange, 

xz+yex+zy, (2.10) 

in a dilute solution. In the following discussion, the 
chemical species on the left-hand side are the reac- 
tants, those on the right side the products. The gen- 
eralization of this discussion to high reactant concen- 
trations is straightforward. 

The variational transition state theory rate con- 
stant is 
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k,T - exp[ -/3@(R)] dR3N-1, 
‘= QRhPn s 

(2.11) 

where QR is the reactant partition function in a sys- 
tem with 3N degrees of freedom, P is the number of 
particle permutations which produce indistinguisha- 
ble configurations, and Zz is a (3N- 1 )-dimensional 
dividing surface which separates the two distinct 
chemical states [ 211. This expression is an upper 
bound on the true rate constant since some of the flux 
across the surface does not contribute to the net cre- 
ation of product - e.g., trajectories which cross the 
dividing surface and turn back within a time much 
shorter than the average lifetime of the products. The 
ratio of the total flux across the dividing surface to 
the reaction flux defines the recrossing correction, 
0 < KS 1. In the rigorous canonical variational treat- 
ment, CI is the surface minimizing k, [ 2 I]. In the 
condensed phase, identifying this surface is fre- 
quently impractical, thus the choice of dividing sur- 
faces is limited to a family which can be specified by 
constraining one degree of freedom, A (usually the 
gas phase reaction coordinate). The integral in eq. 
(2.11) isexp[-F(A)/kaT),wherethefunctionF(A) 
is the potential of mean force (aside from an additive 
constant ) . The reaction rate is then computed at the 
value of A maximizing F(A) [ 22 1. We will refer to 
the surface defined by constraining A to the value 
maximizing the potential of mean force as the “vari- 
ational transition surface”, although this surface cer- 
tainly differs from the best multidimensional varia- 
tional surface. 

Within the inherent structure formalism, a transi- 
tion state rate constant can be defined as 

k k,Tl 
r= TEE Q<&)ew[-BWL)l, (2.12) 

where the sum is taken over saddle points S, separat- 
ing reactant basins from product basins (“reactive 
saddle points”), 

1 
Q&>= h3N-ip 

x exp{-/3[@(R)-@(S,)l)~3N-‘, 
s 

Rm 

(2.13) 

@F-F(RF)= ,&Uz(ri, rj)+ i$.kU3(ri, 5, rk). 

(3.2) 

with P the permutation factor. The dividing surfaces The pair potential is 

C& are the loci of points which are mapped onto S, 
by the descent equation, eq. ( 2.2 ) . These points form 
a (3N- 1 )-dimensional surface embedded in the full 
3N-dimensional space and are part of the set of mea- 
sure zero which is not mapped into a local minimum 
by the descent equations. The collection of these sur- 
faces is the “inherent structure transition surface”. 
Points infinitesimally displaced from these dividing 
surfaces in opposite directions are mapped by the de- 
scent equations into gateway minima corresponding 
to different chemical species. The weight of each sad- 
dle point in eq. (2.12) is proportional to the factor 
Q(S,) exp[ -/I@(&)]. Finally,eq. (2.12) doesnot 
account for recrossings of the inherent structure di- 
viding surface. 

3. Potential energy surface 

Our model system consists of three fluorine atoms 
in argon. The potential energy surface can be broken 
up as 

(3.1) 

where the various respective contributions are from 
the fluorine-fluorine, argon-argon, and fluorine-ar- 
gon interactions. The interactions are selected to 
achieve reasonable agreement with available experi- 
mental data. We also require all derivatives of the po- 
tential to be continuous for all real coordinates away 
from atomic superposition and to vanish beyond fured 
positive interparticle separations. 

For clarity in the rest of this work we treat the flu- 
orine atoms as distinguishable particles and examine 
only the exchange reaction in eq. (2.10) where X, Y, 
and Z correspond to atoms 1,2, and 3. The interao 
tion between the fluorine atoms (fig. 2 ) is that origi- 
nally proposed by Stillinger and Weber [ 18 1, with a 
slight change in the parameters. It can be broken up 
into two body ( u2) and three body ( a3 ) functions of 
the positions, ri, of the individual fluorine atoms, 
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Fig. 2. The isosceles triangle minimum energy arrangement of 
three fluorines shown with the variables used in potential energy 
function formulas. 

(3.3) 

where r is the interatomic distance, or_r= 1.2 141 A, 
Ar=6.052463017, defined so that well depth is 
EF_F ( 160.2263 kJ/mol), rcr_r=3.6, and the inter- 
action vanishes when r> rcF_r+_F. By construction 
this potential produces a bound diatomic molecule 
with a dissociation energy of 160.2263 kJ/mol, a bond 
length of 1.435 A, and a vibrational frequency of 
896.9 cm- ’ . These properties are all very close to the 
experimentally determined values for the Fz mole- 
cule [ 23,241. 

The three body potential, which is required to en- 
sure that the lowest energy configuration consists of 
bound diatomic molecules, is 

U3(~,,r2,r3)=y(r12,r13,eL)+V(r23,r13,e3) 

+ v(h2, r2,, e2), (3.4) 

where, 

(3.5) 

The functions vl and v2 of the bond angle and scaled 
distances are 

(3.6) 

when 0<r<c2 and 0cs<c2, and 

v,(r,s, e)=(c,-C, c0s2e) 

Xexp[cS(r-cs)-‘+c5(s-ca)-‘1, (3.7) 

when 0 < r< c6 and 0 c s < c6, and where the parame- 
ters cl through c6 are respectively 1345.9 k.l/mol, 3.6, 
8812.44 kJ/mol, 4005.657 kJ/mol, 3.0, and 2.8. The 
parameter c3 is 1.1 times greater than the original 
Stillinger-Weber potential in order to guarantee that 
at the transition state, the molecule is linear, the two 
bond lengths are equal, and there is a negative cur- 
vature along the asymmetric stretch coordinate [ 18 1. 
c2 and cg define cutoff radii. When r or s exceeds c2, 
vI vanishes, and when either exceeds cg, v2 vanishes. 

Three isolated fluorine atoms will have two dis- 
tinct local minima, a linear geometry (F-F distances 
1.443 and 2.832 A, and energy - 166.47 kJ/mol), and 
an isosceles triangle (one F-F distance of 1.449 A, 
and theother two 2.909 A, energy - 171.45 kJ/mol). 
The transition state (saddle point of the energy) is 
linear with an energy of - 137.79 kJ/mol and two 
equal F-F distances of 1.657 A. The reaction path, 
consisting of the two trajectories from the transition 
state, goes directly to the two flanking linear local 
minima. We should point out that as of the time of 
this writing the geometry of the real fluorine transi- 
tion state has not been determined either experimen- 
tally or by ab initio quantum mechanical calculations. 

The gas phase reaction coordinate for the fluorine 
atom-diatom exchange reaction (eq. ( 1.1) ) is the 
asymmetric stretch, A= R12- Rz3. At the gas phase 
transition state A=O, and the unit vector along the 
asymmetric stretch coordinate is an eigenvector of the 
Hessian matrix of second derivatives of the potential 
energy surface. The corresponding eigenvalue is 
-454.71 ps-2. 

The argon-argon interactions include only a pair 
potential of the form utilized by Stillinger and Weber 

1121, 
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(3.8) 

where &=6.767441 so that the well depth is 
e,,,,=O.997615 kJ/mol, oAAr_Ar=3.4 A, and the cut- 
off beyond which the pair interaction vanishes, d, is 
2.46491832. 

The argon-fluorine interaction is of the same form 
as eq. (3.8), but with ff,&r=3.0904 A, e=O.74992 
kJ/mol, and the same cutoff at 2.46491832..The ap- 
plication of the combining rules 

fAr-F = t ( EAr-Ar + CF-F ) 

and [25] 

(3.9) 

GAr-F = (QF-F~AA~-A~)“’ (3.10) 

to the parameters used in our fluorine pair interac- 
tion would give an attraction which is far too strong 
and a core radius which is probably too small. The 
fluorine interaction parameters inserted in eqs. (3.9) 
and eqs. (3.10) to obtain our values are those used 
by Singer, Taylor, and Singer [ 26 ] to model liquid 
FZ as rigid diatomic molecules consisting of two Len- 
nard-Jones centers. 

Our core radius of the Ar-F interaction is slightly 
larger than that used by Gerber and co-workers [ lo] 
in their simulation of the photodissociaton of FZ in 
an argon lattice. Likely a realistic F-Ar potential 
would involve three body F-F-Ar interactions which 
would interpolate between the extremes of the bare 
F-Ar interaction and the F-Ar interaction of the F2 
molecule. The effects of leaving out this effect will be 
discussed later in the paper. 

4. Methods 

In this section we describe the methods used in car- 
rying out molecular dynamics simulations, obtaining 
the saddle points, and locating minima. Molecular 
dynamics simulations are used to ( 1) compute free 
energies of activation in the variational transition 
state theory using the thermodynamic integration 
method [ 27,28 1, (2) study the Ar-F pair correlation 
functions of the transition state complex, and (3) 

generate trajectories through the variational transi- 
tion state surface in order to locate saddle points and 
to analyze the crossings of this surface. 

The Newtonian equations of motion are integrated 
using the velocity Verlet algorithm [ 291 with a time 
step of 0.00 1 ps when generating trajectories through 
the variational transition surface, and 0.003 ps in all 
other calculations. To perform some of the calcula- 
tions such as the free energy integration required to 
determine the potential of mean force as a function 
of the fluorine asymmetric stretch, it is necessary to 
hold constant the value of the asymmetric stretch. In 
these cases Andersen’s algorithm, BATTLE, is used 
to solve the constrained Lagrangian equations of mo- 
tion [ 291. We omit the corrections for the Jacobian 
due to the usage of constraints [ 30,3 11; because bond 
length constraints have only small effects on equilib- 
rium properties computed from the simulation of or- 
ganic molecules, it is likely that this correction is small 
in the present work especially around the transition 
states where the fluorines are almost linear [ 3 1,32 1. 
Berendsen’s algorithm [33] with relaxation times 
between 0.2 and 0.5 ps is used to maintain a constant 
temperature of 150 K, except when generating reac- 
tive trajectories, in which case only Newtonian dy- 
namics (microcanonical) was used. Simulations start 
by randomly placing the argons in an 18 x 18 x 18 A 
box. The three fluorine atoms must be held fixed at 
the gas phase transition state until the potential en- 
ergy approaches its equilibrium value; otherwise the 
strong forces present in the initial configuration could 
rip the fluorines apart. Periodic boundary conditions 
were maintained in all three directions. Three argon 
densities of 0.73 (64 Ar atoms), 1.42 (125 Ar at- 
oms), 1.7 1 g/ml ( 150 Ar atoms) were studied. 

In the last case, the argon freezes to a hexagonal 
close packed structure with the three fluorines replac- 
ing two argon atoms. This may be a metastable struc- 
ture, since at zero temperature and pressure the min- 
imum energy configuration with our pair potential is 
the face centered cubic crystal [ 341. It is also possi- 
ble that the periodic boundary conditions inhibit the 
formation of the face centered cubic crystal in this 
fairly small system. 

Potentials of mean force as a function of the asym- 
metric stretch are computed using the free energy in- 
tegration algorithm [ 27 1. The difference between the 
potentials of mean force at d, and at A2 is 
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(4.1) 

( )A refers to an average over an ensemble with the 
asymmetric stretch of the fluorines constrained to a 
value A. The integration is carried out from A= -2.0 
A to A= +2.0 A in NS,_, time steps, incrementing A 

by Iid, = (AZ-A, ) / ( Nstep- 1) at each time step. In the 
solution phase, 1 million time steps are used. When 
the isolated fluorine complex was studied, we used 
20 million time steps with velocities randomized 
every other time step to sample the configuration 
space thoroughly. The potential of mean force is 
computed from the discretized version of eq. (4.1)) 

F(A2)-F(A,)= 5 +tiA,. (4.2) 
t=*, w 

Because the constraint is varied at a finite rate, there 
are slight errors from the failure of the system to re- 
main at equilibrium at all times. This error shows up 
in the failure of the computed potential of mean force 
to reflect the reaction’s symmetry about A= 0. In the 
examples reported here, this free energy difference 
between A= +2-O and A= -2.0 A is about 1.0-1.6 
k.I/mol with 125 argons ( 1 million time steps of 0.003 
ps) and 0.05-0.1 (20 million 0.003 ps time steps) 
for the isolated fluorines. When the results of both 
halves of the reaction (A< 0 and A> 0) are averaged, 
this error, as well as the uncertainty from the statis- 
tical sampling, is substantially reduced. Although the 
expense of the potential of mean force calculations 
(4 Cray hours for a 1 million step run on the system 
with 125 argons) makes the computation of more 
than a few potential of mean force curves for a given 
set of physical conditions impractical, the variation 
of the free energy of activation with the size of the 
time step and the length of the run show that errors 
from these limitations are much smaller than the ef- 
fects discussed in this work. The results for the 125 
argon system are verified by a simulation of 2 million 
0.003 ps time steps which predicts a free energy dif- 
ference between A = -2.0 and A= + 2.0 A of only 0.1 
kJ/mol. 

In the fluorine trapped in the solid argon, the free 
energy integration was repeated twice after heating 
the sample at 1000 K for 30 ps and recrystallizing with 
a 2300 ps equilibration period at 150 K. The result- 

ing free energy of activation in this group of simula- 
tions is 0.5 kJ/mol lower than that from the original 
ones reported in section 5. Given the long relaxation 
times of the solid, this should not be surprising. 

To locate saddle points and examine crossings of 
the transition surfaces, we use configurations sam- 
pled 6.0 ps apart in a molecular dynamics simulation 
carried out with the asymmetric stretch constrained 
to zero. Trajectories are generated from each contig- 
uration by assigning velocities from the Boltzmann 
distribution at 150 K to all atoms and evolving the 
system to positive and negative times at constant to- 
tal energy using the velocity Vedet algorithm with a 
time step of 0.001 ps. This procedure generates tra- 
jectories through the variational transition surface 
with probabilities proportional to their Boltzmann 
weights. 

Crossings of the variational transition surface are 
identified by a change in sign of A along the trajec- 
tory. Crossings of the inherent structure transition 
surface are distinguished by a change in the sign of 
the A defined for each local minimum. Generally this 
involves a change from AZ f 1.4 to Ax T 1.4 A. The 
sign of A can be determined usually by fewer than 
1000 iterations of a descent calculation from the point 
along the trajectory. 

The property of the inherent structure dividing 
surface in separating points mapped to different 
chemical species suggests a straightforward way of lo- 
cating the saddle points. Two points along the trajec- 
tory on opposite sides of the dividing surface are 
identified. The basin of a point along the portion of 
the trajectory between them is identified used the de- 
scent calculation. The two points closest together but 
on opposite sides of the dividing surface are selected, 
and the procedure repeated until two points are ar- 
bitarily close together but on opposite sides of the di- 
viding surface are located. A descent trajectory from 
these points should pass very close to the saddle point 
which can be identified by the nearly vanishing mag- 
nitude of the gradient and the existence of an imagi- 
nary frequency mode resembling the asymmetric 
stretch of the three fluorines. 

Unfortunately, the hypothetical procedure out- 
lined above would involve repeated expensive stee- 
pest descent calculations and would converge very 
slowly. Furthermore, as the starting points along the 
reaction trajectory get closer together more precise 
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(smaller “time step”) descent calculations are re- 
quired to identify the basin. We therefore have de- 
veloped a three step procedure to locate the saddle 
points efftciently. Currently it is impossible to deter- 
mine conclusively whether the saddle points located 
from a trajectory by our procedure are the appropri- 
ate ones for the trajectories as defined by the descent 
rule. 

The first step of our algorithm uses the method of 
the previous paragraphs to obtain an initial approxi- 
mation to the saddle point. Once a trajectory point 
close to the dividing surface is identified, a descent 
trajectory is run until the gradient starts increasing; 
this point along the descent path is the “initial guess’ 
used by the next stage. 

The rest of the computation is performed upon the 
mass-weighted coordinates, 

Xj=(mi)“‘ri, (4.3) 

where mi is the mass of the ith atom (in amu). The 
second stage is an energy maximization along the ap- 
proximate reaction coordinate and a steepest descent 
normal to it. The Hessian matrix of second deriva- 
tives of the potential energy is computed and diagon- 
alized. The reaction coordinate - the mode having 
the greatest overlap with asymmetric stretch - is 
identified. Steepest descent calculations are carried 
out in the directions normal to this mode. At each 
iteration the position along the reaction coordinate is 
adjusted in the direction of increasing potential en- 
ergy by the lesser of a maximum step length and the 
Newton-Raphson step that would make the gradient 
along the reaction path vanish (based on the gradient 
computed at the beginning of the step and the eigen- 
value of the most recent Hessian). This procedure is 
typically carried out for about lo-20 thousand itera- 
tions with the Hessian recalculated at every thousand 
iterations. 

In the third stage, the saddle point is located using 
the algorithm of Baker [ 35 ] modified to handle a 
large number of degrees of freedom. Along each mode, 
the magnitude of the step is the minimum of that de- 
termined by Baker’s formulas and the maximum step 
size set by the user. Each iteration can be broken into 
two halves: ( 1) stepping in all directions normal to 
the reaction coordinate, and (2) stepping along the 
reaction coordinate. In the first half, the energy should 
decrease and in the second it should increase. Typi- 

tally well over one thousand iterations are required 
to locate a saddle point in a system of 125 argon and 
3 fluorine atoms. Direct application of this algorithm 
is encumbered by the time required to diagonalize the 
Hessian matrix; locating a saddle point in this region 
requires over 8 h of time on a Cray X/MP28. Hence 
the Hessian is recalculated and rediagonalized only 
when ( 1) the energy change since the Hessian was 
last computed is larger than a threshold (i.e. 3- 12 kJ/ 
mol), (2 ) the energy no longer decreases in the first 
half of the iteration, or (3) the number of iterations 
carried out since the last computation of the Hessian 
exceeds a threshold (usually 1000). The second half 
of the iteration is discarded if the energy does not de- 
crease. Both halves of the first iteration with a new 
Hessian are always carried out. By reusing the Hes- 
sian, the time required to locate one saddle point in 
the 125 argon system is reduced to between 10 and 
20 min on the Cray. Convergence is defined to have 
occurred when the norm of the gradient, the maxi- 
mum magnitude of a component of the gradient along 
an eigenvector of the Hessian, the norm of the step 
size, and the maximum magnitude of a component 
of the step along an eigenvector of the Hessian have 
all become smaller than their respective upper 
bounds. 

Actual reaction paths from a saddle point are found 
by perturbing the system in both directions along the 
mode with the negative eigenvalue and following the 
descent paths all the way to the two gateway minima. 
When only the gateway minima are desired, it suf- 
fices to start with a few thousand iterations of the de- 
scent with a time step of 0.00005 and then apply 
MINOP (which uses a dogleg strategy) to the mass 
weighted coordinates [ 361. In cases where both the 
MINOP procedure and the full descent calculation 
were carried out until a minimum was located, the 
results were identical, except for one instance with a 
substantial energy difference. 

5. Equilibrium properties of fluorine in argon 

Figs. 3 and 4 show the Ar-F pair correlation func- 
tions for both an isolated fluorine atom and the FS 
complex within the variational transition surface, i.e. 
with the constraint A=O. These tigures show the geo- 
metric screening of the middle fluorine atom by its 
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Fig. 3. The fluorine-argon pair correlation function at T= 150 
and P,,~= 1.42 g/ml ( 125 argon atoms) for an isolated F atom in 
argon. 
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Fig. 4. The fluorine-argon pair correlation function at T= 150 
and pAr= 1.42 g/ml ( 125 argon atoms) for the end (solid line) 
and central (dotted) atoms of the transition state F, complex in 
argon. 

two neighbors as a broadened peak in its pair corre- 
lation function. 

Fig. 5 illustrates the potential of mean force as a 
function of the gas phase reaction coordinate, the 
asymmetric stretch. In all cases the potential of mean 
force is maximized when d=O. In the high density 
cases, the free energy of activation (the potential of 
mean force at A= 0 relative to A= 00) is decreased by 
solvation effects. In the solid we are likely studying a 
metastable system, and as mentioned earlier there 

1 

Fig. 5. The potential of mean force as a function of the asymmet- 
ric stretch for bare fluorine (solid line), and fluorine in argon at 
T= 150 K andp,,,=0.73 g/ml (dotted line), 1.42 g/ml (dashed), 
1.71 g/ml (dot-dashed line). When pAr= 1.71 g/ml, the argon 
has frozen into a hexagonal’close packed lattice. 

Table 1 
Solvation effects on the transition state *) 

Ar density 
(g/ml) 

Ar number AF’ 
(kJ/mol) 

0.00 0 34.8 1.0 
0.73 64 34.9 0.9 
1.42 125 32.1 5.3 
1.71 150 31.9 10.2 

‘) kR is the ratio of the transition state rate constant to the gas 
phase value, AF’ is the free energy of activation measured rel- 
ative to the free energy at A= 2.0 A. 

appears to be a slight shift in the potential of mean 
force curve following an annealing of the sample. It 
should also be recognized that any structural transi- 
tions responsible for this shift are much slower than 
the dynamics which determine the fate of the 
reactants. 

The decrease in the free energy of activation ap 
pears to be due to an excluded volume effect. The 
“volume” of the transition state is slightly lower than 
that of the isolated fluorine atoms plus a bound di- 
atomic molecule due to the geometric shielding of the 
inner fluorine by its two neighbors. The inner fluo- 
rine is also shielded from the attractive forces of the 
argon. At low density and temperature when packing 
is not a consideration, it is not unlikely that solvation 
effects would increase the activation free energy 
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slightly; however, the difference betwep the free en- 
ergy of activation in 0.73 g/ml argon and the bare 
fluorine is within the uncertainty of the calculation. 
As shown in table 1, the change in the free energy of 
activation in our highest density liquid produces a 
five-fold increase in the variational reaction rate. 

6. Inherent structures and reaction rates 

The effect of the inherent structure on the reaction 
rate can be characterized by studying recrossings of 
our variational transition surface (defined by the 
condition d~O.0). 

Recrossings of this surface can result from two pos- 
sible effects. In the first, which would be expected to 
dominate at high temperature, trajectories can be re- 
flected across the dividing surface, even after cross- 
ing over a reactive saddle point, by features of the 
potential energy surface such as “bottlenecks” on the 
product side of the phase space [ 371. Included in this 
class of recrossings are some caused by collisions be- 
tween solvent and reactant molecules. 

In the second case, which would dominate at low 
temperatures and strong solvation, the real saddle 
points are shifted from the R12= Rz3 hyperplane; 
consequently, trajectories which are close to a reac- 
tion path would not be near a saddle point when 
crossing the variational transition surface. As the sys- 
tem evolves towards the products, the potential en- 
ergy must continue to increase as the saddle point is 
approached. If the velocity along the reaction coor- 
dinate is too small or the reaction coordinate is con- 
torted, then the saddle point will not be reached and 
the solvation forces will pull the atoms back toward 
the reactant basin resulting in a recrossing of the vari- 
ational transition surface. This picture is similar to 
that of the frozen adiabatic solvent model of Gertner 
et al. [ 381 which replaces the solvent with one “co- 
ordinate” that can shift the position of the transition 
state. This picture is most appropriate when the mo- 
tion along the reaction coordinate is rapid enough so 
that the system either remains in the basins of attrac- 
tion of one reaction path or at least with a family of 
reaction paths of similar saddle point structures and 
energies. 

The relative importance of the two effects can be 
determined by comparing the number of crossings of 

the variational transition surface with the number of 
crossings of the inherent structure transition surface. 
Table 2 shows the number of crossings of the d=O 
surface and of the inherent structure transition states 
of 28 1 trajectories in the pAr= 1.42 g/ml liquid and 
201 reaction trajectories for the bare fluorine. Each 
trajectory was started from a different spatial config- 
uration at the variational transition surface using the 
procedure outlined earlier. The role of the solvent can 
be identified by comparing the number of gas phase 
crossings to solution phase crossings. These statistics 
show that most of the cases with three or more cross- 
ings of the A= 0 plane can be attributed to character- 
istics of the gas phase potential energy surface; while 
most the incidences of two crossings (i.e. reactants 
back to reactants) are solvent induced. Table 2 also 
shows that in the gas phase at 150 K, the inherent 
structure dividing surface and the variational divid- 
ing surface are almost identical. Most importantly, 
well over half of the trajectories which cross the vari- 
ational transition surface twice, never cross a saddle 
point. Furthermore, of the trajectories crossing the 
variational transition surface, the fraction crossing the 
inherent structure transition surface more than once 
is actually slightly larger in the gas phase (where the 
two surfaces are almost equal)! Unfortunately our 
present methods do not allow us to determine how 
many trajectories cross the inherent structure transi- 
tion surfaces without crossing the variational transi- 
tion surface. 

Using the methods already described, we have lo- 
cated 185 reactive saddle points from 215 trajecto- 
ries of the system with 125 argons (P,,~= 1.42 g/ml). 
The other 30 trajectories never crossed the inherent 
structure transition surface. We have also identified 
two reactive saddle points for fluorine trapped in the 
hexagonal close packed lattice. 

When the reaction occurs in the liquid, the path 
between the reactive saddle point and the gateway 
minimum involves a significant rearrangement of the 
solvent molecules. Figs. 6-9 show two transition states 
and one gateway minimum of each transition state. 
In both of these cases the neighboring solvent mole- 
cules in the local minima have moved significantly 
from the original positions at the transition state. In 
contrast, when the reaction occurs in the solid, the 
arrangement of the solvent molecules is almost com- 
pletely unchanged, as demonstrated by figs. 10 and 
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Table 2 
The variational versus inherent structure transition surface: number of crossings at 150 K - fraction of trajectories through variational 
surface ‘) 

Number of Isolated F3 Fs in Ar, pk= 1.42 g/ml 
crossings 

variational inherent variational inherent 
structure structure 

0 0 0 0 0.10 
1 0.88 0.88 0.78 0.80 
2 0.05 0.05 0.16 0.064 
3 0.04 0.04 0.043 0.025 
4 0.01 0.01 0.014 0.007 
5 0.01 0.01 0.0041 0 
6 0 0 0 0 
7 0 ’ 0 0.004 0 
8 0 0 0 0 
9 0 0.01 0 0 

10 0.01 0 0 0 

‘) Each entry is the fraction of trajectories started from the variational dividing surface which cross the corresponding dividing surface 
n, times. The nC are in the first column. 

Fig. 6. A reactive saddle point of the fluorine in argon with 
pM= 1.42 g/ml, T= 150 K. All argons within 6 8, of a fluorine 
atom are shown. 

11 of a reactive transition state and its gateway min- 
imum in solid argon. 

This contrast between the reaction occurring in the 
liquid, solid, and gas phases is further illustrated by 
the features of the reaction paths shown in figs. 12- 

Fig. 7. A gateway minimum of the reactive saddle point of fig. 6 
with pti= 1.42 g/ml, T= 150 K. All argons within 6 A of a fluo- 
rine atom are shown. 

23. The properties are plotted as a function of the cu- 
mulative distance (in mass weighted coordinates) 
traveled along the reaction path, 

4ath = i S” > (5.1) 
UXO 
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Fig. 8. Another reactive saddle point of the ff uorine in argon with 
p*+ 1.42 g/ml, I”= 150 K. All argons within 6 A of a fluorine 
atom are shown. 

Fig. 9. A gateway minimum of the reactive saddle point of f.g. 8 
with pAr = 1.42 g/ml, T= 150 K. All argons within 6 A of a fluo- 
rine atom are shown. 

where 

6 u= c ,$ [Xj(U+dU)-Xj(U) 12)‘” (5.2) 

and xi(u) and x,j u+du) are the mass-weighted co- 
ordinates at virtual time u and u + du. 

The figures show that in the dense liquid, the re- 

Fig. 10. A reactive saddle point of F, in hexagonal close packed 
argon at pAr= 1.71 g/ml, T= 150 K. All argons within 6 A of a 
fluorine atom are shown. 

n 

Fig. 11. A gateway minimum of the saddle point of fig. 10. All 
argons within 6 A of a fluorine atom arc shown. 

action path can be quite contorted and asymmetric 
around the saddle point, with the ratio of path length 
to the linear distance traveled from saddle point to a 
gateway minimum being approximately 2 : 1. This can 
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Fig. 12. The teactron path corresponding to figs. 6 and 7. The Fig. 14. The reactton path correspondmg to figs. 6 and 7. The 
Cartesian distance of the reaction path confaurations from the logarithm of the gradient of the potentud energy(mass-wetghted 
saddle point conf~uratton ts plotted as a function of distance along coordinates) is plotted as a function of the distance along the 
the reaction path. reaction path. 
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Fig. 13. The reaction path corresponding to figs. 6 and 7. The 
fluorme bond angle 0s is shown as a function of the distance along 
the reaction path. 

be compared with the fairly direct path followed in 
the gas phase reaction. 

The reaction paths also show two types of descent 
distinguished by the two types of minima reached. In 
the first group of minima, the fluorine atoms are al- 
most collinear and 0, is between 140” and 160 ’ (fig. 
16). In the other group the arrangement of the fluo- 
rine atoms resembles the gas phase isosceles triangle 
minimum and 6, is slightly less than 80’ (fig. 13 ) . 
We will refer to these two types of minima as “linear” 
and “triangular” minima, respectively. The varia- 
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Fig. 15. The reaction path corresponding to figs. 8 and 9. The 
Cartesian distance of the reaction path configurations from the 
saddle point contiguratlon has been displayed as a function of 
distance along the reactton path. 

tion of 19, in the path to a linear minimum is quite 
irregular as shown in fig. 16. For the triangular min- 
imum there is a rapid and monotonic change in f?, 
from 140” to 80” after which there are only slight 
variations in this angle. 

The erratic behavior of the gradient shows the ex- 
istence of “steps” along the reaction path. These pre- 
sumably lie in the vicinity of nonreactive saddle 
points that involve rearrangement of solvent atoms. 

In contrast with the liquid, the reaction paths in 
the solid are much shorter and more,direct as illus- 
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fig. 16. The reaction path pundit to fii. 8 and 9. The 
fluorine bond angle f?, appears BS a function of the distance ak%g 
the reaction path. 
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Fig. 17. The reaction path corresponding to fgs. 8 and 9. The 
logarithm of the gradient of the potential energy (maswveighted 
~~~a~) is shown as a f~~oa of the distance aioag the t-e- 
action path. 

trated in figs. I g-20. This is due to the constraints on In this case the solvation has a weak, but measura- 
the solvent atoms imposed by the lattice. The motion ble effect on the transition states of the maction. These 
of the fluorine atoms accounts for almost all of the effects are i~u~ted by the dist~bution of proper- 
displacement along the reaction path. An interesting ties of the transition states shown in figs. 24-27. Fig. 
feature of this reaction path is that in spite of ifs 24 shows shows a histogram of the negative eigenval- 
asymmetry, the energies of both gateway minima are ues along the reaction coordinate of all of the saddle 
identical to within the accuracy of the calculation. points Iocated in the 125 argon system. The distri- 
This study carried out on a saddle point from a solid bution shows that on average, the ~uo~n~a~on in- 
configuration after the annealing produced similar teractions depress the magnitude of this eigenvahre - 
results, but the gateway minima energies were spht they broaden the potential barrier. Figs. 25 and 26 
by 0.06 kJ/mol. illustrate the geometric properties of the saddIe points 
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Fig. i8. The reaction path corresponding to figs. 10 and t f. The 
Cartesian distance of the reaction path configurations from the 
saddle point inaction is exhibited as a fimction of distance 
along the reaction path. 

Fig. 19. Tht reaction path corresponding to figs. IO and 1 I. The 
fluorim:bondan~8~isplottedasafunctonof~di~along 
the reaction path. 
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Fig. 20. The reaction path corresponding to fw. 10 and I 1. The 
logarithm of the gradient of the potential energy (mass-weighted 
coordinates) is provided as a function of the distance along the 
reaction path. 
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Fig. 2 1. The reaction path of isolated fluorine. The Cartesian dis- 
tance of the reaction path configurations from the saddle point 
configuration is graphed as a function of distance along the re- 
action path. 

found. The angular distribution shows that the tran- 
sition complexes are all very close to linear. The dis- 
tribution of asymmetric stretch values is unimodal 
around zero. The largest shifts in the asymmetric 
stretch are about 0.04 of the Fz bond length. 

The ~st~bution of energy differences between the 
saddle points and their nei~~~g gateway minima 
is bimodal, as revealed in the histogram of fig. 27. 
Further elation shows that this bimodahty is due 
to the existence of both the triangular and linear gate- 
way minima, unlike the gas phase for which only the 
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Fii 22. The reaction path of isolated fluorine. The fluorine bond 
angie & is shown as a function of the distance along the reaction 
path. 
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Fig. 23. The reaction path of isolated fluorine. The logarithm of 
the gradient of the potential energy (mass-weighted ceordinates) 
appears as a function of the distance along the reaction path. 

linear gateway minima exist. This point is illustrated 
in the scatter plot of 0, versus the energy difference, 
fig. 28. The energy difference for the linear and tri- 
angular minima tend to cluster around their respec- 
tive gas phase values, although there is a significant 
variation in them. The points with very large energy 
differences occasionally may be artifacts of the min- 
imization algorithm (MINOP reaching the wrong 
~nimum); however, the full steepest descent calcu- 
lations illustrated in figs. 12-l 7 show that reaction 
paths to both group of minima exist. 

The significant differences between the structure of 
the gateway minima in the gas phase and in solution 
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Rg. 24. Htstogram of the reaction coordmate eigenvalues of the 
reacttve saddle points for the pAr= 1.42 g/ml system. The arrow 
denotes the etgenvalue of the gas phase saddle point ( -454.7). 
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Fig. 25. Histogram of the asymmetric stretches (A) of the reac- 
ttve saddle pomts for the p,,= 1.42 g/ml system. 

can be attributed to the fact that the attraction be- 
tween the more loosely bound fluorine to the cova- 
lently bonded pair is of the same order of magnitude 
as the argon-argon and argon-fluorine interactions. 
In contrast, at the saddle point, the magnitude of the 
eigenmodes involving the stretches and bends of the 
fluorines are much Higher than those involving the 
argon-fluorine interactions; hence the solvent’s ef- 
fects on the geometry ot the transition state are 
smaller. 

We have also looked at whether the structure of one 
gateway minimum determines the structure of the 
other. The statistical distribution of the four possible 
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Fig. 26. Histogram of the fluorine bond angles around the central 
fluorine for the reactive saddle points of the pAr= 1.42 g/ml 
system. 
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Fig. 27. Histogram of energy differences between saddle points 
and flanking gateway mimma. 

pairings of gateway minima, summarized by table 3, 
suggests that any such correlations are very weak. 

7. Discussion 

The example we have studied represents the weak 
solvation limit. The change in the structure of the flu- 
orine at the transition state induced by the solvent is 
rather small. Nevertheless, a significant portion of the 
solvent induced recrossings of the variational transi- 
tion state dividing surface appear to be due to the shift 
in the position of the real saddle point - many trajec- 
tories which recross the variational transition surface 
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Rg. 28. Scatter plot of the energy differences between the saddle 
points and gateway minima as a function fo the gateway mini- 
mum’s bond angle around the central fluorine. 

never cross the inherent structure transition surface. 
When the solvent effects are much stronger, such 

as when changes in the charge distribution among the 
reactants occurs in a strong dielectric solvent (e.g., 
an &2 reaction in water), the change in the reactant 
geometry at the transition state can be much larger. 
It is even possible that there could be a bimodal dis- 
tribution of transition states. For example in the 
atom-molecule exchange reaction the histogram of 
the asymmetric stretch can have two or more peaks 
on either side of the gas phase transition state value. 
In such strongly solvated cases, even a larger fraction 
of the recrossings of the variational transition surface 
may arise from trajectories which never cross a real 
saddle point. 

This effect is similar to that described by the “fro- 
zen adiabatic solvent” model of Gertner et al. [ 381 
in which the transition state is shifted by changes in 

solvation, represented by changes in one hypotheti- 
cal “solvent variable”. Although their theory pre- 
scribes a method of calculating the recrossing correc- 
tion based upon the solvation forces present at the 
variational transition surface, it does not provide a 
definition of this “solvent variable” in terms of the 
particle positions. In contrast, the inherent structure 
approach explicitly includes all solvent degrees of 
freedom so that there are no hidden or undefined 
variables. It may be possible to provide a rigorous 
definition of such “reduced” solvent variables in 
terms of the eigenvectors of the Hessian matrix at the 
saddle points. 

We should point out that there can be significant 
effects not accounted for by the current version of the 
inherent structure approach. In the gas phase there 
are many instances where because of a “bottleneck” 
in the phase space away from a saddle point, the di- 
viding surface defined by the descent mapping to a 
saddle point is a very poor choice, especially at ele- 
vated temperatures [ 371. There is no reason to as- 
sume such bottlenecks in the phase space do not exist 
for reactions in solution. In fact, such a bottleneck in 
the potential energy surface describing a gas phase re- 
action should imply the existence of one in the pres- 
ence of a weak solvent. The improvement of the pres- 
ent approach to deal with these bottlenecks in solution 
would be a major improvement of our theory. 

The inherent structure theory provides a system- 
atic approach to exploring the effects of a solvent on 
a chemical reaction. It requires no assumptions about 
the reaction coordinate or its coupling to other de- 
grees of freedom. The theory is valid as long as the 
basins of the reactive saddle points are the bottle- 
necks of the reaction, although it should be possible 
to extend the approach beyond this limitation. The 

Table 3 
Saddle pomts characterized by geometry of flanking gateway minima. Fractton of saddle points with each characteristic *) 

( + ) Minimum 

linear triangular linear or triangular 

( - ) Minimum linear 0.422 0.146 0.568 
triangular 0.184 0.249 0.433 
linear or triaqular 0.605 0.395 

at I.e. 42.2% of the saddle pomts found have linear minima on both sides of the saddle point. The ( + ) and ( - ) minima of a saddle 
point are its two flanking minima. 
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structure and energy of the real saddle points have an 
important in&ienoe on the reactian rate, especiaiiy 
at low temperatures. By an~~ng the propeties of 
the saddle points we can understand the mechanism 
by which a solvent can drast~aIly change a reaction 
rate, The normal modes and their frequencies at each 
saddle point can be used to correct the Kramers re- 
action rate in a way similar to Pollak”s demonstra- 
tion that the exact eigenfrequencies along a reaction 
coordinate coupled to a onedimensional harmonic 
bath can improve the Garners expression for that 
simple model [ 39 f . 

In general, the “soIvent” could include many of the 
degrees of freedom of a complicated reactant mofe- 
cute. For example, in proteins a seemingly loeaf mo- 
tion such as the rotation about a bond can be strongly 
coupled to the motions of atoms far away from the 
bond, e.g., to move an aromatic ring may require 
other atoms to first move out of its way via rotations 
about other bonds [ 401. In such eases, there may be 
multiple reaction paths and reaction coordinates in- 
volving many atoms. The development of computa- 
tionai and theoretical approaches to identifying these 
paths and their relative ~nt~butio~s to the rate con- 
stant (i.e. eqs. ( 2. I2 ) and (2.13) ) would enable us 
to understand the m~hanisms of ligand-receptor 
binding, protein folding, and other important bio- 
chemical processes. Such advances would also eiuci- 
date factors affecting the rates of conformationat 
changes of molecules in solution (e.g*, butane, stil- 
benei and polymers) and the diffusion of molecules 
through polymers, zeolites, and biological 
membranes. 
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