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Planck's-constant expansions for bound states
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Planck's constant h is a fundamental physical parameter that establishes the scale of quantum
phenomena. Bound-state energy eigenvalues for several well-known systems (e.g. , harmonic oscilla-
tors, Morse oscillators, and square-well potentials) are formally analytic functions of h in the neigh-
borhood of h=0, and any "physical'* state can be reached in principle by analytic continuation.
This paper explores the possibility of developing power series in h for atomic and molecular ener-
gies, with analytic continuation to access physical states. For this purpose it is necessary to modify
Coulomb interactions at short range to keep the potential bounded below. As a result the h expan-
sions appear naturally as Rayleigh-Schrodinger perturbation series in anharmonicity about collec-
tive harmonic-oscillator states. Physical eigenvalues emerge in the strong-coupling limit, and Pade
approximants seem to be analytical tools well suited for entering this regime. Some basic implemen-
tation details are presented for application to the modified hydrogen atom, the two-electron
isoelectronic atomic sequence, and many-electron atoms.

I. INTRODUCTION

The importance and difhculty of most physically
relevant eigenvalue problems in quantum mechanics
demand powerful analytical and computational tools.
For this reason we have seen the emergence of several in-
dependent techniques to supplement conventional basis-
set expansions, such as quantum Monte Carlo' and
Green's-function methods, density-functional ap-
proaches, semiclassical quantization procedures with
systematic corrections, and interdimensional interpola-
tions.

This paper is devoted to initial development of yet
another systematic approach. Nominally it involves the
generation of power series in Planck's constant h for both
eigenfunctions and eigenvalues of the time-independent
Schrodinger equation. On this account it bears a close
relationship to the semiclassical quantization methods,
yet it divers from them in at least three key aspects.
First, classical orbits and their quantization. rules which
often appear in semiclassical analyses play no part in the
present development. Second, in order to generate solu-
tions for realistic atomic and molecular systems the
present approach introduces and exploits a modification
of the Coulomb interaction operators. Third, the formal
series expansion in h is treated not as an end in itself but
as the starting point for analytic continuation throughout
the complex h plane (or its equivalent) to access the
desired "physical" state with unmodified interactions. It
should be stressed at the outset that this technique ap-
plies with equal force to ground and excited states.

Section II sets the stage for the general procedure by
revisiting some familiar one-dimensional examples. The
hydrogen atom with modified Coulomb operator appears
in Sec. III, while Sec. IV examines the more challenging
case of the helium atom and its isoelectronic sequence.
The general atomic case receives scrutiny in Sec. V.

Some closing remarks appear in Sec. VI. Analysis of the
multinuclear case, involving aspects of chemical bonding
and molecular structure, has been reserved for a planned
sequel.

II. ONE-DIMENSIONAL EXAMPLES

In spite of its simplicity the one-dimensional harmonic
oscillator illustrates some important points for the
present approach. The time-independent Schrodinger
equation for this case is

,'rj g'„'(x)+—,'—Kx g„(x)=—E„f„(x); (2. l)

The solutions of course are well known (n =0, 1,2, . . .):

E„(g)=(n + —,')K'/ rt;

g„(x)=N„exp( ,'s )H„(s), ——

s K 1/4 1/2

(2.3)

(2.4)

Here the H„are Hermite polynomials, and X„ is a nor-
malizing factor for the f„:

—(2n 1/2 ~)
—1/2K'/8 —]/4'7T n . (2.5)

All of the harmonic-oscillator eigenvalues E„are ana-
lytic functions of the scaled Planck constant g, indeed
just trivial linear functions of this variable. Changing the
sign of g leaves the wave equation unchanged, but the ei-
genvalue functions (2.3) are not invariant to this sign
change. Analytic continuation of the normalized wave
functions from positive real g encounters an essential

the harmonic force constant has been denoted by K, and

(2.2)
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—
—,'i) Q'„'(x)+ [ V(x) —E„]g„(x)=0 (2.6)

can be solved in closed form for bound states in the case
of the Morse potential

singularity at g =0 and produces complex wave functions
along the negative real axis.

If the quadratic potential term in Eq. (2.1) is replaced
by the more general ~x~~, p )0, one easily verifies that the
eigenvalues will be proportional to g ' + ', an integral
power only for the harmonic case @=2. Consequently
this type of anharmonicity destroys analyticity of energy
eigenvalues at the q origin. However it is important to
realize that anharmonicity per se need not eliminate
analyticity, as the following well-known example demon-
strates.

The wave equation

(n + —,
' )ir ~ w ~ (n +1)ir, n =0, 1,2, 3, . . . (2.16)

y =cosw/m . (2.17)

The implicit function theorem guarantees that for real
positive y the function w (y) exists and has a well-defined
derivative (i.e., is analytic). Leading terms in the conver-
gent power series for m are easi1y found to be

Exclusion of intervening w intervals in (2.14) and (2.15)
stems from the requirement of wave-function normaliza-
bility.

In order to investigate analyticity of the square-well
energies in g or equivalently in y, we can first take the ap-
propriate square root in Eq. (2.13) or Eq. (2.14). Concen-
trating on the ground state for illustration we therefore
examine

V(x ) = A [exp( —2ax ) —2 exp( —ax ) ] .

The eigenvalues now have the form

(2.7) 2

w (y) =—1 —y +y — 1+ y'+0 (y~)
2 24

(2.18)

E„(r))= —A [1 (n +——,
' )a(2A) ' i)] (2.8) The ground-state energy eigenvalue has the correspond-

ing expansion

n+ —,
' ((2A)'~ (ai)) (2.9)

where physically realizable states require that n be a
non-negative integer subject to the upper limit E(y)

1
m. y

U '+4 2

1 —2y +3y — 4+ y12

Once again the eigenvalues are analytic functions of g,
but are not even in g. The eigenfunctions can be ex-
pressed in terms of conAuent hypergeometric functions,
and as in the previous harmonic-oscillator case they be-
come complex when positive g is continued onto the neg-
ative real axis.

The existence of eigenfunctions analytic in the scaled
Planck constant g in the neighborhood of q=0 is not
contingent on analyticity in x of the potential V(x). Con-
sider the square-well potential with width 2a:

V(x)= '0
( ~ ~)

L

(2.10)

which obviously is not analytic. By applying the usual
wave-function-matching conditions across the discon-
tinuities in V, one finds that energy eigenvalues are given

by

E = U[w'(y)y' —1], (2.11)

where

y =i)/[(2U)'~ a]=A'/[(2mU) a) . (2.12)

y =cos w/w

in any one of the ranges

nm ~ w ~(n+ ,')~, n =0, 1,2, 3, . .—.;

for odd-parity states w (y) is determined by

y =sin m/w

in any one of the ranges

(2.13)

(2.14)

(2.15)

For even-parity states, including the ground state, w (y) is
a solution to

+O(y ) . (2.19)

As was the case with the preceding examples, this is
not an even function of the appropriately scaled Planck
constant y in spite of occurrence only of y in the wave
equation. E(y) can be analytically continued across the
origin to the negative real y axis (a regime in which the
wave function is un-normalizable). The radii of conver-
gence of both series (2.18) and (2.19) are determined by
the presence of a square-root branch point singularity on
the negative y axis. It is associated with the first
minimum of the function cosw/w along the positive axis,
which occurs at

w, -=2.798 39, y, -=—0.336 508 . (2.20)

The presence of a square-root singularity at y, in the en-
ergy function determines the asymptotic large-order be-
havior of its power series coefficients. Similar considera-
tions apply to the square-well excited states of both pari-
ties.

Before passing on to atomic systems, it is worth point-
ing out that symmetric double-well potentials will not
possess eigenvalues analytic in Planck's constant. The
reason resides in the phenomenon of tunneling. Each ei-
genvalue is expected to contain a tunneling-splitting con-
tribution that should be essentially singular in A at the
origin. However, note that double-well asymmetry re-
moves this feature.

[—,'il V'„+Ze u (r)+E]i)'j(r) =0, (3.1)

where Z is the atomic number of the nucleus, and U is the

III. MODIFIED HYDROGEN ATOM

The time-independent Schrodinger equation for hydro-
genic atoms or ions can be written
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Coulomb potential

v (r)=r (3.2)

The scaled Planck constant 21 is still defined by Eq. (2.2)
provided m represents the reduced mass. The spectrum
of hydrogenic eigenvalues is of course well known

j' 3~2

2f3Ze
s,

(3.10)

Our modified hydrogenic problem takes on an especial-
ly useful form after making the following substitutions:

1/4

E=—Ze /(2n q), (3.3) along with the introduction of a "coupling constant"

U (r)=r 'f (l 'r), (3.4)

where I is an as-yet arbitrary scale parameter, and where
the function f obeys the following conditions.

(a) f ( u) is continuous, dift'erentiable, and bounded
above and below on the real line —(x) & u & + ~.

(b) f'(u) )0 for —ao & u & + ~.
(c)f is odd: f ( —u ) = —f (u).
(d) There exist positive numbers A, a such that

where n =1,2, 3, . . . is the total quantum number. In
contrast to the analytic eigenvalues discussed in Sec. II,
each of these exhibits a double pole at the origin, a
feature associated with divergence of the Coulomb poten-
tial.

A simple modification of the Coulomb potential can be
introduced which in principle restores origin-
neighborhood analyticity to the eigenvalues of Eq. (3.1),
while still permitting extraction of physically relevant en-
ergies. In place of Eq. (3.2) we instead use

(2f Zl)' e
(3.11)

[ —
—,'V, + —,'s + V(s, A, ) —c, ]P(s)=0 .

The perturbing potential Vis

V(s, g) = —(2f3 )
—lg —3/2[s f (gl/ s) —g

+f A,
' s]

(3.12)

)
—1 y ( 1)n

—lf gn —1 2n

n =-2

(3.13)

The eigenvalue c in the transformed equation is related to
the energy eigenvalue E as follows:

As a result the Schrodinger equation (3.1) can be tran-
scribed into that for a three-dimensional harmonic oscil-
lator with anharmonic perturbation

~ f (u) —
1~ & 2 exp( —au )

for real positive u.
(e) f (u) is analytic throughout the u plane.
(f) The power series

2E 1+
(2f3Ze ) g 2f3X

or equivalently

(3.14)

f (u) —g ( 1)nf u2n+1
n=0

has coeScients

(3.5)

f, =l, f2„+,&0 (n &1) . (3.6)

These conditions can easily be met by using familiar stan-
dard functions. A specific example might be

f (u) =erf(1r'~ u/2)
n

Q
2n +1

4
(3.7)

As a result of the preceding conditions imposed on f,
the modified Coulomb potential (3.4) will be bounded,
monotonic, and representable as a convergent expansion
in even powers of r:

( ) g ( 1 )nf l (2n+ 1)r2n

n=0

Condition D implies that the Coulomb interaction has
been substantially modified only within a distance of or-
der I of the origin, and at large distance it behaves as be-
fore

E =2f3Z e 21 A, [2f3A, E(A, ) —1] . (3.15)

Taking the point of view that the artificially introduced
length l &0 is fixed, Eq. (3.11) shows that coupling con-
stant A, is proportional to g and thus to Planck's con-
stant. Since the perturbation V has a series (3.13) in posi-
tive integer powers of A, , one expects c to have a perturba-
tion series in positive integer powers of X for any eigen-
state

E(A)= g
n=0

(3.16)

—,'s + V(s, A, ) -(2f3A, )
' —(2f3i, s) (3.17)

with coefficients c.„accessible through an extended ver-
sion of Rayleigh-Schrodinger perturbation theory. ' This
series then must be the systematic Planck's-constant ex-
pansion for s, which leads through Eq. (3.15) to the cor-
responding Planck's-constant expansion for E.

Energy eigenvalues of direct physical interest require
fixing g, and then passing to the limit l~0+. Equation
(3.11) demands that A, ~+ ~, so that physical eigenstates
correspond to a strong-coupling limit in the perturbation
problem (3.12). In that strong-coupling limit the total in-
teraction present in Eq. (3.12) approaches the following
asymptote (s ))A,

U (r) r- (3.9) aside from a constant energy shift and a distance scaling
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this is just the physical hydrogenic problem. One can
easily show that in this asymptotic regime the ground
state behaves as follows:

1 1 C7
E A)= + +. . . ,2f3~ 8f'k'

where

C~= I u f'(u)du .
8f43 O

The unperturbed version of Eq. (3.12) is

(
—

—,'V, + —,'s —E )P (s)=0,

(3.18)

(3.19)

(3.20)

(3

O

CL

-3
-4

I 1 I I I I

0 I 2 3 4 5 6

the wave equation for an isotropic three-dimensional har-
monic oscillator. The P form a natural complete basis
for solving the perturbed problem. For s states of the
modified hydrogenic problem the spherically symmetric
basis functions suffice; these and their corresponding un-
perturbed eigenvalues are the following (n =0, 1,2, . . . ):

yo(g) = g„g 'H3„+, (s)exp( —s /2),

( —1)"
2n+1 3/4[(2 + 1))]1/2

=2n +-
n 2

(3.21)

(3.22)

Here the H are the Hermite polynomials. " Using
straightforward perturbation theory, one calculates the
following low-order coefficients for the eigenvalue series
(3.16):

105f7

16f3

15f,
8f3

165f
32f

(3.23)

945f9 945f~f,
32f3 16f

3915f~

128f3

Integer powers of A, have been found to occur both in
the small-i, expansion (3.16) and in the large-A, expansion
(3.18). This suggests that it may be useful to approximate
the function E(A, ) throughout the complex plane by ra-
tional functions of A, , i.e., Pade approximants. '

Specifically this entails

s(A, ) —=P (A, )/Q(k), (3.24)

where P and Q are polynomials whose orders and
coefiicients must be chosen to agree with (3.16) and (3.18).
The more expansion coefficients that are available the
higher the degrees of P and Q can be, so presumably the
better the approximation will be to E(A, ).

Figure 1 presents a plot of a Pade approximant for
e(A, ), where P(A, ) and Q(A, ) in Eq. (3.24), respectively,
have degrees 3 and 4. These polynomials were fixed by
requiring that the four perturbation coefficients, Eq.
(3.23), be reproduced as well as the four leading orders in
the asymptotic expansion (3.18). The error-function form
shown in Eq. (3.7) was employed for f. This approxi-

FIG. 1. Pade approximant for c(A,), the eigenvalue of Eq.
(3.12) associated with the ground state of the modified hydrogen
atom.

IV. HELIUM ISOELECTRONIC SEQUENCE

Two-electron bound states in the isoelectronic se-
quence H, He, Li+, Be +, . . . a8'ord a relatively simple,
yet nontrivial, testing ground for the expansion tech-
nique. As was the case for hydrogenic atoms in Sec. III,
it is necessary to modify the interactions so that they are
bounded below. This requirement could be met by invok-
ing Eq. (3.4) for the electron-nucleus attraction, while
leaving the electron-electron repulsion unchanged. But
to generate a computationally convenient format it is use-
ful to modify the latter interaction as well. Consequently
the wave equation for the spatial part of the eigenfunc-
tion will formally be written as follows:

I 2g (Vi+V2)+Ze [r1 f (l r1)+r2 'f (l ir2)]

er12'f (g 'l 'r12)+E—]$(r1,r2)=0 . (4.1)

As was the case previously, f obeys conditions (A) —(F).
Equation (4.1) assumes that the nucleus is stationary so
that rn appearing in the definition (2.2) of il is exactly the
electron mass. Wave function g satisfies the usual sym-
metry conditions for spatial exchange (even for singlet
states, odd for triplet states).

By introducing parameter g into the electron-electron

mant possesses two complex-conjugate pairs of simple
poles in the complex A, plane, with approximate positions—1.603+0.925i and —0.230+1.918i.

Considering the examples cited in Sec. II as well as the
Pade approximant shown in Fig. 1, it seems reasonable to
suppose that the exact E(A, ) is analytic at the origin for
appropriate f choices. Hence perturbation series (3.16)
would have a positive radius of convergence for those
choices.

The modified hydrogen atom obviously has little physi-
cal significance by itself since the unmodified version has
a well-known exact solution. ' However this case pro-
vides a natural starting point for subsequent use of the
same approach for many-electron atoms and ions.
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interaction term of Eq. (4.1), we can take advantage of
differing lengths l and gl for attractions and repulsions,
respectively. For the moment g will be arbitrary, beyond
the requirements that it be positive and independent of g.

By using the previously introduced scale change (3.10)
and the A, definition (3.11), Eq. (4.1) transforms into the
following:

Here we have set

q'E (2Z —g-')
(2f3ze ) k 2f3ZA,

or inversely

E =2f3Z e 21 A, [2f3AE(A, ) —2+/ 'Z '] .

(4.3)

(4.4)

[ ——'(V, +V, )+—'(s +s ) —(2g Z) s

+ V(s„s2, A, ) —e(A, )]p(s„s2}=0. (4.2)
"Physical" eigenstates require that I,—++ ~ at constant
g. The perturbation V vanishes when X=O; its form is

1
V(s„s2,A, )=-

2f, ~3/2 $1 $2

f (g
—lgl/2 )

z $12

f(A, ' s ) f(A, ' s )1 2 2gl/2+f g3/2(g2+g2 )

g
—Igl/2+f g

—3g3/2 2 (4.5)

This has a convergent power series in A.

V(S S g) (2f )
—1 y ( 1)n

—lf gn —
1( 2n + 2n Z —

lg
—2n —1&2n )

tl =2
(4.6)

s=2 ' (s —s, ), S=2 ' (s +s, ), (4.7)

In the absence of perturbation V, Eq. (4.2) describes a
six-dimensional harmonic oscillator. It is natural to in-
troduce sum and difference variables by coordinate rota-
tion:

p (s, S)=sr 1—

1X exp
2

3/8
2
3Z

21—
('Z

1/2

s2 ]S2
2

in terms of which the wave equation (4.2) appears thus
Eo=e(0)= —1+ 1—3 2

gZ

1/2 (4.10)

——(V +V' )+—1 2 2 1

2 s s 1 — s +S2 2 2

gZ In order that the harmonic frequency associated with rel-
ative position coordinate s be real it is necessary to re-
strict g,

+V —E -/=0. (4.8) g& (2/Z)'/3 . (4.1 1)

The unperturbed harmonic-oscillator part of the problem
is now diagonal, and in this representation the perturba-
tion Vhas the form

The first-order energy coefficient c, for the ground
state is determined by the leading term in expansion (4.9).
One finds

c, ,
—=e'(0)

V=(2f, )-' y ( —I)"-'2-"f2„+,&"-'
Pl 2

X[(S—s) "+(S+s}"

15

32f3
2+4 1—

gZ

+ 2— 1

g'z

—1/2

21—
gZ

(4.12)

Z —lg
—2n —1(S)2n] (4.9)

To carry out any order of perturbation theory, it is neces-
sary only to evaluate matrix elements of positive even

powers of coordinates in the harmonic-oscillator basis.
The ground-state normalized eigenfunction and eigen-

value for the unperturbed problem are

In principle nothing would prevent exact closed-form cal-
culation of the higher-order c,„'s, though in practice this
can be expected to become rapidly tedious when done by
hand. No doubt the process could be automated with use
of symbolic manipulation programs.

The two-electron eigenstates possess asymptotic expan-
sions for large positive k analogous to that shown in Eq.
(3.18) for the modified hydrogen ground state. The
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ground state has the following expansion:

C1 C3 C7
E(A)= + + + '''

A3 i7 (4.13)

TABLE I. Values of range parameter g' for the two-electron
ground state, calculated from Eq. (4.16).

Cl=(2f3) '(2 —
g 'Z '),

C3 =(4f 3 ) 'E(Z),
(4.14)

where e(Z) is the ground-state energy of the conventional
two-electron problem expressed in Z-reduced atomic
units, ' e.g. ,

e(1)= —0.527 751, . . . , E(2)= —0 725 931,
(4.15)

e(3)= —0.808879, . . . , E(~)=—1.

1

2
3
4
5

6

8

9
10

1.266 552
1.000 326
0.873 637
0.793 717
0.736 812
0.693 364
0.658 635
0.629 961
0.605 707
0.584 804

Coefficient C7 is determined by the values of the corre-
sponding Z-reduced wave function at electron-nucleus
and at electron-electron con fluence. Once again the
relevance of Pade approximants is suggested by the per-
turbation power series in A, coupled with the asymptotic
expansion (4.13).

Aside from inequality (4.11), g has thus far remained
arbitrary. In principle it should not matter what choice
is made for g, since a precise determination of the result-
ing e(A, ) would produce a g-invariant coefficient C3 [Eqs.
(4.13)—(4.14)], which then specifies the "physical" eigen-
value that is the ultimate goal. Nevertheless it may be
prudent to select a physically motivated g to enhance the
accuracy of approximations to E(A) such as those provid-
ed by Pade approximants. In particular it seems reason-
able to use the mell-known electron-nucleus and
electron-electron cusp conditions' ' as guides, and thus
to require that the spatial correlation lengths exhibited by
the wave function in lowest order, P in Eq. (4.10), have
the proper Z-dependent ratio. These lengths refer to rel-
ative rates of decay of the wave function for (i) simultane-
ous motion of the two electrons away from one another
while their centroid is fixed, and (ii) motion of two coin-
ci.dent electrons away from conAuence with the nucleus.
The exact cusp conditions require a ratio of (4Z)
which in conjunction with Eq. (4.10) leads to

' 1/4
= 1

4Z '
2

gZ
(4.16)—1/3

Z
2 128Z

Table I displays some of the calculated g values, showing
a monotonic decline as Z increases from unity.

V. MANY-EI. KCTRGN ATOMS

The strategy just employed for the He isoelectronic se-
quence generalizes straightforwardly to the case of the n-
electron atom. In this way we are led to consider the fol-
lowing modification of the Coulomb interactions:

8'(r„. . . , r„)=—Ze g f (l 'r )r
j=1

+e' g f(g 'l 'r,„)r,„'. (5.1)
j&k=1

Once again f is required to obey conditions (A) —(F). The
objective is to find solutions to the eigenvalue equation

—
—,'q2g V + W'(r„. . . , r„) E(rj)—

J

Xp(r„. . . , r„,i)) =0 (5.2)

as functions of the scaled Planck constant q. In the
strong-coupling or extreme quantum regime (i)~+ 0e),
the wave function becomes so extended in space as to be
insensitive to the presence of f in 8', and E(ri) becomes
asymptotically proportional to g with a value that
yields the physical energy of ultimate interest. For sim-
plicity we utilize a spin-free formulation; since
represents only the spatial part of the wave function it
must satisfy antisymmetry and cyclic interchange condi-
tions to correspond to the correct spin state.

By using distance scaling (3.10) and the coupling-
constant definition (3.11) once again, the wave equation
(5.2) adopts the form

—
—,
' g V, + —,

' g s —(2g Z) ' g s „+V(s„. . . , s„,l, ) —e(A. ) P(s„.. . , s„,A, ) =0 .
J J

J j&k

%"e now have a perturbation potential,

(5.3)

P —(2f g3/2) —l g [f(gl/2S. )S. l gl/2+ f /3/2$ ]

+Z-' y [f(g-'X'"s )s. '
g 'X'/2+f g-3X'"s'. ]-—-

j &k=1
(5.4)
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n (n —1)
2f3A, 2zg

It is elementary to diagonalize the quadratic unper-
turbed Hamiltonian appearing in Eq. (5.3). Considering
first the x components of electron positions s measured
relative to the nucleus, define

n

u(k)=n '~ g exp(ikj)s
j=1

(5.6)

which again possesses a convergent power series in A, .
The eigenvalues in Eqs. (5.2) and (5.3) are related by

r

(~) rI E + n (n —1)
(2f3ze2)2/3 2f 3A, 2zg

(5.5)
E=(2f3Ze ) rI A.

common frequency, while the remaining 3(n —1) modes
(k%0) describing relative motion within the electron dis-
tribution are all degenerate at a lower frequency. The
last must be real, requiring

(& (n/Z)'~ (5.12)

the generalization of the earlier condition (4.11). After
transforming the perturbation V in Eq. (5.4) to the collec-
tive variables, the generation of the expansion in powers
of g can proceed as before, using the collective
harmonic-oscillator basis.

As in all cases considered, the leading contribution
E (2) =0) is equal to the value of the potential energy at its
absolute minimum. For the present case this can im-
mediately be extracted from the modified Coulomb form
displayed in Eq. (5.1),

where k takes on any of the n values nearest the origin
llZCE (0)=min W =—

I
tl 1

2gz
(5.13)

k =0, +2m /n, +4m /n, . . .

The inverse transform is

s =n '~ +exp( ikj)u—(k) .
k

(5.7)

(5.8)

+ — I—," g [lu(k)l'+lv(k)l'+lw(k)l'] .
2 gZ ceo

(5.9)

The absolute values acknowledge that for k&0 the u, v,
and m variables can be complex; however, linear com-
binations of those for k and —k can be real. Denoting
such linear combinations by carets, for example:

u(k)=2 'i [u(k)+u( —k)],
u( —k)=(2' i) '[u (k) —u ( —k)],

(5.10)

Exactly analogous relations can be written down for the y
and z components of electron positions, respectively,
defining v (k) and w (k). This coordinate rotation leads to
the following identity relevant to Eq. (5.3):
j y s2 (2$3Z) 1 y s2

J j&1

—:—,
' [u (0)+v (0)+w (0)]

The length parameter I has thus far been arbitrary, but
results from Thomas-Fermi theory for atoms suggest
roughly how it should be chosen in the large-Z neutral
atom (n =Z) regime. In particular it is believed that the
Thomas-Fermi approach correctly supplies the leading
large-Z behavior of the binding energy,

E "(Z)-—CZ' ' (C &0) . (5.14)

It seems logical to require this Z dependence even in the
unperturbed energy (5.13), so consequently one should
take

I-I Z-'", (5.15)

where I is some positive constant. Notice from Eq.
(3.11) that this makes the natural coupling constant of
the development k asymptotically proportional to Z
as well. These considerations do not affect the value of g,
which presumably can be selected to optimize the rate of
convergence of the perturbation series. It should be not-
ed in passing that elementary counting arguments show
that the total harmonic-oscillator energy for the unper-
turbed state is also proportional to Z in the large-Z
limit.

Once again the strong-coupling regime requires that
s(A, ) exhibit an expansion whose leading terms vary as in-
verse integer powers of A, :

we have

j y s2 (2$3Z) 1 y s2
J j&1

=——,
' [u (0)+v (0)+w (0)] n

2f,
(n —1)

2(Z

CI C3 C7
s(A)= + + +. .

x3 A7
(5.16)

(5.17)

1 n+—1—
gZ

X g [u (k)+v (k)+w (k)] .
k&0

(5.1 1)

The coe%cient C3 carries the desired information about
the "physical eigenvalue" for the unmodified Coulomb
interaction:

The diagonalized quadratic form (5.11) obviously is
highly degenerate. The three modes describing motion of
the centroid of the electron distribution (k =0) have a

E (phys) = (2f3Ze ) C3 g (5.18)

while C7 is related to values of the "physical eigenfunc-
tion" at particle pair confluence.
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It seems to be a reasonable presumption that the family
of modification functions f satisfying conditions (A) —(F)
of Sec. III cause e(A, ) to be analytic at the origin. The
procedure developed above shows in principle how to
generate the A, power series from appropriate combina-
tions of harmonic-oscillator matrix elements for arbitrary
n and Z. The power series coe%cients then could be as-
sembled into a tableau of Pade approximants that are
consistent with asymptotic series (5.16), and that should
give a reasonable representation of e(A, ) along the positive
real axis.

VI. DISCUSSION

The immediate objective of this paper is a modest one,
namely to demonstrate the existence of' a systematic pro-
cedure for generating Planck's-constant expansions for
bound states. Application to atomic systems requires
short-range modification of the Coulomb interaction to
make it bounded below, and "physical" eigenstates then
must be extracted from the strong-coupling limit. Fade
approximants were suggested as a means to bootstrap
from the small-coupling regime to the strong-coupling re-
gime, but this needs stringent testing. In particular it
should be possible to carry out accurate variational calcu-
lations in the presence of the modified Coulomb interac-
tion to see if the resulting E(k) estimate closely tracks
those emerging from a Pade analysis along the entire pos-
itive A, axis.

One of the primary characteristics of the present ap-
proach is that its starting point (the collective harmonic
oscillators) already contains electron-correlation effects in
a nontrivial manner. In this respect it differs fundamen-
tally from the Hartree-Fock approximation, an intrinsi-
cally single-particle approximation. The set of eigenvalue
functions E'"'(A, ) for ground and excited states in the
present method, when plotted versus real positive k, pro-
duce a kind of correlation diagram between many-body
harmonic-oscillator states and "real" atomic states,
across the entirety of which electron-correlation effects
are present.

The expansion and resummation strategy advocated
herein may have significant application to the study of
resonance states. Many of these amount to doubly excit-
ed atomic states embedded in continua with which they
interact and thereby develop widths. The corresponding
doubly excited states in our unperturbed harmonic-
oscillator limit (A, =O) are legitimate eigenstates, and they
should remain as such for at least some positive interval
of A, values. But as A, increases, an encounter with the
continuum eventually ensues, and one expects that

(A, ) for the doubly excited state would display a
branch point singularity at kc, the coupling-constant
value at continuum encounter. ' Analytic continuation
beyond A, & above or below the branch cut extending to
+ oo will yield complex values for E (X) whose real and
imaginary parts, respectively, would give resonance posi-
tion and width.

Extension of the present technique to the polyatomic
case in principle is straightforward. Analysis of
chemical-bond formation should be quite natural by ex-
arnining k series that are the difference between series for
the molecular system of interest and those for the com-
ponent atoms treated separately. If large-Z atoms are in-
volved this would have the beneficial effect of eliminating
the large but irrelevant contribution of core (nonbonding)
electrons to the eigenvalues. It is also worth noting that
the method can include cases where all particles partici-
pate as quantum-dynamical entities, as is usually the case
in calculations for p-mesic molecules of the hydrogen iso-
topes.
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