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In principle, the equilibrium density in an inhomogeneous system is that density field which 
extremalizes the free energy and all the system's equilibrium properties can be deduced from 
this. A simple, but qualitatively realistic model free energy is presented which shows that 
appr?ximate free energy functionals can easily possess a large number of extremalizing 
solutIOns. The usual interpretation when multiple solutions are found is that the correct 
solutio~ is the one associated with the lowest value of the free energy. This rule is not very 
reassunng when, as the model exhibits for some range of parameter values, a continuum of 
solutions can be found. A more careful analysis of the variational problem shows that a 
variational formulation only provides a complete characterization of an equilibrium system 
when the variational ~roblem possesses a unique solution. A multiplicity of solutions actually 
corresponds to the eXlstence of a multiplicity of Hamiltonians which could give rise to the 
post~late~ free energy functional. There i.s no variational basis for comparing different 
Hamlltomans, however, and hence choosmg from among a multiplicity of solutions on the 
basis of the value of the free energy is an additional extrathermodynamic rule. 

I. INTRODUCTION 

The spatial variation of the density in an equilibrium 
fluid at a phase boundary or at a wall may be viewed as a 
system's response to a single particle external field UCr). A 
wall corresponds to an abrupt spatial variational of Ucr), 
but even a slow spatial variation of U(1) leads to a rapid 
variation of the number density per) in regions where the 
local compressibility is large, as one finds in interphase re
gions. In this view, the characterization of the spatial vari
ation of per) is thus the characterization of the functional 
p cr, [ UJ ). The present paper develops an interpretation for 
variationally determined p (1, r UJ) functionals. 

The variational approach is only one of several ap
proaches to the construction of p(1, [UJ). Experimentally, 
when the number of particles N, the temperature T, and the 
volume V are specified, a unique per) is found for every 
U(r). Numerical simulations using the Hamiltonian for a 
classical system of particles of mass m interacting through 
pair-wise additive forces [with potential <p (r) J in a field 
U(r) (which fixes the volume V), 

N p2 N 

H = ;~, 2~ + ~ <p(r; - r) + ;~, U(r;), (1) 

also find a unique per) for every U(r) field. Likewise, the 
canonical ensemble prescription for the average density, ',2 

per) = N!~3N r·J ar I'"~ ar N dP I'"~ dP N 

N 

XeP(A-H) L o(1-r;), (2) 
;= I 

with A = A ( T, V,N) the Helmholtz free energy fixed by the 
normalization condition 

e-{3A - I f. ··f..n ..n A7. A7. -(3H - N!h 3N ur I'"~ ur N up I'"~ up N e , (3) 

associates a unique per) with each U(r). While these routes 
do show that per) is a well defined functional of U(r) and 
they lead to essentially exact solutions to thep(r, [UJ) prob
lem, they are not easy routes to follow. This is particularly so 
when one is interested in studying a variety of interaction 
models, i.e., a family of <p(r) potentials. 

The basis for developing approximate routes to 
per, [UJ ) is the converse of the observation that U(r) leads 
to a unique per): If a realizable density per) is prescribed, 
there is a unique external field U(1) which will give rise to 
this p (r). 3.4 This means that any exact relation between 
per) and U(r) can only possess a unique solution p(1, [UJ) 
for each ucr) field. It is a natural extrapolation that an equa
tion which is an approximation to an exact relation will have 
a unique solution which approximates the exact per, [UJ). 
The earliest examples of analytic theories for per, r UJ) are 
the analysis of van der Waals5 of the liquid-vapor density 
profile and the identification of Kirkwood and Monroe6 of 
oscillating density functions with the solid phase. These ear
ly approaches have evolved into the general method of deter
miningp (r) as a solution to an integral equation obtained by 
using physically motivated approximations to the higher or
der distribution functions in exact integral equations relat
ing per) and U(r), an approach which has received exten
sive numerical attention.7 The approximations used to con
struct practical integral equations, however, lead to a shift in 
the number of solutions which the integral equations pos
sess.8 This very nonphysical behavior can be understood as a 
consequence of the fact that not only does the correct per) 
satisfy an exact integral equation, but such an equation also 
correctly predicts the slopes in all directions in function 
space, i.e., that there are generalized tangency relations asso
ciated with the solution of the exact equation and even the 
smallest error in an approximation can destroy these. A sim
ilar instability in the number of solutions has been found in 
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the corresponding integral equation routes to radial distribu
tion functions in fluids.9 

It has been generally assumed that the problems which 
arise from the approximate integral equations possessing a 
variable number of solutions can be avoided by taking a vari
ational approach. In this approach, one models (approxi
mates) the free energy of a system as a functional of p Cr) . 
The actualp(r) is then taken to be that which minimizes the 
model free energy. The extended interpretation is that know
ing the free energy as a functional of per) completely deter
mines all the properties of a system. The Hamiltonian which 
would generate this free energy exactly could be determined 
by evaluating the functional derivatives of this free energy 
with respect to p(r). Hence, the generalized tangency rela
tions are satisfied by definition8 and this route should yield a 
unique per). The reported numerical experience is usually 
described in such terms. 10 

In the following analysis, it is shown that the shift from 
taking U(r) as an independent field to taking per) as an 
independent field is not so simple. Strictly speaking, the vari
ational program contains an extrathermodynamic assump
tion and practical executions of this program are just as like
ly to produce multiple solutions as the direct integral 
equation approach. A concrete example is then given to il
lustrate how easily multiple solutions arise and hence how 
difficult it is to know the physical significance of the solu
tions. 

II. THE STRUCTURE OF VARIATIONAL 
FORMULATIONS 

A. The standard formulation 

Variational approaches start with a model for the free 
energy which is regarded as a functional ofthe density. As an 
example, consider a cylindrical system with the cylinder's 
axis coincident with the x axis. If properties only vary in the 
x direction (Le., the diameter of the cylinder is large enough 
to neglect boundary terms at the edge of the cylinder), then 
p (r) = p (x). A typical example of an approximate free ener
gy functional (energy per unit area perpendicular to the x 
axis in this case) is 

F[p(x)] = knTf dx[p(x)lnp(x) -p(x)] 

- ~ f f dx I dx 2/J(x 1 )K(x1 - X2)P(X2 ) 

+ f dxp(x)U(x). (4) 

The first term represents an ideal configurational entropy, 
the second term an interaction between particles at x I and X 2 

(after averaging over the coordinates perpendicular to the x 
axis), and the last term represents a single particle interac
tion with the external field U(x). 

For notational simplicity, we write F[p(r)] although F 
obviously depends upon the temperature T. If the particles 
are confined to O,x,L, then F also depends upon L (Le., 
upon the volume), but, as such confinement arises from 
U(x) becoming very large for x < 0 and x > L, the parameter 
L is formally contained in U(x). Hence, if the extremaliza-

tion of F[p(r)] in Eq. (4) is made with a prescribed U(x), 
the integrals in Eq. (4) can be taken over - 00 < x < 00. 

One pictures Eq. (4) as representing the Helmholtz free 
energy A which is a minimum at prescribed T, V, and N. 
Thus, the physically correct p(x) is that which minimizes 
F[p(x)], subject to the constraint 

N = f dxp(x). (5) 

Using the Lagrange multiplier f-l to accommodate this con
straint leads to the Euler-Lagrange equation for p(x), 

f-l = knTlnp(x) - f dx'K(x - x')p(x') + U(x), (6) 

an integral equation for p = p(x, [f-l- U]), with f-l identi
fied as the chemical potential. Hence, there are two equiva
lent routes to determiningp(x): One may search in a space 
ofp(x) functions for thatp(x) which extremalizesF[p(x)] 
in Eq. (4) or one may solve the integral equation Eq. (6) for 
p(x) withf-l chosen so that Eq. (5) is satisfied. 

B. Functionals which fix the properties of a system 

In general, it is A = A ( T,N, [ U(r) ] ), the Helmholtz 
free energy function/functional, which fixes the eqUilibrium 
properties of a system. A ( T,N, [ U(r) ] ) fixes thermodynam
ic properties like 

aA 
f-l=-

aN 
(7) 

and molecular distribution functions such as2 

(r) _ 8A 
p - 8ur) , (8) 

p(2)(r l ,r2) =p(rl )p(r2) -p(rl )8(rl - r2) 

_ k T 8
2
A 

n 8U(r l )8U(r2) 
(9) 

From p(N) (rl, ... ,rN ) , one could deduce the Hamiltonian of 
the system. 

The choice of independent variables is not arbitrary, 
however. While knowing A as a functional of T, V,N does 
determine all thermodynamic properties, for example, 
knowing A = I( T, V,f-l) does not fix N. To see this, suppose 
that the free energy as a function of T, VoN were actually of 
the form A = g[ T, V,N + v( T, V)]. The use of Eq. (7) to 
deducef-l givesf-l = ag[T,v,N + v(T,V) ]IaN which shows 
that it is N + v( T, V) which is determined by T, v,f-l: 
N + v( T, V) = h ( T, V,f-l), whatever v( T, V) is. Subsequent 
elimination of N + v( T, V) from g[ T, VoN + v( T, V)] gives 
I( T, v,f-l) = g[ T, V,h (T, v,f-l)], a result in which v( T, V) 
does not appear. Any shift in the number of particles v( T, V) 
is thus consistent with a prescribed A = I( T, V,f-l). N is not 
determined by A = I( T, V,f-l). 

If T, V, f-l are chosen to be the independent variables, the 
standard thermodynamic approach is to describe the system 
with the Legendre transformed free energy function, 

n ( T, V,f-l) = A [T, V,N( T, v,f-l)] - f-lN( T, v,f-l), ( 10) 

the grand potential, with N( T, V,f-l) determined by inverting 

J. Chern. Phys., Vol. 94, No. 11, 1 June 1991 
 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.112.66.66 On: Mon, 21 Apr 2014 04:49:43



R. Lovett and F. H. Stillinger: Inhomogeneous density functions 7355 

Eq. (7). Since 

N= - WfI./ap), (11 ) 

the transformation in Eq. (10) can be reversed. Thus 
fI. ( T, V,p) provides the same information that A ( T, V,N) 
does. 

The functional analog of this argument from classical 
thermodynamics is that while knowing A [U] does com
pletely describe the equilibrium properties of a system, a 
knowledge of A [p] does not. Given A [p], one cannot deter
mine what U(r) is actually present. But ifpO) is to be taken 
as the independent variable, a complete characterization of 
all equilibrium properties is provided by the functional Le
gendre transformed free energy, 11 

Y[p] =A [U[p]] - f cirp(r) U(r, [p]). (12) 

Since 

U(r) = 
oY[p] 
op(r) , 

(13) 

the transformation in Eq. (12) can be reversed. Thus Y [p] 
provides the same information that A [U] does. The analog 
ofEq. (9) is that the second functional derivative of Y [p] is 
related to the Ornstein-Zernike direct correlation function, 2 

ccr
l
,r

2
)=0(rl -r2 )_f3 02Y [p] , (14) 

perl) op(r l )Op(r2) 

a function which is generally simpler in a dense fiuid l2 than 
p(2) 01,r2 ). 

Equation ( 13) shows that Y [p] is not extremalized by 
the correct p (1). Y [p] is not the functional approximated 
in Eq. (4). Equation (12) prescribes an Y[p] for every per) 
field which can be realized in the laboratory. By contrast, 
F[p] is defined [for each prescribed U(r)] for a family of 
hypothetical density fieldspO) of which only one (extrema
lizing) field is necessarily realizable in the laboratory. 

The Y corresponding to the explicit model Fin Eq. (4) 
can be identified by rearranging Eq. (6) into 

U(x) = __ 0_ 
Op(x) 

X{kBT J dx[p(x)lnp(x) -p(x)] - ~ 

X J J dx dy p(x)K(x - y)p(y) - J1 J dx P(X)}. 

(15) 

Comparison with Eq. ( 13) shows that Y [p] is, to within an 
additive density independent function, the term in brackets 
inEq. (15), 

5' [p] = kB T f dx[p(x)lnp(x) - p(x)] - ~ 

X f f dxdyp(x)K(x-y)p(y) -p f dxp(x). 

(16) 

Subtracting out Eq. (4) gives 

F[p] =Y[p] + f dxp(x)[U(x) +J1]. (17) 

Here, U(x) is an externally fixed field, not a functional of 
p(x), and hence F[p] can be evaluated at density fields 
which would only be realizable in an external field different 
from U(x), if at all. The functional derivative of Eq. (17) 
evaluated at per, [U]) does reproduce Eq. (6). Using Eq. 
(12), one can deduce the numerical value of the extremum 
of F[p], 

F [p ] extremum = A [U [p J] + pN, (18 ) 

to within an additive constant. Thus, one can identify the 
value of the extremum of F[p] as the Helmholtz free energy 
to within the additive constant J1N. 

III. THE ROLE OF THE INTEGRAL EQUATION 

A [ U] provides a complete description of an equilibrium 
system. This is true even if the expression for A [U] is ap
proximate, for "approximate" simply means that the Hamil
tonian which would generate A [U] exactly differs from the 
Hamiltonian of interest. In this sense that every A [U] is 
exact, the generalized tangency conditions are also always 
satisfied. 

If, on the other hand, one starts with 
A [p] = F[p] - pN [Le., Eq. (18)], one does not start with 
a complete description of the system. To develop a complete 
description, one must supplement A [p] with a knowledge of 
either 

p =p(r,[U]) (19) 

or 

U=U(r,[p]). (20) 

If Eq. (19) is given, one can deduce A [ U] 
= F[p [ U]] + pN which does provide a complete descrip
tion. If Eq. (20) is given, one can complete the functional 
Legendre transformation indicated in Eq. (12) to yep], 
which also provides a complete description. 

When Eqs. (19) or (20) provide a unique relation be
tweenp(r) and U(r), the extension toA[U] orY[p] leads 
to a characterization of a unique system. When they provide 
no relation or a multiple-valued relation, however, no or 
many systems are described. Since each A [ U] or Y [p] com
pletely describes a system, the multiplicity of free energy 
functionals results from the fact that a multiplicity of Hamil
tonians can be associated with the model F[p] functional. 
Associated with each realization-Le., with each Hamilto
nian corresponding to each solution ofEqs. ( 19) or (20 )-is 
a corresponding A [U] or Y [p ]. The generalized tangency 
relations are satisfied for each realization. 

It is tempting to argue that ifthere are multiple solutions 
to Eq. (6), and hence a multiplicity of extremalizing values 
for F[p] in Eq. (4), then the correct one is that which pro
duces the lowest value of F[p ]. This is an extrathermodyna
mic rule, however. Each solution corresponds to a particular 
Hamiltonian. One can choose which p(x) is the best by 
choosing that for which the corresponding Hamiltonian is 
the closest in some appropriate sense to the real Hamilto
nian, but the value of F[p] has no clear relation to this mea
sure. 

As the following analysis of a representative equation 
shows, while particular searches may discover only a few 
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solutions, there are in fact very many solutions to realistic 
problems. Hence, sorting through their significance on the 
basis of a one-dimensional measure is fraught with difficulty. 
The variational formulation isjust as susceptible to ambigu
ous results as the conventional integral equation approach. 

IV. A SIMPLE EXAMPLE 

A. A toy model for Eq. (4) 

In view of Eqs. (14) and ( 17), we see that the kernel in 
the model free energy functional Eq. (4) should be identi
fied 12 with the direct correlation function integrated over 
directions perpendicular to the symmetry axis, 

K(x - y) = kB Tc(x,y). (21) 

By assuming that c(x,y) is independent of the density over 
the density range of interest, one also assures that the re
quired translational invariance obtains for K. 

Diffraction experiments can be employed to determine 
direct correlation functions in dense monatomic fluids such 
as liquid argon. 13 Figure 1 schematically indicates the shape 
ofthis radially symmetric function c(r). If c(r) has this sym
metry, the integral required for K has the form 

K(x - y) = 21TkB T r'" rc(r)dr. (22) 
J1X-YI 

Figure 2 shows qualitatively the shape expected. Our "toy 
model" is generated by the following crude, but mathemat
ically simple approximation to K, 

K(u) = -AkBT[1 + Bcos(ulro)] 

=0 
(lul<1Tro), 
(1Tro< luI>. 

(23) 

A, B, and ro are suitable constants. Equation (6 )now adopts 
the form 

lnp(x) = In z - A LX_+:'~" {I + B cos 

X [(x - y)lro]}p(y)dy, (24) 

under the assumption that walls represented by U(x) have 
receded to ± 00 and where we have introduced the fugacity 

z=exp(f1lkBT). (25) 

c(r) 

FIG. 1. A typical direct correlation function in a liquid (after Ref. 12). 

K(x-y) 

x-y 

FIG. 2. The expected form of the kernel in Eqs. (4) and (6) [cf. Eq. (21) J. 

If we make the following scale changes: 

x ..... roX, z ..... zI21TroA, 

p(x) ..... p(rox)!21TroA, 

the toy model integral equation simplifies to 

lnp(x) = In z + f-+ 00'" K(x - y)p(y)dy; 

A K(rou) 
K(u) = = - (21T)-1(1 +Bcosu) 

21TAkBT 

=0 

(26) 

(lul<1T), 

(1T< lui). 
(27) 

Figure 3 illustrates one such simplified K, bearing a superfi
cial resemblance to the curve in Fig. 2. The shape indicated 
in Fig. 2 suggests that B> 0 on physical grounds, at least for 
simple monatomic substances. We are at, however, liberty to 
seek solutions to Eq. (27) for all z> 0 and any real B. 

B. Some exact solutions 

It is clear that Eq. (27) always has the uniform-density 
solution p(x) = Po> where [in the dimensionless units intro
duced in Eq. (26)] 

z(po) = poexppo 

00 

= L p'O+ lin!. (28) 
n=O 

K(u) 

u 

FIG. 3. The toy analytic model assumed for K(u) in Eq. (23). 
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Elementary thermodynamics shows'2 that the pressure p (in 
units of 1I21TroA) in this uniform fluid exhibits only a second 
virial coefficient correction to the ideal gas pressure, 

p/kBT=po + ~p~. (29) 
2 

The Lagrange method for series reversion '4 reveals that the 
inverse ofEq. (28) has the series, 

00 

po(z) = I (-n)n-'z"/nl, (30) 
n=1 

whose radius of convergence is lie. 
Periodic solutions to Eq. (27) can also be obtained, hav

ing the form 

p(x) = exp[a + b cos(x - xo)]. (31) 

Here Xo is arbitrary, reflecting the translation invariance of 
the kernel. Substituting Eq. (31) into Eq. (27) yields a pair 
of simultaneous equations for a and b, 

a = In z - exp(a)Io(b), 

b= -Bexp(a)I,(b), (32) 

wherein the I j are the modified Bessel functions. '5 It is useful 
to observe that the spatially averaged density corresponding 
toEq.(31)is 

(P(x» =exp(a)Io(b), (33) 

so that Eqs. (32) can be rewritten 

a =lnz - (P), (34) 

b = - B (P)I,(b)/Io(b). (35) 

For a given B and (P), the last three equations offer a con
venient procedure for finding a, b, and the appropriate z. Figure 
4 illustrates a simple graphical solution of Eq. (35) for b; using 
the determined b value in Eq. (33) yields a; finally, Eq. (34) 
produces the proper z value. 

As Fig. 4 indicates, II (b)/Io(b) is an odd continuous func
tion of b which rises monotonically between finite limits. Its 
intersections with the straightline - biB (P) determine the 
available solutions. One always has b = 0 as a solution, but this is 
just the uniform density case already discussed. The slope of 
1/10 at the origin is !, so a pair of nontrivial solutions ± b #0 
also exists provided 

B (P) < - 2. (36) 

Since (P) is non-negative, B must be negative in order to produce 

-b/8<p> 

--------------~~------------------.b 

FlG. 4. The graphical solution to Eq. (35) for b. 

produce these nonconstant periodic densities. Although the 
simple direct correlation function depicted in Fig. 2 suggests 
B> 0, a value of B satisfying Eq. (36) is not necessarily non
physical. Formally, we know" that there is a short ranged 
pair potential which will produce any short range direct cor
relation function. Thus, Eq. (36) may be found in some 
more complex systems. Even for simple systems, Eq. (36) is 
probably not unrealistic: The conflict with Fig. 2 probably 
arises from the approximation that K(x) is density indepen
dent. Despite the fact that the integral Eq. (6) is a toy model 
and hence the connection between Eq. (36) and a molecular 
level description is not that direct, the variation of the num
ber of solutions with density is just that seen in more elabo
rate, molecular based equations: The single solution present 
at low (P) bifurcates into a uniform and an oscillatory solu
tion as (P) increases.8 In any case, the periodic densities Eq. 
(31) present when Eq. (36) is satisfied qualitatively, resem
ble those expected for a crystalline phase with low-index 
planes of particles perpendicular to the x axis. 

C. Additional solutions arising via' bifurcation 

Further analysis is facilitated by considering the linear 
A . 

eigenvalue spectrum associated with K 

f-+ 0000 K(x - y) exp(iky)dy = A(k) exp(ikx), (37) 

where 

A.( k) = - sin ( 1Tk) [1 +~] (I k I # 1 ) 
1Tk 1 - k 2 

' 

(38) 

and 

A.( ± 1) =1imA(k) = -B/2. (39) 
k_1 

We can now carry out a stability analysis of the functional 
F[p(x)], with respect to sinusoidal perturbations of the uni
form density; i.e., we consider 

p(x) = Po [1 + E cos(kx)], (40) 

where E is a small parameter. Upon inserting this density 
into F[p(x)], Eq. (4), with use of the toy model kernel Eq. 
(27), we obtain the following free-energy density 

F[p(x)]!(LkBn =F[po]l(LkBn + (po/8/1rA) 

X [1 - Po A (k) ] ~ + 0 ( E4) • ( 41 ) 

Through quadratic order in E, the magnitude of A(k) con
trols whether the sinusoidal density wave produces a rise or a 
reduction in free energy. 

If 1 - Po A (k) is negative, the sinusoidal perturbation 
succeeds in lowering the free energy, suggesting (but not 
guaranteeing) that a nontrivial solution with period 21Tlk 
should exist. Indeed, this is exactly what we have found in 
the previous Sec. IV B for the closed-form densities Eq. (31) 
with k = 1. The criterion Eq. (36) is precisely equivalent to 
1-poA(a) <0. 

Figure 5 shows a plot of A (k) vs k for B = 3. It is typical 
to the extent that it displays decaying oscillations about zero. 
The dominant maximum occurs at k m = 2.4360, for which 

A (km ) = 0.333 922. (42) 

As the uniform density Po increases from 0, km is the first wave-
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1.0 

0.5 

0.0 

A(k) -0.5 

-1.0 

-1.5 

-2.0 
0 2 4 6 

k 

FIG. 5. The plot oLiCk) vs k for B = 3.0. 

length to become unstable; This occurs when 

Po=1i...l.(km ) =2.99471 (B=3). 

8 10 

(43) 

Further increase in the average density would cause a finite 
range of k 's surrounding km to experience instability. Reference 
to Fig. 5 shows that as the density continues to increase, a succes
sion of k intervals farther and farther from the origin manifest 
instability. 

Numerical study of the toy model integral Eq. (27) indi
cates that whenever a nonvanishing k interval exists over which 

I-Po(z)...l.(k) <0, (44) 

nontrivial periodic solutions exist with anyone of these k 's as 
wave vector. Furthermore, each of these solutions can be trans
lated arbitrarily along the x direction to give a doubly-infinite 
family of solutions. Figure 6 illustrates this solution multiplicity 
for the case 

B = - 1.69021, z = 3.5, Po(z) = 1.13029. (45) 

Here, the range of instability is found to be 

x 

FIG. 6. The unifonn and two nonunifonn solutions to the toy model integral 
equation for p(x). All solutions have B = - 1.690 21 and z = 3.5. 

1.02946 < k < 1.477 87. (46) 

The Fig. 6 presents two solutions with distinct periods in this 
range, obtained by iteration ofEq. (27) until convergence. The 
uniform density Po(z) is included for comparison. 

We have not yet investigated the possibility of non periodic 
solutions to Eq. (27). It does appear that for some special B, z 
pairs that a nonuniform periodic solution yields the same pres
sure as the uniform solutionpo(z), Eq. (29). This amounts to 
thermodynamic coexistence of a crystal and a fluid, suggesting 
that an interface profile solution (say crystalline as x- - 00, 

fluid as x- + 00) could be constructed. It is also possible that 
unphysical chaotic solutions exist. Further analysis of this toy 
model seems warranted. 

V. DISCUSSION 

It has been recognized since the early numerical work of 
Kirkwood and Monroe6 that the nonlinear integral equations 
used for the determination of the singlet density pCr) often pos
sess multiple solutions. The usual experience is that only a uni
form Po solution is present at low densities, but that additional 
oscillatory solutions appear as the average density increases. 
This behavior suggests the physical interpretation that the ap
pearance of oscillatory solutions at high density corresponds to 
the appearance of solid phases and that the oscillatory solutions 
are approximations to the density variation in a solid phase. 

There are several objections which often apply to this 
interpretation. 8 It is known that the one-dimensional ver
sions of these integral equations exhibit the same qualitative 
behavior while, of course, no solid phases are possible. The 
integral equations which are solved are based on descrip
tions ofliquids, so their solutions are radially symmetric, i.e., 
the oscillatory solutions oscillate in a radial direction, not a 
behavior which can be realized in any real solid. The oscilla
tory solutions often appear via bifurcation off the uniform 
solutions, an event associated with a similarly unphysical 
singularity in the wavelength dependent mechanical suscep
tibility. 

For integral equations derivable from a free energy func
tional of the density via a variational principle, however, these 
objections have not appeared to be relevant. Since a free energy 
functional of the density per) in principle, determines the Ham
iltonian of the system, the extremalizingp(r) and its associated 
free energy may be viewed as exact evaluations corresponding to 
an approximate Hamiltonian. As an exact solution, the general
ized tangency conditions8 characteristic of the real systems are 
necessarily satisfied. The argument that it is the approximation 
procedure itself that alters the number of solutions would not 
seem to apply. 

It is still true, however, that a nonlinear integral equation is 
associated with a variational formulation. The relation between 
the model free energy functional in Eq. (4) and the associated 
Euler-Lagrange Eq. (6) is typical. Further, as the free energy 
functionals typically possess multiple extremalizing density 
fields at high average densities, the corresponding integral equa
tions must similarly possess multiple solutions. What is shown in 
Sec. III, however, is that when a variational free energy possesses 
multiple solutions it does not in fact provide a complete physical 
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description of the system. A family of solutions to an integral 
equation does not correspond to a family of (possibly metasta
ble) physically realizable states associated with a fixed (but ap
proximate) Hamiltonian, but rather corresponds to a family of 
Hamiltonians which would give rise to the various solutions. 
Multiple solutions do not con'espond to a multiplicity of states of 
a fixed system, but to a multiplicity of systems. A numerical 
value for the free energy is, of course, associated with each solu
tion, but a direct comparison of free energy values for different 
solutions is of quite uncertain meaning since the distinct solu
tions correspond to physically distinct Hamiltonians. 

The model integral equation analyzed in Sec. IV shows all 
the characteristics of the integral equations which have been 
analyzed numerically. At low density there is a unique spatially 
unifonn solution. As the density is increased, however, nonuni
fonn solutions bifurcate off the unifonn solution. Beyond the 
first bifurcation point, a continuum of bifurcations gives rise to a 
continuum of solutions. 

The continuum of solutions can be reduced to a discrete set 
of solutions (as is typically done) by restricting the solution 
space (by presupposing a paJiicularly simple structure for a so
lution). This is an extrathermodynamic assumption about the 
structure of the solutions, however. In the absence of such an 
assumption, there is little guidance for selecting a physically rel
evant solution from among the continuum of solutions the inte
gral equation possesses. Every solution has an associated free 
energy value, but using this as a selection measure is physically 
remote from what is really sought: The best solution is that for 
which the corresponding approximate Hamiltonian is physically 
closest to the real Hamiltonian. 
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