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The conventional melting of “simple” substances involves configurational excitation from multi- 
dimensional potential energy basins surrounding crystalline structures to those surrounding amor- 
phous structures. Vibrational anharmonicity changes relatively little in extent across such transi- 
tions. Motivated by observations of a sharp melting point for solid amorphous silicon well below 
that of the crystal, another possibility is proposed. This requires cooperative softening of vibra- 
tional modes with increasing mean amplitude. An exactly solvable model for this type of strong 
anharrnonicity demonstrates that it can produce a first-order “intrabasin melting”, or a critical 
point with a symmetric heat capacity divergence. 

1. Introduction 

Understanding collective phenomena in many-particle systems often can be facili- 

tated by identifying and classifying the “inherent structures”, i.e. the local minima of 

the potential energy function. In particular this approach has been useful for analyz- 

ing short-range order in liquids [ 11, for clarifying the nature of glass transitions [ 21, 

for identification of atomic motions in amorphous solids that produce low-tempera- 

ture two-level systems [ 3 1, and for extending the Lindemann melting law to a conju- 

gate freezing criterion [ 41. 

The first-order melting transition for simple atomic and molecular substances re- 

ceives a straightforward description in terms of the contributing inherent structures. 

Below the melting temperature T, the relevant inherent structures (located by stee- 

pest-descent mapping of dynamical configurations) involve the stable crystal with an 

equilibrium defect concentration. Above T,,, the liquid samples a distribution of 

amorphous particle packings as inherent structures. Detailed simulations for several 

simple models [ 1,5,6] reveal that this distribution of amorphous inherent structures 

is virtually independent of the temperature in the liquid from which it is generated 

(by the steepest-descent mapping to potential energy minima). Furthermore the 

dominant contribution to the heat of fusion is the difference in mean depths of the 

crystalline and the amorphous inherent structure basins; relatively little arises from 

the difference in vibrational free energies for these two classes of basins. 

With these simple-liquid observations as background, it may seem strange that el- 
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emental silicon experimentally displays a metastable amorphous solid phase with its 

own distinct melting temperature TA, which is approximately 200 K lower than that 

of the stable crystalline solid (T,= 1684 K) [ 71. The latent heat for the former is 

estimated to be about 15 percent of the latter [ 8 1. To the extent that a classical poten- 

tial model can be invoked to explain this behavior, two possibilities appear. One is 

that inherent structures for the amorphous solid and for the liquid are distinctly dif- 

ferent (thus posing an experimental challenge to characterize the difference). The 

other is that a strong and peculiar form of anharmonicity might be present which 

permits first-order intrabasin melting to occur. This latter option forms the subject of 

this paper. 

2. Potential energy basins 

Let 0( r,, . . . . rN) denote the potential energy function for the N particle system. In 

the large system limit the number of distinct (non-permutationally related) 0 min- 

ima rises exponentially with N. The same is true if these minima are classified by their 

values of @= Q/N, so we write exp [ No( @) ] for the asymptotic density in @ of the 

distinct minima. 

Each of these minima, the inherent structures, inhabits its own basin of attraction, 

say B, for inherent structure a. B, comprises all system configurations r,, . . . . rR; which 

map onto a by steepest descent on the @ hypersurface. This mapping can be inter- 

preted simply as removal of vibrational deformation from the system. 

The vibrational free energy Nf”,, for basin B, can be precisely defined as follows 

(/I=1 /kRT): 

exp( -ND&)= j dr,...dr,exp( -PA@), 

BCI 

(1) 

where the multiple integral spans B,, and A@ is the rise in @ above the minimum. 

Considering the large number of degrees of freedom present, the& for basins of depth 

@ will cluster closely around the mean, which will be denoted by fv (9). In the large N 

limit, the thermodynamic free energy is exactly given by [ 21 

where IT is the mean thermal de Broglie wavelength. Melting of simple substances is 

associated with a discontinuous change in the minimizing depth @ in eq. (2) as 7 

passes through T,. 
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3. Anharmonic model 

In the immediate vicinity of inherent structure a the potential will be harmonic, 

and has diagonal form in terms of normal mode amplitudes uj: 

A@=$ c K;u’+0(u3). (3) 

Resealing each coordinate by Ki ‘I2 A@ becomes locally isotropic: , 

A@= ‘S*+ 2 . . . ) (4) 

where S is the 3N-dimensional hyper-radius. As an elementary model for typical 

amorphous structure basins we assume that the intrabasin vibrational partition func- 

tion ( 1) can be expressed as a simple integral over S: 

exp( -ND&)= (n K,!/‘) [2r~~“‘~/~(3N/2)1 

co 

x P(S) exp[-PA@(S)] S3”-*dS. 
I 
0 

(5) 

Here P(S) incorporates the truncating effects of the basin boundary: it is the proba- 

bility that a randomly chosen point on the size-S hyperspherical surface lies within 

the basin. A reasonable choice is a Gaussian form: 

P(S)=exp( -coS2). (6) 

The low coordination number and high rigidity of silicon stem from the presence 

of strong directional bonds with tetrahedral angles. Any substantial deformation away 

from this ideal bond geometry disturbs the underlying electron orbital hybridization 

and weakens bonding. Large amplitude vibrations thus should weaken restoring forces 

on average. This motion can be incorporated in A@(S) by postulating 

Ao(s) _ 1 
-( 

1 +aoN-‘S4 
2 l+boN-2S4 

S2 > (7) 

with 0 < a0 < bo. The N -2 factors ensure that the cooperative weakening effect devel- 

ops only when amplitudes at each atom are order unity. A@ must be monotonically 

increasing with S to be consistent with the basin definition, which thus requires 

ao>+bo. 

4. Basin partition function 

Presence of the large parameter N in eq. ( 5 ) causes the integral to be dominated by 
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the neighborhood of the integrand maximum. Following the usual procedure we thus 

find 

cow PW 
f’(w) = -S ln w+ F + 2bh,2 

1+ (ao/bo)w2 
> 1+w* ’ 

where 

(lnK,)= &I lnK,, 

(8) 

(9) 

and w is a positive real root of 

~($?L& 1+[(3a,/b,)-l]w~+(a,/b,)w4 

(l+w*)’ (10) 

which minimizes expression (8). The corresponding value of S* in eq. (5) is given 

by Nwbo “=. 
Near the harmonic limit uo=bo, the parameter w exhibits a smooth temperature 

variation from low to high temperature. However if ao/bo is sufficiently small, the 

root w which minimizes /?fV at low temperature will suddenly be replaced by another 

at high temperature. This discontinuous shift heralds a first-order phase change, a 

vibrational melting transition. Fig. 1 illustrates this behavior for the case uo/bo= 0.15, 

co/b;” =0.30, with the vibrational melting point at 

b;/‘/jk 0.0760 . (11) 

The appropriate w value jumps from 0.254 (low temperature branch) to 2.246 (high 

temperature branch) at this point. 

An intermediate case exists, displaying a higher order transition. With uo/bo= 0.15 

as above, this occurs when co/b;/’ r 1.0267 1, and the corresponding critical temper- 

ature is given by 

b;/‘//k 0.15548 . (12) 

The vibrational heat capacity diverges at this critical point as 1 ATI -‘j3, a behavior 

observed in some other phase transition models [ 93. 

5. Conclusion 

This paper explores the possibility that cooperative softening of restoring forces in 

a condensed phase can produce an intrabasin vibrational melting phenomenon. A 

specific model, eq. (7), is proposed for the required anharmonicity, and is shown to 



F.H. Stillinger / Vibrational melting and relevance to amorphous silicon 83 

8 

6- 

II I I I I I I I I 
0 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 

Fig. I. Plot of F( w) from eq. (8) versus the temperature variable bd/*/j3 for the case ao/b0=0.15, 
c,,/bb/Z =0.30. Dashed portions represent metastable and unstable branches. 

produce either a first-order transition, a critical point, or no transition depending on 

the values of relevant parameters. 

The model offered is intended only to represent a “typical” basin for amorphous 

inherent structures (potential energy minima) in the system, and does not imply that 

the system is dynamically confuted to one such basin. Unless the system has been 

brought to very low temperature in a metastable amorphous state, transitions between 

neighboring basins (with associated particle diffusion) can be expected to occur. 

It has been suggested that the vibrational melting phenomenon may be relevant to 

the behavior of amorphous silicon. Assessment of this proposition must await future 

discriminating experiments and/or simulation studies. 
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