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The equilibrium pressure in a crystal composed of hard spheres or disks may be determined 
from the statistical geometry of a single isolated monocavity (one large enough for addition of 
only one particle). Additional knowledge of the equilibrium concentration of monocavities 
permits evaluation of the chemical potential and absolute entropy. We have used Monte Carlo 
simulation to examine isolated monocavities in the rigid-disk crystal near close packing. The 
resulting pressures compare very favorably with those from previous simulations, and with 
asymptotic high-compression equations of state. The monocavities exhibit fluctuating 
polygonal shapes; the number of sides varies from three to six, with four the most probable 
occurrence. 

1. THEORY 

Geometry has become a major emphasis in the ongoing 
study of hard-particle systems. Indeed, at thermodynamic 
equilibrium, the hard-sphere pressure equation of state as 
derived by Speedy’ involves only geometric variables: 

wherep = N’/V is the density of the system, k is the Boltz- 
mann constz& T is the temperature, cr is the hard-sphere 
diameter, and D is the dimensionality of the system. We will 
use three-dimensional language, although the focus of our 
work is the two-dimensional hard-disk system. If imaginary 
spheres of radius g are placed around each hard sphere and 
the centers of all other particles are then excluded from those 
imaginary spheres, the volume outside the excluded region is 
the available space F$. The area of the interface between the 
available space and the excluded region is denoted by S,. 
The chemical potential may also be written in terms of the 
available space: 

3,“lv /I=kTln - , ( > Kl 
(2) 

where /? is the thermal deBroglie wavelength and N is the 
number of particles. 

The quantities V, and S,, and, therefore, the pressure 
may also be written in terms of the configuration average of 
the individual volumes (~1) and surfaces (s) of all cavities2 
A cavity is a connected subset of the total volume into which 
the addition of the center of another sphere is possible with- 
out sphere overlap. A cavity should not be confused with a 
vacancy in the high-compression regime, for it is possible to 
have a vacancy in the crystalline structure, e.g., a lattice de- 
fect, to which a particle could not be added; a vacancy is not 
necessarily also a cavity. All of the cavities together compose 
the available space; therefore, if there are N, cavities, 

F<) = A’,(v) 

St, = iv, (s) . 

Substitution of these into Eq. C 1) yields” 

(3a) 
(3b) 
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(4) 

Equation (4) predicts that the pressure of a hard-disk 
system may be determined by the evaluation of the statistical 
geometric quantities (s) and (v) alone. For this reason, we 
undertook a Monte Carlo simulative study of both of these 
quantities in order to see how well the pressure obtained by 
this means near the close-packed limit compared with that 
obtained by other means. Speedy and Reiss3 (SR) have re- 
ported the evaluation of (s) by molecular dynamics at a few 
disk densities near close packing. Those authors calculated 
the total available surface S,, and the total available volume 
V, from an empirical equation of state and Eqs. ( 1) and (2). 
Using the simulated values of (s) and the calculated values 
of the total available surface they calculated N, using JZq. 
(3b). The values of N, and calculated values of the total 
available volume Vu were then used to calculate (v) from 
Eq. (3a). SR found good agreement between their calculat- 
ed pressures [ Eq. (4) ] and those obtained by nongeometric 
methods. Our results, covering more densities in the region 
near close packing, are derived entirely from the geometry of 
a single monocavity. We have also been able to examine 
some new geometric characteristics of monocavities. 

Using, in part, a dynamic rather than a statistical ther- 
modynamic argument, Hoover et al. have derived an equa- 
tion of state for hard disks and spheres also dependent solely 
on geometric properties4 In this case, the variables are the 
free volume vr and the surface area sr of the free volume: 

“=‘+$ $, 
PkT ( ) f 

where the average is over all allowable configurations of the 
spheres, The free volume is the volume through which the 
center of a particle in the system could move if all the other 
particles were fixed. It differs from the volume of a cavity in 
that it is the volume available to the center of a particle al- 
ready in the system-one which has locally had an effect on 
the structure of the system. Speedy has proved the equiv- 
alence of the ratio of the average cavity surface to cavity 
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volume and the average of the ratio of the free surface to free 
volume” and has thereby validated Eq. (5) on a statistical 
thermodynamic basis. While the pressure may be deter- 
mined from the geometry of the free volume alone, the chem- 
ical potential may not be c.alculated without knowledge of 
the equilibrium number of cavities. Cavities are essential to a 
complete geometric description of the thermodynamics of 
the hard-sphere crystal. 

As the density of the system is increased from zero, the 
available space shrinks and passes through a critical percola- 
tion point where it disconnects into O(N) pieces. At crystal- 
line densities, the available space is so small that only mono- 
cavities, i.e., cavities large enough to accept only one 
additional particle, are important.. Because these monocavi- 
ties are very dilute, we assume that they do not interact with 
each other, and, therefore, in the high-compression range, 
the configuration averages of the cavity volume and surface 
over all cavities may be replaced by the averages over a single 
monocavity. In a crystal, the pressure may be determined 
from Eq. (4) by the average volume and surface of a single 
cavity. In fact, SR (Ref.5) have predicted by analogy with 
the exact one-dimensional case that the pressure at high 
compressions depends only on the average volume of a cav- 
ity. Equation (4) may be rewritten in terms of an average 
density-dependent shape factor u(z), 

P -l+a(Z), 
pkT (?I> ‘/D 

where 

a(z) = z 6) 2D (u)‘” - 11/D 
and z is the density relative to the close-packed density. In 
one dimension, a(z) = o for all densities, and it is expected 
that in the two-dimensional crystal, a(z) will be insensitive 
to density changes and will be approximately equal to CT.~ 

Schaaf and Reiss’ have used a plausibility argument to 
derive an asymptotic form of the hard-sphere equation of 
state near the close-packed density using the geometric 
quantities V,, and S,. SR (Ref. 5) proved the same result 
rigorously employing geometric considerations. The equiva- 
lent of this equation in two dimensions is 
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FIG. 1. The lattice configuration of hard disks with one vacancy is shown 
for z = 0.95. Simulations were performed on systems of 503 disks in a rec- 
tangular ceil with periodic boundary conditions. 

ditions applied. The system as described provides no means 
for t.he escape of the defect. The initial vacancy in the lattice 
was also a cavity because the densities studied were below 
the close-packed limit. The size of a cavity relative to the 
radius of an exclusion circle is so small for the high compres- 
sions examined that the curvature of the cavity boundary 
was negligible, and the cavity was taken to be a polygon. Let 
the lattice point from which the single disk was removed be 
considered the cavity center. In the lattice, the sides of the 
polygon were the tangents to the exclusion circles of the cav- 
ity nearest neighbors at the point on the exclusion-circle pe- 
rimeter which was closest to the cavity center. The lattice 
cavity was a regular hexagon (see Fig. 2). As the cavity 
neighbors were moved in the Monte Carlo process, the size 
and shape of the cavity changed. It was assumed that the 

P=l$ p 
i/2 

PkT pc 1J2 +/~ ’ 

wherepC is the close-packed density. It is important to note 
that the same asymptotic high-density expression for the 
pressure has also been derived from the configuration inte- 
gral via a different route that neglects the existence of cav- 
ities completely.7” The cavity is therefore a “thermometer” 
for the thermodynamic properties of the hard-sphere sys- 
tem. 

II. CALCULATION 

We used the Monte Carlo method to calculate the aver- 
age volume and surface of a monocavity in the high-density 
hard-disk system. As illustrated in Fig. 1, our initial configu- 
ration was a triangular lattice in a rectangular cell, with one 
disk removed to provide a vacancy. Periodic boundary con- 

FIG. 2. The cavity in the Iattice configuration is shown. The dark disks are 
the hard particles, with the surrounding circles the exclusion circles. Tan- 
gents to theexclusion circles form the polygon which approximates thecav- 
ity. If parallel sides cross, the cavity is eliminated. 
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TAHLE I. Results of the hlonte Carlo simulation for the percentage of va- 
caucieb examined that were also cavities, average cavity surface? volume, 
pressure, and shape factor [ Eq. (S)] are given. The surface and volume 
valuers are reduced in terms of the lattice spacing of the particles 1= l/z”‘. 

MI lU)/ 
z 5% cavities (I- 1) (I- 1)’ p/pk T dZ)/(T 

0.95 43.9 3.834 0.950 39.85 1 0.984 
0.96 46.3 3.819 0.920 51.330 0.995 
0.97 4S.8 3.827 0.928 6X.140 0.993 
M.02 50.0 3.880 0.946 103.998 0.997 
0.9S2 49.7 3.885 0.962 111.664 0.990 
0.964 39.9 3.764 0.888 131.927 0.999 
0 986 
iY88 

51.8 3.766 0.897 149.438 0.994 
50.3 3.772 0.896 174.820 0.996 

sides ofthc polygon moved parallel to themselves. The possi- 
ble number of sides for the polygon ranged from three to six, 
and if two parallel sides crossed each other (corresponding 
to a particle’s moving toward the vacancy such a distance 
that its exclusion sphere encompassed the available space ) , 
the polygon was eliminated. The polygon was also eliminat- 
ed whenever there was no overlap of the quadrilaterals 
formed by two sets of parallel-side pairs. In each such case, 
although the polygonal cavity vanished, the vacancy re- 
mained. 

The simulated systems contained 503 disks, with at least 
20 x’ lOh Monte Carlo single-particle steps allowed for equili- 
bration. The step size was selected such that 50% of the trial 
moves were accepted. The calculations were divided into 20 
blocks, each with 600 measurements of the cavity polygon 
separated by 3020 Monte Carlo steps, for a total of 12 000 
mctsurements. For each configuration for which the cavity 
polygon was measured, a set of linear inequalities was used 
to determine whether the polygon had vanished. For cavities 
with nonzero cont.ent, the number of sides and the points of 
intersection of those sides were determined. The content and 
perimeter of the polygon were calculated from the points of 
intersection of the sides. 

III. RESULTS 

The simulated averages of the cavity volume and surface 
are reported in Table I, along with the pressures, calculated 
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FIG. 3. The asymptotic high-density equation of state [Eq. (7) ] (solid 
line) is compared with the pressure calculated by Monte Carlo using Eq. 
(4) (diamonds). Thecrossesshow thepressureAldereta1. (Ref. 10) calcu- 
lated by simulation of the virial of intermolecular force. 

by Eq. (4). Approximately 50% of the vacancies examined 
for each density over the entire range studied were also cav- 
ities. SR have used molecular dynamics to calculate the cav- 
ity surface.3 As outlined earlier, they determined the cavity 
volume from the simulated value of the cavity surface and 
values for S, and V,, derived from Eqs. ( 1) and (2) and an 
empirical equation of state. The highest densities at which 
SR performed these calculations were z = 0.95 and l/1.02. 
Their pressure at z = 0.95 agrees with ours to within 0.04 
(0.1% relative difference), the simulated average cavity sur- 
face to within 10 3, and the average cavity volume to within 
10 - 5. Their pressure at z = l/l .02 agrees with ours to with- 
in 2.2 (2% relative difference), the simulated average cavity 

TAFXE II, The percentage of cavities with three, four, five, and six sides at each density is given (in the column marked “% “), along with the average cavity 
surface and volume fi3r the cavities with those numbers of sides. The surface and volume values are reduced in terms of the lattice spacing of the particles 
lz l/p”‘. 

3 sides 4 sides 5 sides 6 sides 
I yg+ (s)l(l-- 1) {u)/(/ ~_ 1)’ %  {s)/(l.-- 1) {u)/(l-- 1)2 %  (S)/(l- 1) (U)/(/-- 1)’ %  (S)/[l~~ 1) (0)/(/L 1)’ 

0.95 21.21 2.021 0.338 46.78 3.541 0.628 23.86 5.170 1.543 8.15 6.334 2.653 
0.96 21.70 2.022 0.338 45.94 3.578 0.615 24.53 5.026 1.455 7.83 6.43 1 2.644 
0.97 20.13 1.954 0.301 47.53 3.536 0.624 24.07 5,070 1.471 8.27 6.3X4 2.625 
l/1.02 19.23 2.068 0.346 47.58 3.572 0.623 24.88 5.043 1.458 8.31 6.354 2.654 
0.982 19.51 2.006 0.325 47.24 3.563 0.627 24.71 5.099 1.505 8.54 6.446 2.698 
0.984 19.35 I .S3‘2 0.262 48.7 1 3.539 0.617 24.7 1 4.995 1.433 7.23 6.230 2.517 
0,9S6 20.4S 1 .x93 0.29 1 46.96 3.536 0.606 24.46 4.916 1.398 7.90 6.394 2.62X 
0.988 19.08 1.919 0.302 48.10 3.482 0.589 24.68 4.918 1.392 8.14 6.361 2.600 
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Distribution of cavity sides 
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FIG. 4. The distribution of cavities with three, four, and five sides is shown 
for each density. 

surface to within 2 >i IO - ‘, and the average cavity volume to 
within 2 X 10 ‘. Hoover ezal. used the Monte Carlo method 
to determine the pressure from the free volume and surface, 
using Eq, (S).” The highest density they studied was 
z = 0.95, where their pressure agrees with ours to within a 
relative differenc.e of 0.3%. Table I also gives the simulated 
values of the shape factor a(z) relative to the particle diame- 
ter U. As SR predicted and demonstrated in their molecular 
dynamics simulation,” a(z) does not depend strongly on the 
density in the cryst.alline regime and is approximately equal 
to the particle diameter. Our results confirm their findings 
for more densities near the close-packed limit. 

Figure 3 shows the pressure calculated from Eqs. (4) 
and (7) as a function of density. The pressures we calculated 

using the simulated geometric quantities (diamonds) agree 
quite well with the values predicted by the high-compression 
asymptotic form of the equation of state [ Eq. (7); solid line 
in Fig. 3 I. The crosses show the two pressures at these nearly 
close-packed densities which Alder et ~1.“’ calculated by 
simulat.ion of the virial of the intermolecular force. 

Table II gives the percentage of cavities at each density 
which had three, four, five, and six sides, along with the 
average area and surface of the cavities with those numbers 
of sides. Figure 4 shows the distribution of the number of 
cavity sides for eac.h density studied with four the most prob- 
able outcome in all cases. The average number of sides per 
cavity also is approximately four over the density range stud- 
ied, indicating that as the lattice was relaxed the particle 
neighbors tended to collapse into the available space of the 
cavity. 

Speedy and Reiss have advanced a seemingly reasonable 
argument concluding that near the close-packed limit, cav- 
ities will virtually always exhibit simplectic shape: in two 
dimensions a triangle. Our results show that the collective 
behavior of the rigid-disk crystal is too complicated and sub- 
tle to respect “reasonable” arguments. It will be illuminating 
eventually to apply the approach used in this paper to the 
rigid-sphere crystal in three dimensions, where again cav- 
ities may e,xhibit shapes that are only occasiomally simplectic 
(tetrahedral). 
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