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Microscopic model for dimer buckling on Si(001)
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Examination of scanning tunneling microscopy (STM) images for the dimerized Si(001) surface, partic-
ularly at low temperature, suggests that dimers can exist in either a buckled or an unbuckled geometry,
with both mechanically stable but the former lower in energy. A simple model for such behavior has
been constructed. Each dimer is represented by a single angular degree of freedom (“tipping” angle).
Interactions couple dimers nonlinearly to their nearest neighbors, and linearly to surface defects. The
system potential energy has a simple algebraic form in the angles. Stable tipping patterns have been
computed, and conform to the qualitative features of STM observations. The model should facilitate
study of possible surface phase transitions on S$i(001) by conventional computer-simulation methods.

I. INTRODUCTION

While the existence of dimers on the Si(001) surface ex-
perimentally is a long-established fact,! ~* details of their
geometry have been a source of continuing disagree-
ment.® In particular, no consensus has been reached con-
cerning (a) whether the stable form for a dimer involves a
bond parallel to the surface, or a tipped bond (“buckled
dimers”); and (b) if stable tipping obtains, what surface
pattern of tipping angles yields the lowest energy.
Theoretical calculations motivated by the desire to
resolve these ambiguities’~!! unfortunately have had the
contrary effect, by creating their own uncertainties and
disagreements.

Recently, Wolkow!? has obtained some remarkable
scanning tunneling microscopy (STM) images of dimer-
ized Si(001) surfaces over a substantial temperature
range. Observing these images invites the following con-
clusions.

(1) Buckled dimers are indeed the lowest energy
configuration, but various excitation processes (including
thermal excitation around room temperature) can pro-
duce rows of untipped dimers.

(2) Pairs of neighboring buckled dimers along a row
(i.e., in the surface direction perpendicular to the dimer
bonds) have strongly anticorrelated tipping angles; pairs
of neighboring dimers in two successive rows are weakly
anticorrelated.

(3) The Si(001) surfaces inevitably contain a significant
density of structural defects. These defects couple
strongly to the dimer buckling and thus influence the ob-
served patterns.

With regard to (a) above, it ironically appears that both
“buckled” and ‘“‘unbuckled” dimers may contribute in the
correct solution.

This paper proposes and investigates some aspects of a
simple model to describe and to rationalize the STM ob-
servations. Section II presents the model, while Sec. III
provides some illustrative numerical calculations. Con-
clusions and discussion appear in Sec. IV.

II. DIMER BUCKLING MODEL

The Si(001) surface of interest will have N dimers, ar-
ranged in a pattern with rectangular symmetry, whose
state of tipping will be described by a set of angles
a; (i=1,...,N). Figure 1 illustrates the dimer arrange-
ment. A common rotation sense will apply to all of these
angles, and an untipped dimer has o, =0. The objective
is to identify a physically reasonable potential-energy
function ®(a,,. . .,ay) that describes interactions of the
dimers with the substrate and among themselves. Clearly
the form chosen for @ must be consistent with substrate
symmetry; if no defects are present then

Dlay,. . .,ay)=D(—ay,. .., —ay) . 2.1

To begin, it is useful to recall the quartic anharmonic
function:

STRONG ANTICORRELATION

—_—— e e e

WEAK ANTICORRELATION

FIG. 1. Dimer pattern on the Si(001) surface. No tipping is
indicated, but would involve one end of the dimer moving up
out of the drawing, the other end downward. The directions of
strong and of weak tipping anticorrelation are shown, as sug-
gested by STM observations (Ref. 12).

9590 ©1992 The American Physical Society



46 MICROSCOPIC MODEL FOR DIMER BUCKLING ON 8Si(001)

fla,B)=a*+Ba®, 2.2)

where B is a parameter. If B =0 this function of a
possesses only a single minimum, at a=0. However, if
B <0, f develops a pair of minima flanking the origin, at

a==+(—B/2)'*. 2.3

The STM observations suggest that both untipped and
tipped dimers can be locally stable, conditions permit-
ting. Therefore it seems desirable to have the model au-
tomatically incorporate both of these cases by employing
Eq. (2.2) with B’s of variable sign.

In the absence of defects, the following generic form
for ® will be adopted:

N
o= fla;,B)+d,, .

i=1

(2.4)

Here B; will depend on the collection of dimer angles in
the vicinity of dimer i, and will thereby be capable of
changing sign. Interactions between dimers will be
comprised partly in ®;,, the task of which is to induce
the observed neighbor anticorrelations. For simplicity
the specific forms assigned to B; and ®,,,, are elementary
algebraic functions:

N
B;=—2+K 3 l(i,j)la}—A)*,

j=1

(2.5)

N PR
O =—1J 3 (=116 jeya;
i,j=1

(2.6)

where J, K, and A are positive constants. The symbol
s(i,j) represents the minimum integer number of steps
that must be taken (either along a row of dimers or be-
tween rows) to go from dimer i/ to dimer j. The range of
interactions between dimers is described by [I(i,j) for
which it will be supposed

I(i,i)=0,
1(i,j)>0,
3 I, j)=1.
J

2.7)

This pair function will convey surface anisotropy.

Notice that if all a;=*A with the single exception of
dimer angle a;, the corresponding B; would equal —2.
Hence, if ®;, did not matter, dimer i would also prefer to
tip (in either direction). Contraiwise, sets of a s differing
substantially from +A would give positive contributions
to the sum in Eq. (2.5); and if K were sufficiently large B,
would be positive. In this latter circumstance a;=0
would be preferred (again if @, did not matter).

The interdimer interactions represented by the B;, Eq.
(2.5), are insensitive to the signs of the tipping angles. By
contrast, ®; . in Eq. (2.6) depends on relative signs and
will be minimized when nearest neighbors in both surface
directions are tipped out of phase.

Detailed information is not yet available about the na-
ture of surface defects. These might include adatoms,
substitutional impurities, missing dimers, and shallow
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bonding defects. In addition the dimers can be expected
to interact with nearby ledges. As an interim measure it
is attractive to suppose that each angular degree of free-
dom a; couples linearly to the defects with its own cou-
pling constant g;. Consequently the generalization of Eq.
(2.4) to include defects is postulated to be

N
o= 3 [fla;,B;)+gia; ]+ Py, .

i=1

(2.8)

There should be no sign preference among the g;, and
only those for dimers near to defects will differ substan-
tially from zero. For present purposes it will be assumed
that no dimers are missing, though this type of surface
defect certainly can be accommodated by a trivial exten-
sion of the model.

Unfortunately, STM measurements cannot yet deter-
mine absolute magnitudes of tipping angles. Compar-
isons with models such as that advocated here will thus
temporarily have to be confined to qualitative charac-
teristics of surface patterns.

III. NUMERICAL CALCULATIONS

To illustrate some simple aspects of the model, it is
useful to observe first the collective behavior of ® as all
angles vary together. For simplicity, coupling to defects
initially will be disregarded. If all angles have the same
magnitude, but nearest neighbors tip in opposite direc-
tions, we can set

a;=(—1r"q (i=1,...,N). 3.1)

Then the resulting potential energy per dimer ® /N, re-
garded as a function of a, has the form
¢_(a)=Ka®+(1—2KA )a* +HKA* —1J—2)a® .  (3.2)

The opposite situation (in-phase tipping) would have all
a;,=a (i=1,...,N), and yields

¢ (@)=Ka®+(1—2KA)a*+(KA*+4J*—2)a®, (3.3)
where
N P
J*=—J 3 (—1¥%1i, ) . (3.4)

j=1

Note that if /(i,j) were nonvanishing only for nearest
neighbors either along a row or in neighboring rows, then
J=J*.

Figure 2 presents plots of ¢_ and ¢, vs a for the
choice of parameters

J=J*=22, K=1.0, A=1.6. (3.5)

Both functions exhibit local minima at a =0, where all di-
mers are in an untipped state. A pair of deep flanking
minima appear in ¢ _:

¢_(a=1%1.49351)=—1.697253 818, (3.6

which correspond to the lowest attainable potential ener-
gy for the parameter set (3.5). A pair of extremely shal-
low minima also appear in ¢ | at the positions
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FIG. 2. Variations of potential energy per dimer as all dimers
tip together in the same direction (¢) or in alternating direc-
tions (¢_). The curves refer to the parameter set (3.5).

¢, (a==11.18836)=2.583 824443 , (3.7

but these are indistinguishable from horizontal inflection
points in Fig. 2, and should have little structural
significance. A slightly larger J would eliminate these
minima altogether.

Examination of ¢_ and ¢, curves alone does not
guarantee that the totally untipped dimer configuration is
stable against arbitrary small deformations. However the
appropriate checks have been carried out, and indeed this
configuration is a legitimate metastable state for the pa-
rameter set (3.5). Thus the basic requirements imposed
on the model by the STM observations have been
satisfied, at least for the chosen parameter set.

Further study of the model requires that pair function
1(i,j) be specified. The most obvious choice is that it be
nonvanishing only for nearest-neighbor dimer pairs. In
view of the surface anisotropy, we can write

I{i,j)=1(1—¢) (along rows) ,
(3.8)
=1e (between rows) .

Parameter ¢ controls anisotropy, and is expected to lie in
the range 0 <& <1 to provide stronger tipping anticorre-
lation along rows than between rows, as Fig. 1 indicates.
Notice that the normalization condition in (2.7) is au-
tomatically satisfied.

Careful examination of a large collection of STM im-
ages should help to determine a reasonable range for the
anisotropy parameter €. In particular, one might search
for occurrence of single rows of essentially untipped di-
mers residing stably between left- and right-hand side
rows that are tipped in the same alternating pattern. In
this connection, consider the hypothetical tipping pattern
shown in Fig. 3, which is assumed to extend arbitrarily
far in both directions. Rows alternate between weak and
strong tipping, with nearest neighbors anticorrelated
both along and between rows. No defects are present.
Let a and 3 represent, respectively, the tipping angle
magnitudes in the weakly and strongly tipped rows.
Then the energy per dimer ¢ =® /N depends on a and
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FIG. 3. Alternating rows of weakly and strongly tipped di-
mers. Angles a and B represent the respective tipping magni-
tudes. All nearest-neighbor pairs tip in opposite directions.

in the following way:
$(a,B)=1[a*+B*+B(a,Bla’+B(B,a)B’]

—1J[(1—ela*+B*) +2eaB] , (3.9)

where

B(a,B)=—2+K[(1—e)la®—A?)2+e(f?—A2)?] . (3.10)

The last expression has been minimized numerically
with respect to a and 3, for various values of €. Once
again the parameter set (3.5) has been invoked for illus-
tration. Results are displayed in Fig. 4. Solutions with

0 <a < B can be found only if
0<ex<0.148 ; (3.11)

for large € (less anisotropy) only the uniform solution ex-
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FIG. 4. Stable pairs of tipping-angle magnitudes vs anisotro-
py parameter €. These refer to the pattern in Fig. 3, and were
obtained by minimizing expression (3.9).
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ists, with a=p numerically equal to the value displayed
earlier in Eq. (3.6).

The consequences of coupling to defects will now
briefly be considered. It was mentioned above that an
everywhere-untipped pattern of dimers represents a meta-
stable (i.e., relative) minimum of ®, in the absence of de-
fects. Coupling even a single dimer to the defect field in a
sea of untipped dimers has the effect of creating a local is-
land of anticorrelated tipping. Table I provides a numer-
ical illustration, showing tipping angle values for the
perturbed-® relative minimum in the vicinity of a dimer
(identified by the box) for which

g;=—10.0. (3.12)

As before, the parameters in Eq. (3.5) apply, along with
the anisotropy

£e=0.11. (3.13)

Notice the relatively slow rate of decay of tipping angles
along the row containing the coupled dimer. This feature
seems to be qualitatively in accord with Wolkow’s obser-
vations.'? While we cannot accurately gauge the tipping
angles on real Si(001) surfaces, it seems to be a reasonable
supposition that the threshold of observable tipping is
roughly - of the maximum (i.e., |a;[=0.08). If this is so,
then the range of observable perturbation for results in
Table I is about nine dimers along the row, but impercep-
tible in the neighboring rows.

The results reported in Table I were obtained by
steepest-descent relaxation on the ® hypersurface in the
space of a,,...,ay starting from the totally untipped
state. The specific calculation involved 10 rows each of
24 dimers (N =240). Periodic boundary conditions were
imposed in both surface directions.

Numerical details of the “anticorrelation island”
displayed in Table I are quite sensitive to surface anisot-

TABLE I. Tipping angles near an isolated defect, embedded
in an otherwise unbuckled-dimer surface. Parameter values:
£=0.11; J=2.2; K =1.0; A=1.6. The single dimer indicated
by the box is defect coupled, with g;=—10.0. Results shown
are the central portion of an N =240 system (10 rows of 24 di-
mers), to which periodic boundary conditions apply.

0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.004 0.000 0.000
0.000 0.001 —0.037 0.001 0.000
0.000 —0.006 0.305 —0.006 0.000
0.000 0.017 —0.888 0.017 0.000
0.000 —0.026 1.246 —0.026 0.000

—0.001 0.032 —1.405 0.032 —0.001
0.001 —0.037 —0.037 0.001

—0.001 0.032 —1.405 0.032 —0.001
0.000 —0.026 1.246 —0.026 0.000
0.000 0.017 —0.888 0.017 0.000
0.000 —0.006 0.305 —0.006 0.000
0.000 0.001 —0.037 0.001 0.000
0.000 0.000 0.004 0.000 0.000
0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000
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ropy. If € is decreased to 0.10, other parameters un-
changed, tipping angles do not decay to zero away from
the defect location, but instead produce long-range tip-
ping order along the entire row, with a; approaching
+1.4211 far from the defect.

The interaction between a pair of defect-coupled an-
ticorrelation islands along the same row can produce a
string of intervening strongly buckled dimers. Table II
offers an example, using the same parameter set as for
Table I. The defect coupling constants g; have the same
magnitude as before, —10.0; they act on dimers eight
neighbor spacings apart along the row. Evidently there is
no limit on the length of such a string.

The results presented in Tables I and II are among the
simplest possibilities. It is clear that realistic distribu-
tions of defects corresponding to observed surface imper-
fections'? can produce quite elaborate patterns of tipping
angles at the various relative minima of the potential en-
ergy function ®(ay, . . .,ay).

It should be mentioned in passing that metastable tip-
ping imperfections can exist even in the absence of cou-
pling g;, at least when parameters (3.5) and (3.13) apply.
If the surface is essentially everywhere in its lowest-
energy, strongly tipped state (a; ==11.4935), a single di-
mer can be tipped in the ‘“wrong” sense (going from
11.4935 to F 1.3456) with only a minor effect on the an-
gles of its immediate neighbors. However the barrier is
apparently quite low for de-excitation of this local imper-
fection.

IV. CONCLUSIONS AND DISCUSSION

By attributing a single angular degree of freedom to
each dimer on the Si(001) surface, a model has been con-

TABLE II. Tipping angles near a pair of mutually reinforc-
ing defects, embedded in an otherwise unbuckled dimer surface.
Conditions identical to those of Table I, except there are two
defect-coupled dimers (boxes) with g; = —10.0.

0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.004 0.000 0.000
0.000 0.001 —0.037 0.001 0.000
0.000 ~0.006 0.309 —0.006 0.000
0.000 0.017 —0.891 0.017 0.000
0.000 ~0.026 1.248 —0.026 0.000
—0.001 0.032 —1.406 0.032 —0.001
0.001 —~0.037 -0.037 0.001
—0.001 0.034 —1.440 0.034 —0.001
0.001 —0.032 1.417 —0.032 0.001
—0.001 0.032 —1.413 0.032 —0.001
0.001 —0.032 1.412 —0.032 0.001
—0.001 0.032 —1.413 0.032 —0.001
0.001 ~0.032 1.417 —0.032 0.001
—0.001 0.034 —1.440 0.034 —0.001
0.001 —0.037 —0.037 0.001
—0.001 0.032 —~1.406 0.032 —0.001
0.000 —0.026 1.248 —0.026 0.000
0.000 0.017 —0.891 0.017 0.000
0.000 —0.006 0.309 —0.006 0.000
0.000 0.001 —0.037 0.001 0.000
0.000 0.000 0.004 0.000 0.000
0.000 0.000 0.000 0.000 0.000
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structed to describe the observed patterns of tipping.
The interaction potential in the model has a simple alge-
braic format, and includes linear coupling to defects. A
key feature is the presence (at least for some parameter
choices) of mechanically stable dimer arrangements ex-
hibiting both tipped and untipped dimers. This charac-
teristic distinguishes the present model from at least some
others that have been advanced.!® First indictions show
that the model conforms at least qualitatively to STM ob-
servations. !

The model currently contains four scalar parameters
(J,K,A, and €) whose magnitudes cannot yet be precisely
assigned. Furthermore the linear coupling constants g,
for defects are speculative. It would be extremely valu-
able to have sets of high-accuracy quantum-mechanical
calculations for the dimerized Si(001) surface whose re-
sults fix these parameters. But even before such informa-
tion becomes available it is useful to have established the
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existence of a scenario in which tipped and untipped di-
mers can coexist stably. This last point has been a major
objective in the present work.

The possibility of one or more surface-pattern phase
transitions is a fascinating open problem. The model pro-
posed here is well suited for computer simulation by ei-
ther the Monte Carlo'* or the molecular-dynamics'® ap-
proach, and in this way could be exhaustively analyzed
for its equilibrium phase behavior for various sets of pa-
rameters. The results could then be compared against
standard analytic approximations in the statistical
mechanical theory, the most obvious of which is the so-
called “mean-field theory.”!®
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