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SYNOPSIS 

This report continues to explore the use of a strategy known as the antlion method for 
predicting polypeptide and protein structure. The method involves deformation of a bio- 
polymer’s potential energy hypersurface in order to retain only a single minimum, near to 
the native structure. The vexing multiple minimum problem thus is relieved, and the de- 
formed hypersurface constitutes a key element in three-dimensional structure predictions 
with atomic resolution. In this more demanding pilot study, we provide evidence that the 
antlion method is capable of dramatically simplifying the surface of polypeptides by suc- 
cessfully predicting the native form of the naturally occurring 26-residue polypeptide mel- 
ittin. The systematic hypersurface modifications employed in our previous work have been 
used again for this case, but have been supplemented by the output of a suitable neural 
network. This neural network involves a new feature: the use of amino acid biophysical 
scales for improving the secondary structure prediction accuracy of simple perceptrons. 
0 1993 John Wiley & Sons, Inc. 

INTRODUCTION 
A central component of the protein-folding 
problem’*2 is identification of the native state con- 
formation. While the overall protein-folding prob- 
lem encompasses understanding of the thermody- 
namic driving forces that act on the unfolded states 
as well as on the native protein, and of the kinetic 
pathway by which the native state is in 
its most streamlined version the task is to predict 
the full three-dimensional arrangement of the pro- 
tein molecule, given only its primary structure 
(amino acid sequence) and the solvent conditions 
(composition, temperature, and pressure ) . Difficul- 
ties that must be faced stem from (a)  the complexity 
of the proteins’ intramolecular force field, ( b  ) quan- 
titative uncertainty about the nature of solvation 
for arbitrary conformation, and (c )  the existence of 
many local minima in the solvent-averaged free en- 
ergy hypersurface whose number apparently rises in 
roughly exponential manner with the number of 
amino acid residues. In spite of these difficulties, 
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substantial effort has been devoted to resolution of 
the protein-folding problem, and this has produced 
a very large scientific literature devoted to the sub- 
ject.’-I7 

In a recent manuscript lo we began to explore a 
strategy, the “antlion method,” that was devised 
specifically to relieve difficulty (c )  above. It takes 
its name from a family of subterranean insects that 
lie in wait at the bottom of victim-entrapping basins. 
The ultimate objective of this method is to simplify 
the free energy (or potential energy) hypersurface 
for any polypeptide or protein so that only a single 
basin (and minimum) remains. Furthermore, the 
remaining minimum should occur close in configu- 
ration to that of the initial-hypersurface native- 
structure minimum. Optimization then proceeds in 
three stages: replace the complicated “real” hyper- 
surface by its simplified variant, optimize on the 
modified hypersurface, and finally optimize on the 
real hypersurface, using the optimized structure 
found from the second stage as an initial guess, to 
locate its native structure minimum. Feasibility of 
this approach was supported by specific calculations 
on the blocked alanine dipeptide and the blocked 
alanine tetrapeptide.” Hypersurface modification 
for the former converted a 20-minimum topography 
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(or 40, counting mirror image structures) to the re- 
quired single-minimum topography, while several 
hundred minima for the latter were collapsed to a 
single minimum as required. 

The present paper is devoted to a small and sim- 
ple, but nonetheless more demanding, test of the 
antlion method, specifically its capacity to predict 
with atomic resolution the native form of the nat- 
urally occurring 26-residue polypeptide melittin la: 

Gly-Ile-Gly- Ala-Val-Leu-Lys-Val-Leu-Thr-Thr-Gly 
-Leu- Pro- Ala-Leu-Ile- Ser-Trp - Ile- Lys- Arg- Lys- 
Arg-Gln-Gln. In this last respect our method stands 
in distinct contrast to lattice  model^'^*'^ and to a- 
carbon  representation^.'^ The systematic hypersur- 
face modifications employed in our previous paper lo 

have been used again, but have been supplemented 
by the output of a suitable neural network. As re- 
ported in detail below, the prediction for melittin 
agrees satisfactorily with the experimental struc- 
ture." While melittin is quite simple structurally, it 
provides a pilot study that demonstrates the follow- 
ing points: ( 1 ) it describes the full implementation 
of the antlion strategy, where neural networks are 
used to guide the design of penalty functions; ( 2 )  it 
demonstrates the ability of the antlion method to 
overcome the multiple minimum problem ( melittin 
has - loz6 minima in the space of the backbone 
degrees of freedom alone 1, so that only the minimum 
near the native structure is retained; and ( 3 )  this 
new method demonstrates promise for future antlion 
method applications to more difficult tertiary struc- 
tures. 

The following section describes the generic po- 
tential energy model that we utilize as a test bed for 
the further development of the antlion method. The 
third section then introduces the antlion method, 
and reprises the elementary penalty functions de- 
veloped earlier to modify the alanine dipeptide and 
tetrapeptide hypersurfaces, lo and which we again 
use for melittin. The section after that presents our 
neural network formalism that is used to control the 
secondary structure penalty functions; this subsid- 
iary role differs fundamentally from the direct pre- 
dictive role usually assigned to neural networks in 
the protein folding problem. Our specific calculations 
for melittin appear in the fifth section. Conclusions 
and discussions reside in the final section. 

POTENTIAL ENERGY FUNCTION 

The empirical potential energy function used as the 
objective function in this study has the form 

i 

We have used the parameters of the extended atom 
representation (version 19)  of CHARMM." The 
first four terms refer to the chemical bond connec- 
tivity. The bond, bond angle, and improper torsion 
deformations are represented as harmonic potential 
functions with force constants kb, ke, k, [the Hooke's 
law factor of t has been factored into the force con- 
stants in Eq. ( 1 )  ] ,  and equilibrium values of bo, d o ,  
and T O ,  respectively. The torsional potential is rep- 
resented as a Fourier cosine expansion, where k,  is 
the force constant, 6 is the phase, and n is a multi- 
plicity factor that allows for inclusion of the higher 
harmonics. We note that in our application only one 
dihedral term is utilized for rotation around a given 
bond. The nonbonded terms in Eq. ( 1 )  are modeled 
as a sum of pairwise coulomb electrostatic and Len- 
nard-Jones hard interactions. The Lennard-Jones 
cross-interaction parameters are evaluated using 
conventional simple mixing rulesz0: 

In addition, the electrostatic interactions are scaled 
by a factor C = 0.4 when the pair under consideration 
is separated by three bonds. A cutoff of 7.5 A is used 
for the evaluation of all pair interactions, using a 
shifting function l9 to smooth the energy and deriv- 
atives. For further details of the specific CHARMM 
parameters, see Ref. 19. 

One aspect of a complete solution to the protein- 
folding problem involves the quantitatively accurate 
description of the free energy hypersurface of the 
solvated biopolymer. As we have indicated in the 
Introduction, we have chosen not to address this 
issue at this time, since the antlion strategy is di- 
rectly transferrable to more quantitative free energy 
(or potential energy) functions as they become 
available. However, we feel compelled to delineate 
the reasons why the native structure minimum that 
we isolate on the modified potential energy hyper- 
surface, and that we ultimately converge to on the 
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empirical unmodified potential energy surface, 'OJ' 

should plausibly resemble that of the in vivo struc- 
ture. 

We begin by noting that our calculations in effect 
are done in the gas phase; no attempt was made to 
include an obvious solvent component, such as a 
dielectric constant of 80, an r -dependent dielectric 
behavior, or explicit configurations of molecular 
water. The adequacy of the nominally gas phase po- 
tentials themselves as structural predictors of the 
native structure deserves comment. Recent studies 
indicate that most empirical potential energy 
functions 19,21-23 show reasonable structural agree- 
ment, although poor relative energy ordering of the 
minima, " v Z 3  when compared with high level ab initio 
 calculation^^^*^^ for the gas phase +,$ surfaces of the 
hydrogen-blocked glycine and alanine dipeptides. 
The differences observed between the ab initio 
results 2425 and empirical potential functions 19923 may 
be due to the fact that the latter have been param- 
eterized to reproduce the structural and energetic 
aspects of x-ray experimental data. While crystalline 
forces might have been thought to distort the struc- 
ture from that corresponding to its structure in so- 
lution, preliminary nmr structural studies indicate 
that the crystal structure is a good approximation 
to the solution ~ t r u c t u r e ~ ~ , ~ ~  in those cases where a 
comparison could be made. While we remain sen- 
sitive to the lack of a solvent component in our pres- 
ent choice of potential energy function, we believe 
the empirical force fields provide an adequate, al- 
though far from perfect, representation of the native 
protein structure in vivo. 

THE ANTLION STRATEGY 

The antlion strategy involves the deformation of the 
objective function hypersurface CP in Eq. ( 1 ) in such 
a way that a preselected minimum (which is de- 
signed to be a close approximation to the native 
structure minimum) forms the dominant basin on 
the surface. Thus starting a t  any initial configura- 
tion of a biopolymer, for example the fully extended 
conformer (all 4,$ pairs defined as 180°, -180"), 
any minimization technique will converge to this 
single remaining minimum. Once this relevant area 
of configuration space has been reached, regenera- 
tion of the original surface is achieved by using the 
unmodified (objective) function @ to refine the 
structure. 

The modification of the objective function is ac- 
complished by the addition of penalty functions. In 
the case of alanine dipeptide and tetrapeptide, we 

have found three useful types of penalty functions." 
In most cases, we desire the elimination of all min- 
ima where particular amino acids have the wrong 
chirality, i.e., the D configuration. We have used the 
following elementary penalty function to bias in fa- 
vor of the L configuration: 

where 7 corresponds to the torsions C,-N-C-H, and 
C,-N-C-C,, and 70 is appropriate for L isomers. In 
addition, the elimination of all minima where pep- 
tide groups are in the cis conformation is generally 
desirable. We note that the peptide torsion potential 
usually used 

v, = k J 1  + cos(2w + T ) ]  (4) 

possesses minima at  both w = 0 and T. The obvious 
modification of Eq. (4) to favor the trans form is to 
change the multiplicity factor of 2 to 1, and to change 
the phase from T to 0. A similar modification is easily 
implemented for the retention of cis peptides if so 
desired. In order to maintain the original curvature 
at  the minimum, we use a force constant of 4k,, in 
the modified version of Eq. (4). 

The knowledge that an amino acid is in a partic- 
ular type of secondary structure allows the con- 
struction of penalty functions using the definition 
of that secondary structure. For example, an amino 
acid i, which is a-helical in a particular polypeptide 
or protein, would ideally require the formation of a 
hydrogen bond between residue i and i + 4 of 1.9 A, 
and the adoption of backbone dihedral angles 4 and 
$ of -57" and -47", respectively. Similar ideas can 
be extended to other types of secondary structure 
such as reverse turns and @-sheets. 

We have demonstrated" that the following pen- 
alty function 

successfully restrains the backbone dihedral angles 
to any desired 40 $0, with appropriately chosen k ,  
and k,. The addition of this set of penalty functions 
allowed us to maintain one and only one minimum 
on the alanine dipeptide and tetrapeptide 4,$ sur- 
faces for all @o and $o pairs of interest." 

In addition to the backbone dihedral angle re- 
straints, we also utilize intramolecular hydrogen- 
bond penalty functions for the formation of second- 
ary structures such as helices, turns, and sheets. We 
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will demonstrate in the fifth section that an elec- 
trostatic “reward” function 

provides a useful modification of the original objec- 
tive function [ Eq. ( 1 ) ] of melittin, so that hydrogen 
bonds appropriate to an a-helix are retained. 

The alanine dipeptide and tetrapeptide examples 
seem to imply that prior knowledge of the secondary 
and tertiary structure of globular proteins is required 
in order to implement the antlion approach for these 
larger biopolymers. It would hardly be a useful ter- 
tiary structure predictor if this were the case. In 
order to avoid such circularity, we therefore adapt 
our antlion strategy to use neural networks as a guide 
for designing penalty function parameters that re- 
tain only the native globular protein minimum. We 
wish to emphasize the distinction between our 
use of neural networks, and that conventionally re- 
quired of neural networks in the protein-folding 
area.17,28-31 For the latter, the outputs of the network 
are the direct structure predictions, whether they 
be secondary structure  prediction^'^-^^ or residue 
contact distance clas~ification.’~ In our approach, 
neural networks serve as an intermediary between 
the amino acid sequence and structure prediction, 
since they are intended to be used as a predictor for 
the penalty parameters only. Minimization first on 
the modified potential hypersurface and then on the 
unmodified hypersurface serves as the tertiary pre- 
dictor. Local violations of the neural network pre- 
dictions then become possible as the entire system 
seeks and finds its optimal final structure. In this 
respect our approach accommodates the presence of 
locally frustrated interactions in the interests of at- 
taining a global minimum tertiary structure. 

NEURAL NETWORK DESCRIPTION 

Neural network algorithms for performing learning 
tasks such as pattern recognition are conceptually 
based on the structure and function of the central 
nervous system.32 In the context of the protein-fold- 
ing problem, neural network algorithms are required 
to predict patterns of secondary and tertiary struc- 
ture of the native protein (neuronal response, or 
output) from the amino acid sequence (sensory in- 
put to the network). 

The topology of the neural network we have used 
to predict the backbone dihedral penalty functions 
for melittin is that of the simple perceptron, also 
known as feed forward-back propagation networks 

with no hidden layers.32 In this case, each amino 
acid of a protein sequence is represented by a small 
set of input neurons that is directly connected, or 
fed into, output neuron (s)  representing a secondary 
structure classification. The small set of input neu- 
rons generally correspond to the amino acid whose 
most likely secondary structure is being predicted, 
while the remainder supply a context (or window) 
of n amino acids (8 in our study) preceding and 
succeeding this amino acid along the backbone. The 
learning, or training, phase of the neural network 
algorithm involves minimizing the function 

N M  

E = 2 2 (05, - O:J)z  ( 7 )  
i j  

where M is the number of output units, N is the 
number of presented input patterns, 0, is the ob- 
served secondary structure output, 0, is the calcu- 
lated output. The calculated output is determined 
as follows: 

and 

Okj = 1/[1 + exp(Aij)] (9) 

where L is the number of input units, I is the input, 
Wjk is the weight of the connection between the input 
neuron k and output neuron j ,  and b, is the bias 
associated with the output neuron j .  We use a stee- 
pest descent algorithm for minimizing the function 
in Eq. ( 7 )  with respect to the free parameters Wjk 

and bj. The parameters wjk and bj are updated (or 
“back propagated” through the network from output 
to input ) by the following derivative expression: 

where y is a damping or “learning” factor,32 taken 
to be 0.0002 in this study. 

We have tried to exploit physically motivated 
ideas concerning input and output representations, 
in order to improve the secondary structure predic- 
tion accuracy of our neural networks. Input and 
output representation involves encoding biophysical 
properties into the amino acid sequence (input) and 
secondary structure (output). For example, each of 
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the 20 amino acids could be represented by a 5-bit 
binary number ranging from 00001 to 11111. To re- 
flect a physically relevant property, such as hydro- 
phobicity for example, the amino acids would be as- 
signed a 5-bit number depending on where the res- 
idue sits in the hydrophobic scale.33 Isoleucine being 
least hydrophilic would be assigned the 5-bit number 
00001, while the most hydrophilic amino acid argi- 
nine would be assigned the 5-bit representation 
10111. The “blanks” in the window at polypeptide 
chain ends might be given a value of 11111, with the 
idea that chain ends are charged and solvent ex- 
posed, and therefore most hydrophilic. Similarly, 
output assignments could be ordered to reflect hy- 
drogen-bond formation local in sequence ( helices 
and turns), nonlocal in sequence (ladders, sheets), 
and no hydrogen-bond formation (bends and coil). 
The preliminary results we provide in this work in- 
dicate that these ideas of biophysical representation 
have noteworthy impact on network predictions of 
secondary structure. 

As a straightforward implementation of this gen- 
eral idea, we have designed the following highly 
simplified network. The input representation for 
each amino acid is a 5-bit binary number ordered 
to reflect one of the following scales: an a-helix pro- 
motion ordering of the amino acids deduced from 
substitutions of the commonly occurring residues 
into a coiled an a-helix promotion scale based 
on a statistical analysis of 60 proteins,35 and a ran- 
dom scale generated from a normal distribution. The 
three scales are presented in Table I. The output is 
designed to be one neuron that is “helical” when on 
(output value of 1)) and “nonhelical” when off 
(output value of 0) .  The choice of a helix/no helix 
network is motivated by two points: first, melittin 
is largely a-helical, and second, it provides a simple 
test of the relevance of the biophysical scale repre- 
sentation in our neural network. 

The very simple network described above (con- 
text of 17,5 bit input, no hidden layers, 1 bit output) 
was trained on a subset2’ of the data base and sec- 
ondary structure identifications of Kabsch and 
Sander36p37; we have not in any way exploited ho- 
mologies, criteria for acceptable refinement of the 
x-ray data, etc. We also note that the Kabsch and 
Sander secondary structure identifications are only 
objective to the extent of their definition of second- 
ary structure-those that are fully hydrogen bonded. 
Different conclusions about the presence of second- 
ary structure types, or their absence, for a particular 
amino acid in a data-base protein may be reached 
by different criteria. The Kabsch and Sander data 
base serves the immediate purpose of providing self- 

Table I Input Representation: 
a-Helix Promotion 

Residue Levitt O’Neill and DeGrado Random 

Met 
Glu 
Leu 
Ala 
Gln 
LYS 
His 
CYS 
Phe 
ASP 
Trp 
Ile 
Arg 
Val 
Asn 
Ser 
Thr 
TYr 
GlY 
Pro 

o0001 
Ooo10 
o0011 
00100 
00101 
00110 
00111 
01000 
01001 
01010 
01011 
01100 
01101 
01110 
01111 
lo000 
10001 
10010 
10011 
10100 

00101 
01010 
00100 
oooO1 
01001 
00011 
10010 
01011 
00111 
01110 
00110 
01100 
00010 
01111 
lo001 
01000 
10000 
01101 
10011 
10100 

00001 
10000 
01101 
01100 
00010 
00100 
01110 
00110 
01001 
01OOo 
10001 
10010 
00101 
01111 
01010 
00011 
00111 
01011 
10011 
10100 

consistent results in the neural network learning 
process for the study presented here. There is cer- 
tainly merit for critically assessing the deficiencies 
of training data bases in the future, since this will 
contribute to the accuracy of the final predicted 
polypeptide or protein structure. We optimize the 
decision of whether the neuron is on or off on the 
training set (after the weights and biases have been 
optimized), by defining a threshold t ,  which gives 
a maximum in the correlation coefficient, or predic- 
tive confidence. We have used the following corre- 
lation coefficient definition 29,31 : 

where p ,  is the number of a-helical output patterns 
predicted correctly, n, is the number of nonhelical 
outputs rejected correctly, u, is the number of un- 
derpredicted helical output patterns, and 0, is the 
overprediction of helical patterns. The optimized 
network of weights, biases, and threshold is then 
presented with the testing data base2’ (the remain- 
ing proteins of the Kabsch and Sander data base36,37 
not present in the training set). The predictive ca- 
pacity, defined by the percentage of helix predicted 
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correctly, percentage of nonhelix predicted correctly, 
and the correlation coefficients for the training and 
testing sets of each of the three types of networks, 
are listed in Table 11. As is evident from these results, 
the random scale representation performs signifi- 
cantly more poorly than the two scales encoding the 
biophysical property of helix promotion. Further- 
more, the O’Neill and DeGrado scale34 does some- 
what more poorly than the Levitt scale35; this is 
likely due to the fact that the O’Neill and DeGrado 
scale34 is inferred from a more artificial environment 
of a guest amino acid site in a short polypeptide 
coiled coil, which is highly idealized in comparison 
to the data base of globular proteins used in the 
training and testing set. For the case of melittin, 
the random scale predicts only 3 residues to be he- 
lical out of the 22 possible helical residues, while the 
DeGrado scale predicts 6 and the Levitt scale 11. 
Interestingly, neither the O’Neill and DeGrado or 
Levitt scale predict the first half of the amino acid 
sequence of melittin to be helical; however, this is 
due to the fact that the magnitude of the output for 
this half of the sequence falls just below the hard 
thresholds optimized for these two scales. 

It is appropriate to reemphasize at this point that 
in our application the neural networks themselves 
do not serve as the predictor, but merely provide a 
means for defining appropriate penalty function pa- 
rameters. In the following section we show that the 
deficiencies of the neural network (i.e., only 11 of 
the 22 helical amino acids of melittin predicted cor- 
rectly with our best network) need not preclude suc- 
cessful secondary or tertiary prediction. We provide 
a demonstration of this point by folding the small 
polypeptide melittin in the next section. 

RESULTS FOR MELITTIN 

Figure 1 displays a minimized, polar hydrogen, mo- 
lecular mechanics structure, which represents the 
observed native state of melittin. The heavy atoms 
of the 2.0 A crystal structure1’ were provided with 
polar hydrogens ( i.e., extended atom representation 

for methyl, methine, etc.) so that excluded volume 
and geometric considerations are satisfied. The re- 
sulting hydrogenated structure was minimized with 
large harmonic constraints on the heavy atoms for 
several hundred steps using adapted basis Newton 
Raphson ( ABNR) with the molecular mechanics 
package CHARMM.” The constraints were itera- 
tively reduced by 20% of their initial value, and the 
structure minimized for several hundred steps at 
each constraint value, until no constraints remained. 
The resulting rms comparison of the heavy atom 
crystal structure and the heavy atom minimized 
structure is given in Table 111. The melittin crystal 
structure can be described as helical36 for residues 
2-10 and 13-25, with a turn or bend at residues 11 
and 12, while the first and last residue reside in a 
random coil geometry. The minimized hydrogenated 
structure exhibits helical segments for amino acids 
2-10 and 13-21. This structure possesses a classic 
type I11 turn at residues 11 and 12. Residues 22-26 
are classified as random coil geometries, i.e., all 5 
residues show &,$ values far removed from the a- 
helix conformer, and only 3 residues are involved in 
2 hydrogen bonds in this region ( 19-23 and 22-26), 
compared to the 5 residues involved in 5 hydrogen 
bonds in the original crystal structure (18-22, 19- 

The starting structure for our antlion procedure 
is the minimum closest to the fully extended form 
of melittin. We define the fully extended structure 
to have idealized geometries for chemical bonds and 
angles, and all dihedrals to be in their optimal ro- 
tamer minimum (for example, &,$ backbone values 
of -180°,1800, respectively). This idealized struc- 
ture has many bad nonbonded contacts, and hence 
is relaxed using ABNR to a nearby minimum defined 
by a converged gradient of 0.005 kcal/ ( mole * A). 
This relaxed structure, presented in Figure 2, is the 
input for our antlion procedure. Notice that it differs 
drastically from the native structure shown in Fig- 
ure 1. 

The antlion strategy for modifying the potential 
energy surface of melittin is as follows. The &,$o 
penalty parameters [ Eq. (5) 3 were assumed to be 

23, 20-24,21-25,22-26). 

Table I1 Secondary Structure Prediction 
on Kabsch and Sander Data Base 

Levitt O’Neill and DeGrado Random 

Structural probe Train/test Train/test Train/test 
% (Y correct 69/64 54/58 63/53 
% else correct 70/67 78/74 68/65 
CI 0.36/0.29 0.31/0.30 0.28/0.17 
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Figure 1. Mellitin native structure. The constrained minimized structure of the x-ray 
diffraction structure by Terwilliger and Eisenberg. The structure is characterized by helical 
conformations for residues 2-10 and 13-21; there is a type I11 turn at  amino acids 11 and 
12. The remaining residues are of a coil configuration, although some secondary structure 
is present. 

-57',-47O, which is the ideal a-helix backbone 
conf~rmation.~' The force constants k, and /+ are 
set equal to the output from the network discussed 
above using the Levitt scale, which is a real number 
between 0.0 and 1.0, and then scaled by a factor of 
100 kcal/mole. This gives force constants that fall 
between the magnitude of the peptide torsions and 
bond angle force constants appearing in Eq. ( 1 ) (8- 
55 kcal/mole) . We also invoke the formation of hy- 
drogen bonds between the backbone oxygen of res- 
idue i and the backbone hydrogen of residue i + 4 

by the use of Eq. ( 6 ) ,  where qi = -qi+4 is the direct 
network output (0.08e- to 0.55e-); all side-chain 
atom charges were set to 0.0. In addition, we have 
included the penalty functions corresponding to the 
elimination of D-isomers [ Eq. ( 3 ) ] and cis peptide 
[ Eq. ( 4 )  ] minima in this calculation for melittin, 
although these functions are minimized based on 
our extended structure starting guess. 

The minimized structure on the modified surface 
was then used as the starting structure on the un- 
modified surface, and minimized to the same tol- 

Table I11 
Structures 

RMS Difference Between Experimental and Antlion 

Crystal/Minim Crystal/Antlion Minim/Antlion 
Residues RMS (A) RMS (A) RMS (A) 

1-26 2.217 
Backbone, 1-26 1.511 
a-Carbons, 1-26 1.540 
2-25 2.163 
Backbone, 2-25 1.403 
a-Carbons, 2-25 1.442 

2.457 
1.220 
1.282 
2.340 
1.208 
1.259 

2.535 
1.963 
1.965 
2.311 
1.772 
1.753 
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Figure 2. Melittin extended, minimized structure. This structure was used as an initial 
guess for the antlion procedure. There is no obvious secondary or tertiary structure present 
in this structure. 

erance of 0.005 kcal/mole - A. The resulting mini- 
mum on the unmodified surface, depicted in Figure 
3, should be contrasted to the relaxed extended con- 
former of melittin in Figure 2. Clearly the antlion 
method has eliminated the extended conformer local 
minimum. The antlion folded structure shows helical 
segments for amino acids 2-10 and 13-21. Residues 
11 and 12 are in a bend conformation, while the 
remaining nonhelical residues 23-26 exhibit a coil 
configuration. Residue 22 has 4,+ values in the a- 
helical region, and is hydrogen bonded to residue 26 
(although not to 18). Residues 23-26 exhibit non- 
helical +,+ values and hydrogen bonds between res- 
idues 19-23,20-24, and 22-26. 

A comparison of the crystal structure with the 
folded structure of melittin obtained from the ant- 
lion procedure is shown in Figure 4; there is re- 
markable similarity for the backbone conformation. 
The rms differences between our folded structure 
and the crystal structures (heavy atoms and hydro- 
genated) are given in Table 111, with our best value 
being 1.21 A for a comparison of the backbone atoms 
of residues 2-25 (i.e., excluding the coiled ends). 
The rms difference between the entire antlion 
structure with the crystal structure, 2.54 A, is close 
to the resolution of the experiment, 2.0 A.18 

There are four important points to be made at  
this juncture. The first is that the neural network 
outcome itself would only have predicted that 11 out 
of the possible 22 helix residues are helical. A simple 
scaling of the output as a penalty function improves 
this prediction so that 19 out of 22 are helical, due 
to the fact that 5 of the 7 predicted directly by the 
network to be nonhelical, sat marginally below the 
threshold. 

Second, while there is some sensitivity of the 
quality of the predicted structure to the magnitude 
of the penalty function scale factor, there are well- 
defined reasons for choosing the scale factor of 100 
kcal/mole. We have found that the largest barrier 
to eliminate in the smoothing process is that due to 
bond angle strain; thus penalty function force con- 
stants must be the same magnitude in order to com- 
pete with these barriers. For example, we have found 
that the rms deviation of the predicted structure 
degrades when the output is scaled by 50 kcal/mole, 
which is due to penalty function force constants 
which are too soft (4-27 kcal/mole) to compete with 
the bond angle potential. The use of the O’Neill and 
DeGrado and random networks, scaled to give force 
constants in the bond angle range, do not predict 
the melittin structure as well as the Levitt scale (rms 
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Figure 3. Melittin folded structure obtained from the antlion procedure. The antlion 
folded structure is characterized by helical segments 2-10 and 13-21, with a bend at residues 
11 and 12. The remaining residues, 22-26, are classified as random coil, although some 
secondary structure is present (see text for details). 
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deviations of 1.68 and 2.13 in the backbone degrees 
of freedom, respectively, and 2.92 and 3.20 for all 
degrees of freedom, respectively). 

Third, the use of the ideal 40,1c/o values of 
-57",-47" and hydrogen bonds between residues i 
and i + 4 seems to assume the correct structure, and 
not predict it; however, the antlion method suc- 
cessfully finds the end residues 1 and 26 to be far 
removed from the helix conformation, and defines 
an appropriate turn or bend at residues 11 and 12. 

Last, a comparison of side-chain conformations 
between the crystal structure and the antlion folded 
structure (Figure 4 )  clearly indicates that the native 
structure minimum and that found by the antlion 
procedure may not be the same. In fact, there are 
multiple minima on the modified hypersurface in 
the space of the sidechain degrees of freedom. How- 
ever, as we have already discussed, the modified sur- 
face is believed to retain only a very small subset of 
the original number of minima in the subspace of 
the backbone conformations. We are not overly 
concerned with the multiple minimum problem in 
the space of side-chain conformations since a good 
prediction of the backbone limits the conformational 
possibilities for the side chains, thereby allowing 

exhaustive searches in this s~bspace.~' It is also 
conceivable that other neural network schemes could 
be devised for the side-chain degrees of freedom. 

DISCUSSION AND CONCLUSIONS 

In summary, we have implemented a strategy known 
as the antlion method for greatly simplifying poly- 
peptide and protein potential energy hypersurfaces 
in order to retain only one conformationally distinct 
minimum corresponding to the native structure. In 
this work, we have adapted the antlion strategy to 
incorporate neural networks, and have demonstrated 
this adaptation for successfully predicting the 
structure of the 26-residue polypeptide, melittin. We 
emphasize again that the output of the neural net- 
works themselves are not used as the structure pre- 
dictor; instead they serve the purpose of guiding the 
selection of penalty functions that deform the ob- 
jective function hypersurface to retain only that 
minimum corresponding to the native structure. In 
addition, we have also shown that the use of bio- 
physical scales in the design of neural networks for 
secondary, and possibly tertiary, structure prediction 
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Figure 4. A comparison of the minimized crystal structure and the antlion folded struc- 
ture. An overall rms difference of 2.45 A between these structures is observed, while the 
backbone degrees of freedom show an rms difference of 1.2 A. 

may provide some useful improvements over those 
network designs currently used in the protein folding 
area. 

While our previous paper" has indicated that the 
antlion approach is feasible for di- and tetrapeptides, 
the current study has shown that the method can 
be successfully applied to significantly larger poly- 
peptides and proteins, as exemplified by the small 
toxin protein melittin, where a brute force search 
procedure becomes intractable. It should be empha- 
sized that although the case of melittin is a signif- 
icant step forward, in no way do we claim complete 
solution to the problem of protein structure predic- 
tion. First, little tertiary structure is present in the 
case of melittin, so that success was relatively easily 
attainable. Second, other predictive strategies will 
be needed to supplement the very simple helix neural 
network algorithm presented here, in order to move 
onto proteins with much richer tertiary structure 
than that of melittin. We currently are investigating 
other biophysical scales for the improved prediction 
of &sheets and @-turns, in addition to a-helix pre- 
diction. We are additionally pursuing the use of 
Hopfield-like neural networks 40 for the prediction 
of hydrogen-bond and/or disulfide-bond matrices. 
We also believe it is possible to improve the data 

base by exploiting homologies between the training 
and testing sets. 

Once these algorithmic components are in place, 
we foresee the following flow diagram for the antlion 
approach for predicting tertiary structure in any 
protein: 

1. amino acid sequence 

2. 2" and/or 3" structure penalty parameters 

3. Minimization on modified surface using ex- 

3. Neural Networks 

4 Define modified surface 

tended conformer as starting structure 
4 Regenerate original objective function 

4. Minimization on unmodified surface using 
the minimized structure found from point 3 
as the starting structure 

3. Converge structure to strict tolerance 
5. Predicted structure determined with atomic 

resolution 

Thus, the most ambitious scenario is a method, 
which for any polypeptide or protein, predicts atomic 
resolution structures using the amino acid sequence 
as sole input. 
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