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This work develops a statistical mechanical perturbation theory for understanding and 
quantifying the role of directional hydrogen bonding in pure water at any given temperature 
or density. A reference fluid has been defined with no orientational preferences, but 
which reproduces the short-ranged oxygen order as determined by x-ray or neutron diffraction. 
The orientational anisotropy can be reintroduced by perturbing the reference potential 
toward a fully coupled water potential; we have developed a new water model, ST4, which 
provides some noticeable structural improvements over its predecessor, ST2, to provide 
these anisotropic interactions. Monte Carlo simulations at 25 “C and 1 kg//mass density have 
been implemented for various values of the coupling parameter to determine the 
importance of directed hydrogen bonds at various strengths in dictating energetic and 
structural features of liquid water. We find that virtually full hydrogen bond strength is 
required to recover the basic structural features of liquid water. We have also evaluated 
and contrasted the inherent structures (potential energy minima) for the reference fluid and 
the ST4 model, where we find that hydrogen bonding provides significant structural 
rigidity to resist vibrational distortion. Furthermore, we show that the ST4 model exhibits 
bifurcated hydrogen bonds which only occur in local regions of high density, i.e., 
they are found as tetrahedral network defects. These high density clusters also include 
tetrahedral oxygen triplets, sometimes linearly hydrogen-bonded, which may well serve as low 
energy intermediates for flow processes in liquid water. 

I. INTRODUCTION 

The combination of experiment, analytic theory, and 
computer simulation have greatly contributed to our un- 
derstanding of pure liquid water and water solutions,’ al- 
though this knowledge still remains imperfect and incom- 
plete in many aspects. In particular, a comprehensive 
model of liquid water energetics and structure has re- 
mained elusive. This is due to the unusual chemical com- 
plexity of an associated liquid like water where many-body 
effects2*3 and quantum corrections3’4 are important, and to 
the theoretical problems associated with treating disor- 
dered condensed phase systems. This paper introduces a 
formal theoretical framework, augmented by computer 
simulation, which attempts to overcome some of these dif- 
ficulties with the hope of advancing our understanding of 
the structural and energetic properties of pure liquid water 
and water solutions. 

We take the structure of hexagonal ice (Ih) as our 
conceptual starting point. The structure of Ih can be de- 
scribed as an open network of hydrogen bonded water mol- 
ecules in which the arrangement of oxygen atoms is highly 
ordered (isomorphous with the wurzite form of zinc sul- 
fide5), but where the hydrogen atoms are disordered; these 
considerations led to Pauling’s calculation of the residual 
entropy for ice Ih at 0 K.6 We have taken the position that 
the natural structural division into ordered oxygens and 
disordered hydrogens arising in Ih can provide insight into 
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the liquid state as well. Our approach involves a statistical 
mechanical perturbation theory defined with respect to an 
unconventional reference system for liquid water, namely 
one in which the proper local short-ranged oxygen order is 
maintained, while the orientational (hydrogen-bonding) 
components are allowed to rotate freely. The perturbation 
procedure (with coupling constant /2) involves providing 
appropriate hindrance for these orientational degrees of 
freedom until the fully coupled water case is reached, 

@(AZ) = (1 -~P0h,b..,rff) 

+ilQ>1(rl,rZ,...,rN,s*,s2,...,s~). (1.1) 

a0 denotes the isotropic reference potential, ri represents 
the oxygen Cartesian coordinates for molecule i, and Q1 is 
the full water interaction with all orientational degrees of 
freedom, Si, present. The perturbation format from an iso- 
tropic reference state allows us to examine the extent to 
which pure water properties, and water solution phenom- 
ena such as the hydrophobic effect,7-‘0 depend upon the 
degree of orientational anisotropy as defined by Eq. ( 1.1)) 
and specifically on the presence of directional hydrogen 
bonds. 

In Sec. II we derive our isotropic reference state, Qo, 
for the perturbation procedure. In Sec. III we introduce a 
new computational model of fully coupled liquid water, 
@i, which we refer to as ST4; as the name implies it is a 
variant of the ST2 water model,” and provides noticeable 
structural improvements over its familiar predecessor. We 
outline the orientational statistical mechanical perturba- 
tion theory for liquid water in Sec. IV; while formal ex- 
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pressions as a function of the perturbation strength have 
been supplied, the full implementation of the orientational 
perturbation approach is only feasible with computer sim- 
ulation. Thus in Sec. V we present the energetic and struc- 
tural properties evaluated from Monte Carlo12 simulations 
using the perturbation potential in Eq. ( 1.1). Section VI 
discusses inherent structures’3 for our il=O.O and il= 1 .O 
end points, which further distinguishes the role of hydro- 
gen bonding in defining water structure. In this same sec- 
tion we briefly discuss Monte Carlo calculations at 198 K, 
and the inherent structures derived from them, for the two 
/z end points of 0.0 and 1.0. We find that the structural 
features of supercooled water are only mildly dependent on 
temperature as opposed to the larger effect generated by a 
change in density.14 In the final section we provide a dis- 
cussion of the results presented here and of possible direc- 
tions for future work. 

II. REFERENCE STATE FOR PERTURBATION 
FORMALISM 

The I,, ice structure suggests that a fruitful approach 
for understanding the orientational attributes of liquid wa- 
ter is to define a reference potential which reproduces the 
(local) oxygen-oxygen structural order, while eliminating 
the explicit hydrogen-bonding components. The Ornstein- 
Zernike (OZ) equation, l5 

h(r) =c(r) +p I‘ c(r-r’)h(r’)dr’ (2.1) 

averaged over the orientational degrees of freedom, pro- 
vides an exact relation between the translationally invari- 
ant radial distribution function, h(r) =g( r) - 1, the direct 
correlation function, c(r), and the density, p. With appro- 
priately chosen closures, the OZ equation provides a rela- 
tionship between an effective isotropic potential and the 
pair correlation functions. While the usual application of 
the OZ equation is to extract the pair correlation function 
for a given model potential, our objective is to define the 
potential itself given the pair correlation function. An ab 
initio evaluation of the oxygen pair (or higher) correlation 
function(s) is not possible at the present time. X-ray16 and 
neutron diffraction17 experiments, however, provide mea- 
surements of the HH, OH, and 00 partial structure fac- 
tors. An analysis’8,1g of the two types of experiments indi- 
cates that the oxygen-oxygen pair correlation derived from 
the neutron diffraction data of Soper and Phillips17 may be 
the best information available on liquid water structure at 
25 “C. The oxygen-oxygen radial distribution function, 
go0 (r), derived from the neutron diffraction data and de- 
picted in Fig. 1, is the first ingredient for obtaining the 
isotropic reference potential from Eq. (2.1) (although the 
procedure outlined in this section is applicable in principle 
to any pair correlation function of interest). 

Next we require a closure for the OZ integral equation 
in order to obtain an approximation to the isotropic poten- 
tial which reproduces the oxygen-oxygen pair correlation 
function. We have considered two closures, the Percus- 
Yevick (PY) closure2’ 
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FIG. 1. A comparison of liquid water goo(r) at 25°C and 1.0 kg// 
derived from neutron diffraction experiments of Soper and Phillips (Ref. 
17) (solid line) and that determined from a Monte Carlo simulation 
(dotted line). As is evident from the figure, the pair correlations are 
virtually identical, and suggests that the HNC closure provides the cor- 
rect physics for reproducing the oxygen short-ranged order. 

$(r)=kbTln[l-c(r)/g(r)] (2.2) 

and the hypernetted chain (HNC) approximation15 

#(r)=WCgW - l-ln[g(r)] -c(r)), (2.3) 

where 4 (r) represents a generic pair potential, kb is Bolt- 
zmann’s constant, and T is the temperature. The potential 
functions derived from the OZ equation using the closures 
defined in Eqs. (2.2) and (2.3) and the Soper-Phillips 
goo(r) at 25 “C, are depicted together in Fig. 2. Both show 
the same qualitative features of a narrow minimum at the 
oxygen-oxygen distance of 2.86 A corresponding to oxy- 
gens which are directly hydrogen bonded, and broader, 
more shallow minima at -4.5 and -6.2 A. However there 
are important quantitative differences between the PY and 
HNC-derived potentials. In particular, the HNC potential 
has a more shallow first minimum (r=2.86 h;) and is more 
repulsive at short distances (Y < 2.86 A) than is the PY- 
derived potential. 

The approximations introduced into the OZ equation 
with the use of the HNC and PY closures raise the possi- 
bility that the potentials appearing in Fig. 2 may not ade- 
quately reproduce the experimental goo( y) in Fig. 1. In 
fact, we anticipated that interpolation between the PY and 
HNC approximations might be necessary, or that extrap- 
olation beyond one or the other closure would be required. 
In order to test the closure approximations, we fitted the 
PY and HNC data appearing in Fig. 2 to the following 
functional form: 
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FIG. 2. The potentials derived from the OZ equation using the PY clo- 
sure (solid line) and the HNC closure (dotted line). Energy and distance 
units are in kcal/mol and angstroms, respectively. The PY-derived po- 
tential did not adequately reproduce the short-ranged oxygen order em- 
bodied in goo(r) in Fig. 1. However, the HNC-derived potential, with no 
fine tuning, reproduced the short-ranged oxygen order embodied in 
goo(r) in Fig. 1 quite well. 

V,(r) =E[ (a/r)“- (a/r>b] 
4 

+ C hjexp[-((r-cci)2/Wf]. 
i=l 

(2.4) 

The parameters of Eq. (2.4) for the PY and HNC-derived 
potentials are given in Table I. Given a site-site interac- 
tion, we then performed Monte Carlo simulations in order 
to see whether the experimental pair distribution function 
is reproduced with the potential under consideration. The 
Monte Carlo simulation conditions were as follows. The 
thermodynamic point we have considered is a temperature 

TABLE I. Parameters for HNC and PY potentials. 

Parameter HNC PY 

; 

E 

* 

Cl 

c2 

c3 

c4 

Wl 

w2 

w3 

w4 

4 

hz 

4 

114 

9.056 9.648 
4.044 7.130 
0.006 0.005 
4.218 4.122 
2.849 2.845 
1.514 2.204 
4.569 4.489 
5.518 5.527 
0.253 0.257 
1.167 1.945 
2.363 2.183 
0.614 0.517 

- 1.137 - 1.132 
3.626 1.664 

-0.451 -0.672 
0.230 0.266 

‘Energy units are kcal/mol. 

of 298 K and a density of 0.033 427 7 molecule/A’. 216 
particles in a cubical cell with periodic boundary condi- 
tions were used, and the initial configuration of the system 
was that of a simple cubic lattice. A step size of 0.025 A 
gave a 42% rejection rate, and the pair interaction was 
truncated at half the box length ( -9.3 A). 5X lo5 Monte 
Carlo steps were generated to equilibrate the sample, and 
an additional 5 X lo5 steps were run to accumulate the en- 
ergy and the square of the energy every step, and the radial 
distribution function statistics every 10 steps. 

Figure 1 also displays the radial distribution function 
derived from the Monte Carlo simulation of the HNC- 
derived potential; as is evident from the figure, the HNC 
closure provides a very good approximation to the effective 
pair interaction which reproduces the local oxygen-oxygen 
order as defined by the neutron diffraction data. The PY ~~~ 
approximation on the other hand performed significantly ‘I 
more poorly. The superior performance of the HNC clo- 
sure may be due to the neglect of highly connected dia- 
grams, thereby emphasizing the long-ranged correlations 
over the short-ranged interactions. The neglect of bridge 
diagrams is often given as the reason why the HNC is 
thought to be a good closure for integral equation ap- 
proaches to understanding the structure of polar liquids.15 
The emphasis that the PY closure places on the short- 
ranged repulsive interactions, inappropriate for an associ- 
ated liquid such as water, qualitatively accounts for its 
failure to reproduce the local order in liquid water as de- 
fined by the experimental oxygen-oxygen pair correlation 
function. Thus, we found no need to interpolate between or 
extrapolate beyond the two closures, but instead find that 
the HNC-derived potential more than adequately defines 
the isotropic reference state for the orientational perturba- 
tion procedure presented in Sets. V and VII and in the 
companion paper.’ 

III. THE ST4 WATER POTENTIAL 

We have demonstrated that our reference potential (A 
=O.O), as its definition requires, essentially reproduces the 
oxygen-oxygen short-ranged order as defined by neutron 
diffraction studies.17 At the other extreme il= 1.0, many 
interaction approximations exist for liquid water. Watan- 
abe and Klein (WK) (Ref. 18) recently re-evaluated the 
structural performance of rigid water models such as 
TIP4P (Ref. 21) and SPC,22 and derived a new water 
potential (the WK model”) in light of the new neutron 
diffraction data. l7 It was concluded that all of the above 
rigid water potentials did not adequately reproduce the 
position and/or height of the first peak in the oxygen- 
oxygen radial distribution function, although all of poten- 
tials performed well in describing the second peak.r8 

We then considered the ST2 potential” whose “molec- 
ular structure” is graphically represented in Fig. 3 (a). The 
functional form of ST2 (Ref. 11) is 

V,( L2) = V,(r) +S(r) f7,1(1,2), (3.1) 
where r is the distance between water molecule oxygens, 
VLJ is the standard Lennard-Jones function which depends 
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(a) ST2 

(b) ST4 

FIG. 3. (a) A depiction of the ST2 water model. (b) A depiction of the 
ST4 water model. 8, denotes the ideal tetrahedral angle 109.47”. 

on the oxygen-oxygen separation only, and Vel designates 
Coulomb’s Law evaluated for all sixteen intermolecular 
charge interactions in the ST2 model. S(r) is a modulating 
function which interpolates smoothly between 0 and 1, and 
is applied to the charge interaction in order to avoid elec- 
trostatic catastrophes exhibited by some relative orienta- 
tions of a pair of water molecules,” 

S(r) =0 O<r<RL 

S(r) = (r---Rd2Wb-R~-2r) 

(&,--RL)~ 
RL<r<RU (3 2) 

5’(r) = 1 r>RU. 

The ST2 parameters appear in Table II. We evaluated the 

TABLE II. Parameters for ST2 and ST4 potentials. 

Parameter ST2 ST4 

E (kcal/mol) 
(T(A) 

&I= ---4Lc(e) 
hi(A) D 
rdA) 

eH-O-H(“) 

QLPO-LP 0 
R,(h 
R,(A) 

o&----J 
I I t I 1 
0 2 4 6 8 

r(A) 

FIG. 4. The radial distribution function, g,(r) , produced from a Monte 
Carlo simulation at 25 “C and 1.0 kg/eof the ST2 potential (center) and 
ST4 potential (top) as compared to experiment (bottom). The ST2 po- 
tential reproduces the first peak of goo( r) quite well, but does not exhibit 
adequate structural agreement at larger values of r. ST4 overcomes this 
deficiency, in addition to other improvements described in the text. 

0.075 15 0.075 75 
3.10000 3.100 00 
0.235 70 0.245 70 
l.OOOOil 1.000 CO 
0.800 00 0.800 00 

109.4700 109.4700 
109.4700 134.4700 

2.016 00 2.016 00 
3.128 70 3.128 70 

go0 ( r), goH( r) , and gHH( r) pair correlation functions for 
ST2 using Monte Carlo simulation. The conditions were 
the same as those described in Sec. II for the derivation of 
the reference potential, except for the following features. 
The traditional ST2 interaction cutoff of 8.5 A (Ref. 11) 
was used, with the interaction truncation being determined 
solely by the distance between the two oxygens. The list of 
interactions within the 8.5 A cutoff was updated every 100 
Monte Carlo steps. The initial configuration of the 216 ST2 
oxygens was the last configuration generated by the Monte 
Carlo reference potential calculation described in Sec. II. 
In the ST2 model, the hydrogen and lone pair positions are 
rigidly displaced in perfect tetrahedral directions about the 
oxygen position in the body reference frame [see Fig. 
3 (a)]. Their positions in the laboratory reference frame are 
defined by quaternion variables,23 which are the indepen- 
dent orientational variables. We have chosen to use quater- 
nions in order to avoid the problem with instabilities of the 
more conventional Euler rotation variables.23 The initial 
quatemion values, and thus the hydrogen and lone pair 
positions, were assigned randomly from a normal distribu- 
tion. 5 X lo5 steps of equilibration and 1 X lo6 steps of sta- 
tistics were evaluated in order to obtain the three pair cor- 
relation functions. 

Figure 4 shows the comparison of the experimental 
oxygen-oxygen pair correlation function at 25 “C!, and that 
found from the ST2 simulation. As is evident from the 
figure, the ST2 potential reproduces the position and 
height of the first peak extremely well; it unfortunately 
does cot exhibit the correct structure for the second and 
third peaks. If the second peak is due mostly to configura- 
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FIG. 5. A representative configuration of three water molecules in liquid 
water at 25 ‘C and the experimental density. The distribution of distances, 
denoted d in this figure, between a central oxygen and the second nearest 
neighbor, define the second peak in goo( r) (Figs. 1 and 4). By opening up 
the BLoL angle of the ST2 model, the average distance (d) should dimin- 
ish, and thus shift the ST2 second peak to smaller r. 

tions of three oxygens hydrogen bonded as depicted in Fig. 
5, then diminishing the O-O-O angle would shift the ST2 
second peak to the desired shorter distances. 

In order to improve on the ST2 description of the sec- 
ond and third peaks in the oxygen-oxygen radial distribu- 
tion function, we introduced a refined ST2 water model 
which we refer to as ST4 [see Fig. 3(b)]. The ST4 model 
differs from ST2 in that ( 1) the charge parameter qH has 
been increased from 0.2357e to 0.2457e (qH= -qL) and 
(2) the lone pair-oxygen-lone pair (LP-O-LP) angle has 
been increased from the ideal tetrahedral value of 109.47 
to 134.47” as shown in Fig. 3 (b). The reliable reproduction 
of the position and height of the first peak in goo(r> is 
thought to be very sensitive to the repulsive piece of the 
Lennard-Jones interaction, and largely insensitive to the 
remaining parameter$ we have also found this to be the 
case. Therefore we have kept the original ST2 E and 0 
parameters, and the modulation function, S’. 

The ST4 model improves on the original ST2 model in 
three ways. First, the new ST4 potential reproduces all of 
the peak positions and heights of the new diffraction data 
for the goo(r) function more adequately than ST2 (and 
other water models). This was accomplished by increasing 
the LP-O-LP angle (thereby diminishing the O-O-O an- 
gle discussed above). Second, this geometric change im- 
proves the quadrupolar description of the condensed phase 
water model, where an experimental value of Q,=2.63, 
Q,,,,= -2.50, Q== -0.13, in units of 1O-26 esu cm2, has 
been reported. 24 The original ST2 model quadrupole tensor 
is Q== 1.86, Q,,Y= - 1.86, Q,=O.OO. The symmetry of the 
fully tetrahedral ST2 model is broken with the opening of 
the LP-O-LP angle in ST4. In order to maintain an en- 
hanced dipole moment relative to the gas phase (the ST2 
model value is 2.35 D), and to obtain the best quadrupole 
description, the proton charge has been increased, and the 
lone pair charge decreased, by O.Ole. These changes result 
in an ST4 quadrupole tensor of Q,=2.35, Q,,,,= - 1.94, 
Q== -0.41, and a dipole moment of 2.1 D. A better quad- 
rupole description is thought to be an important contribu- 
tion to the dielectric constant,1s’25 although we have not 

T. Head-Gordon and F. H. Stillinger: Orientational perturbation theory for H,O 

0 2 4 6 8 

r(A) 

FIG. 6. The oxygen-hydrogen correlation, go*(r), as determined by 
Monte Carlo simulation at 25 “C and 1.0 kg//of the ST4 potential (dot- 
ted line) and neutron diffraction (solid line) at 25 “C and the experimen- 
tal density. Overall the agreement is quite good. 

evaluated this quantity for either ST2 or ST4 to see 
whether this is the case. Lastly, the optimum hydrogen 
bond energy for the water dimer is -6.57 kcal/mol as 
compared to the ST2 value of -6.83 kcal/mol, resulting in 
a lower melting temperature, presumably. 

Figure 4 ‘also displays the oxygen-oxygen radial distri- 
bution function as determined by a Monte Carlo simula- 
tion with the ST4 potential function. The details of the 
simulation are the same as those given above for ST2. As is 
clear from Fig. 4, the ST4 potential provides significant 
improvement in the quality of the simulated goo(r). A 
comparison of the first peak position and height between 
ST2 and ST4 shows that they are virtually identical, indi- 
cating that this feature is insensitive to the change in 
charge and LP-0-LP angle. The second and third peaks 
have shifted to smaller distances as was desired. Thus we 
have succeeded in our original goal of reproducing the 
experimentally observed oxygen short-range order at the 
/2= 1.0 end point. In addition to the oxygen-oxygen struc- 
tural correlations, we provide a comparison of the experi- 
mental and simulated ST4 g,,(r) and gHH (i-) functions in 
Figs. 6 and 7. We find quite good structural agreement for 
goH(Y), but only fair agreement with the experimental 
&?HHk). 

We note that all of the simulations involving electro- 
static interactions reported here do not use Ewald sums to 
account for interactions beyond 8.5 b;. This is both due to 
historical reasons, * ’ and to the fact that the short-ranged 
structural features of water are known to be insensitive to 
such long-ranged interactions. While energtic quantities 
evaluated with a distance cutoff may be suspect, the ener- 
getic trends discussed below should not change with the 
introduction of long-ranged interactions. In addition, the 
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FIG. 7. The hydrogen-hydrogen correlation, gHH(r), as determined by 
Monte Carlo simulation at 25 “C and 1.0 kg//of the ST4 potential (dot- 
ted line), compared to experiment (solid line). Overall the agreement is 
only fair. 

simulations presented here are purely classical, i.e., no 
quantum effects have been incorporated into the Monte 
Carlo simulations. While quantum effects are known to be 
significant in describing water structure,4 we justify their 
exclusion from the calculations presented here on the fol- 
lowing grounds. The classical potentials describing the two 
perturbation end points have been shown to reproduce the 
structural short-ranged order as described by the (inher- 
ently) quantum mechanical neutron diffraction data.r7 In 
addition, we are evaluating energetic and structural com- 
parisons between a reference fluid with no orientational 
preferences and that which describes pure liquid water, so 
that cancellation of errors are expected. 

IV. ORIENTATIONAL PERTURBATION THEORY FOR 
LIQUID WATER 

Sections II and III outline the functional forms of the 
reference potential, <PO, and the fully coupled potential, @r, 
introduced in Eq. ( 1.1); because these potentials are pair- 
wise additive we may rewrite Eq. ( 1.1) as follows: 

@(ii) = rf [ ( 1 -a) vo(rij> -I-Iv, (riJj&sj) 1 
i#j 

= Ff CvO(rij> +A[ Vi(riJjAsj) - vO(rij) II 
if i 

= ~~ [~o(rij>+~~~(Xi,Xj>l, (4.1) 
i#j 

where xi denotes both translational, ri, and orientational, Sb 
degrees of freedom for molecule i. The canonical ensemble 

configurational integral as a function of the perturbation 
parameter A and the potential energy given in Eq. (4.1) is 

Z,(A)= j-dxl--.j-dxN 

I 

N 
Xew -P C [ vo(r,) +aV;(XiSj)] (4.2) 

i<j I 

which can be reexpressed as the average of 
exp ( - /3L’Z$ jV; ) in the reference ensemble, 

Z&)=ZdO) exp --$A i V;(xi,xj) 
( I I> . (4.3) 

i<j 0 

If we assume that the effect of AF’; is small enough to 
expand in a A power series, the last expression can be put 
into the form 

Zj&) =ZN(O> exp --PA 
( ( 

5 V;(xi,xj) 
i<j > 0 

fi2a2 

+ 2! - ( ([ 2 viCxi,xj,]2) 
i<j 

- [ ( gj v~~xi3xj~)o]2] +,,3A31)- 

(4.4) 

In principle, the nth order correlation functions g(“) can 
also be expanded in a power series 

g(n) (x1 ,..., Xn,lZ) = i a’g(“qxl,..., XJ, (4.5) 
I=0 

where the g ok’) refer to the unperturbed system and so are 
orientation independent, specifically 

g(“*O) (x1 
(82V)” 

,...,XN) = zN(o) - j-dx,,,--- j-dx, 

(4.6) 

where V is the system volume. These unperturbed correla- 
tion functions permit Eq. (4.4)) or equivalently the change 
in free energy FN(A.) -FN(0) produced by the perturba- 
tion, to be expressed in an alternate fashion 
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Pxv(N- 1) 
*n[zdn)‘zdo) I= --fi[Fi=v(a) -FdO) I= - 2c814vj2 s s 

P2a2iv(N- 1) 
dxl d~~V;(x~,x&(~J’)(x~,~~) + 4(s~v)2 

s 
dx, 

dx2[ Vi(XlJ2) 12g(2~o)(x1,x2) + 
B2A2N(N- 1) (N-2) 

x x~37-w3 s s 

dx 
I dx2 

X dx3 v; (xl,x2) vi (x,,+)g (3’o) (x1,x$+) + f12L2N(ZV-- 1) (N-2) (N-3) 
8( sAq4 

x ~dxl~~x2~~x3~~~4Y;(r,,x2)~~(x3,~4) 

x k (4’o)(x$2,x3,x4) -+f2f’ (xl,x2)g(2’o) (x3,x4)] + ’ ’ *. (4.7) 
For completeness we stress that the g (‘J) I>0 can also be expressed in closed form using the unperturbed correlation 
functions. In particular the linear correction to g(210) is 

8VXlX2) = -Pv;(x1,x2)g~~)(x~,xz) - 
W---2)8 

*gv dx3[ ~;(xl,x3) + v:(x,,x,) ]g(3’o)(x1,x2,x3) 

(N-2) (N--3)~ - 
2&+12 s s 

dx 
3 &Vi (~39x4) [g (4’o) (x1&x3,x4) --g (230) (XlJZk (2po) (x3,x4) ] + . . -. (4.8) 

It is evident from the expressions in Eqs. (4.7) and (4.8) 
that quadratic free energy contributions, and linear pair 
correlation contributions, involve three and four body cor- 
relations in the unperturbed ensemble. Since these are very 
complicated attributes of the system (not easily repre- 
sented either analytically, tabularly, or graphically), Eqs. 
(4.7) and (4.8) as presented have rather limited utility. A 
more useful tactic, followed in Sec. V, is to use direct 
Monte Carlo simulation for several discrete il values in the 
range O.O<ilg 1.0. If the results are smooth enough to per- 
mit simple polynomial fits, the leading-order il series terms 
can be inferred indirectly. 

We have explicitly evaluated several terms in the sta- 
tistical mechanical perturbation theory for the binding en- 
ergy per molecule, since this does not involve higher order 
structural correlations. 

(~(~>)=(Vo(r,,>)n+~(v;(Xl,X2>)~ * (4.9) 

As discussed in Sec. II, the reference model interaction was 
constructed to reproduce the short-ranged oxygen order 
exhibited by the neutron diffraction experiments (Fig. 1 ), 
as was the ST4 water model at the other extreme. If we 
assume that go0 (r;/z ) changes very little for intermediate d 
values (an assumption to be tested below) then ( Vo( 17,) )A 
is nearly independent of /2, hence 

(Vo(y12) >a= (Vo(r12> >o (4.10) 

and the perturbation expression for the binding energy up 
to second order is 

a( Vi (XlJ2) > 

+a2 da 
+0(/23). (4.11) 

#Lo 

I 

The first term in Eq. (4.11) is simply the average binding 
energy as determined by the /2=0 Monte Carlo simulation 
at 25 “C and the experimental density discussed in Sec. II; 
we have found the binding energy per particle of our ref- 
erence fluid to be -2.35 kcal/mol, -25% of the value 
expected for the full water interaction. 

The terms linear and quadratic terms in il in Eq. 
(4.11) involve explicit dependence on the orientational de- 
grees of freedom; because we are evaluating these quanti- 
ties in the reference ensemble where no orientational de- 
pendence is present, we must replace Vi (x1,x2) by its 
average over the orientations of molecules 1 and 2. Most 
water interactions of the type represented by ST4, ST2, and 
others of similar ilk,‘8Y21*22 allow averaging over spherical 
shells of charge at fixed O-O separation, r12. The integral 
which arises has the form 

~(qz;~Jp) =* 
ap 12 s 

dk sin(kZ,)sin(kZP)sin(krr2), 

(4.12) 

where Z, and Zp represent the lengths of the respective 
charges from their oxygens. Equation (4.12) is a standard 
integral whose solution is (for Z,<Z,) 

~(~12;zcr,zp~ =f (0 < r12 < klp>, 
a 

=f l- 
a [ 

(&-+12>2 

4&l, 1 
(k-Ip<r12<~a+~& 

=k (L<rl2). (4.13) 

Hence the linear term in Eq. (4.11) becomes 
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TABLE III. Binding energy for five values of the perturbation, A. 

A. value 

0.00 
0.25 
0.50 
0.75 
1.00 

Binding energy 
( kcal/mol/molecule ) 

-2.285 
-2.566 
-4.275 
-6.596 
-9.378 

s (Vi(X~J2>)o=p &d Vdrd - V&12) +S(r12) 

x C C 4=4d’(rl2;Z,,Zp)lgd2tP’(rl2). 
a(l) P(2) 

(4.14) 

The sum over charges vanishes on each molecule so that 
the last term in brackets in Eq. (4.14) vanishes when r12 
exceeds the maximum of Za+Zp For the model interaction 
considered in Sec. IV, and others,18P21P22 this maximum is 
2.0 A. In addition, goo(r12) is zero for distances < 2.0 A. 
Therefore the last term in Eq. (4.14) can be dropped al- 
together to yield the first order correction to the binding 
energy 

(Vi(Xl,X2))0=p 
s 

drd Vdrd - V&d l&$Crd 
(4.15) 

The integral appearing in Eq. (4.15) is easily evaluated by 
numerical quadrature using the experimental radial distri- 
bution function; we obtain a value of 3.Q2 kcal/mol. This 
positive value indicates that for small perturbations about 
the /z = 0 point, the slope of (Cp (A) ) will be positive, and 
hence the energy initially rises as the perturbation is turned 
on. The quadratic term 

a(Vi(XlJ2)) 9 cu 
aa = -PC{ Vi(XlF2)2)~ 

A=0 

- [ (Vi(XbX2) >n121 (4.16) v! 
S’ 

is clearly negative indicating initial downward curvature, 
which is to be expected as the attractive, cohesive hydrogen 8, 
bond interaction is restored for nonzero il values. 

V. PERTURBATION CALCULATIONS AS A FUNCTION 
OF THE COUPLING, iI 

In addition to the formal perturbation expressions pro- 
vided in the previous section, we have evaluated properties 
by Monte Carlo simulation using the potential given in Eq. 
( 1.1) for several values of the linear coupling parameter 1, 
0.00, 0.25, 0.50, 0.75, and 1.00. Table III provides the 
binding energy for the five values of the coupling parame- 
ter A. It is evident that the binding energy is significantly 
nonlinear in the coupling parameter, as expected from the 
analytic calculations of this quantity presented in Sec. IV. 

Figures 1, 4, and 8, portray the oxygen-oxygen radial 
distribution function at room temperature and the experi- 
mental density as derived from Monte Carlo for the five il 
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r(A) 

FIG. 8. The oxygen-oxygen structural correlations as determined by 
Monte Carlo simulation at 25 “C and 1.0 kg// using the perturbation 
potential in Eq. ( 1.1) . The perturbation parameter values used to gener- 
ate the goo(r)‘s in this figure are 0.25 (bottom), 0.50 (center), and 0.75 
(top). The washed out structure of the second and third peaks at /1=0.25 
and 0.50 is due to frustrated interactions of the /2=0 and 1 potentials, 
each of which individually reproduces goo(r). At /2=0.75 the directed 
hydrogen bonding interaction is beginning to dominant, as manifested by 
the appearance of more well-defined structure than that of d=O.25 and 
0.50. 

Lo cu 

Lo 0 

9 0 

0 2 4 6 8 

r(A) 
FIG. 9. The oxygen-hydrogen correlation, gOH(Y) for R=O.OO (dotted 
line) as determined by Monte Carlo simulation at 25 “C and 1.0 kg/e the 
solid line is the experimental gOH(r). This structural correlation is ob- 
tained by averaging over all hypothetical hydrogen-bond conformations, 
and requires goo(r) from Fig. 1. This figure best represents the properties 
of our reference potential-a fluid with no obvious orientational prefer- 
ence for hydrogen bonding. 
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FIG. 10. The oxygen-hydrogen structural correlations as determined by 
Monte Carlo simulation at 25 “C! and 1.0 kg// using the perturbation 
potential in Eq. (1.1). The values of the perturbation parameter used to 
generate the gon(r)‘s is 0.25 (bottom), 0.50 (center), and 0.75 (top). 
This direct probe of hydrogen bonding structure appears to recover lin- 
early as a function of the perturbation. 

values. It is evident that the oxygen short-range order is 
not well reproduced for intermediate values of /z (0.25, 
0.50, and 0.75), particularly at the second and third neigh- 
bor peaks (see Fig. 8). However the underlying reason for 
this poor agreement for intermediate values of the coupling 
is explained by the peculiarities of the correlations of order 
> 2, discussed below. 

We also have evaluated the oxygen-hydrogen radial 
distribution function for the five points sampled in the full 
A range (Figs. 6, 9, and lo), including that for A.=O.OO. 
Given a water molecule O-H bond length of I= 1 A, and 
orientationally averaging over all possible 0-H.. -0 an- 
gles, we arrive at the expression for goH (r) for A. = 0.00, 

gOH(r) =kr s r+l sgoo(sM~ I+4 
TABLE IV. Nearest-neighbor distributions. 

(5.1) 

which was evaluated by numerical quadruture using the 
oxygen-oxygen pair correlation function. Figure 9, which 
compares the experimental goH( Y) with that determined at 
A=O.OO using Eq. (5.1), best exemplifies the properties of 
the reference fluid important for our perturbation 
approach-the loss of an obvious orientational preference. 
The structure which does occur is due to the indirect in- 
fluence of the hydrogen bonding characteristics of water on .-,. 
the oxygen-oxygen structural correlations. The recovery of -i 
this orientational profile of hydrogen bonding structure 
seems to be roughly linear in the perturbation parameter A, 
where Fig. 10 displays gon(Y) for the intermediate A. val- 
ues. Interestingly enough, integration under the first peak 
of gou (r) , which provides the average number of hydrogen 
bonds, (i&B), 

s ,” hhi(~)~~ (5.2) 

(t-,=2.35 A> nearly reaches its icelike value of 2 at 
A=O.75, i.e., the full recovery of the average number of 
hydrogen bonds is not a linear function of the coupling 
parameter. The values for (Nns) we find are 1.39, 1.42, 
1.71, 1.96, and 1.98 for increasing d. This is not inconsis- 
tent with the ZipprOXimately linear recovery of go,(r) as a 
function of A., in that there is a larger spread about the 
mean in the first (and second) peak for the /2=0.75 O-H 
pair correlation function. The large spread is due to incom- 
plete orientational preferences at this intermediate A value. 

Orientational ambiguity is also evident in the calcu- 
lated mean number of nearest neighbors, (No), as deter- 
mined by integration under the first peak of the oxygen- 
oxygen radial distribution function. 

(No) =4rpo ic &00(r)& 
s 

(5.3) 

where values of 4.6, 4.9, 5.5, 5.7, and 5.1 are found for 
increasing /z using a cutoff r,=3.36 A. The larger average 
obtained for intermediate il points is due to a shift in the 
position of the first trough of goo(r) to larger r, and to a 
smaller gradient at r, as the first minimum in go0 (r) is 
reached. 

Table IV tabulates the nearest-neighbor distribution 
function for the five /z values simulated at 298 K. The 

No. NN a=O.ooa ,l=0.25a a=0.50a a=0.75a a= i.oo= a=o.oob a=i.oob 

0 0.0000 
1 0.0028 
2 0.0298 
3 0.1301 
4 0.2923 
5 0.3266 
6 0.1731 
7 0.0407 
8 0.0046 
9 O.OOQO 

10 O.OQOO 

o.OcQ2 
-0.0022 
0.0263 
0.1099 
0.2741 
0.3202 
0.1999 
0.0583 
0.0084 
o.OcQ5 

0.0002 - 03000 O.OOOG 
0.0022 0.0008 0.0002 
0.0205 0.0099 0.0056 
0.0986 0.0750 0.0608 
0.2668 0.2702 0.3193 
0.3343 0.3431 0.3417 
0.2021 0.2156 0.1886 
0.0634 0.0704 0.0636 
0.0112 0.0135 0.0095 
0.0007 0.0013 o.ooo9 
0.0000 ; o.-Yiwl 0.0002 

o.oooo 
0.0007 
0.0169 
0.1091 
0.2981 
0.3623 
0.1793 
0.0316 
0.0019 
o.oooa 

0.0000 
o.oooo 
0.0016 
0.0544 
0.4407 
0.3153 
0.1430 
0.0404 
0.0043 
0.0003 - 
0.0001 

‘Evaluated from 298 K simulation configurations. 
bEvaluated from 298 K quenched configurations. 
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FIG. 11. The O-O-O angle distribution function for /2=0.00. The three- 
body correlations reveal the reference fluid as a highly defective tetrahe- 
dral network due to the prominence of 60” configurations and the unusu- 
ally large number of near-linear triplets. 

distribution is calculated by binning integer numbers of 
neighbors defined within a radius of 3.36 A about a central 
water molecule. Again, orientational indifference seems to 
be responsible for a wider distribution of nearest neighbors 
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FIG. 12. The O-0-0 angle distribution function for /1=0.25 (bottom), 
0.50 (center), and 0.75 (top). Despite the introduction of directional 
hydrogen bonds, they are evidently too weak at L=O.25 and 0.50 to 
perturb the three-body correlations defined. by the reference fluid (Fig. 
11). At /1=0.75, the hydrogen bonding interaction is now of sufficient 
strength so that a loss of network defects are observed relative to that in 
Fig. 11; nonetheless, 60” configurations are still the highest maximum. 
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FIG. 13. The O-Q-O angle distribution function for /2= 1.00. The full 
hydrogen bonding interaction is required to make the tetrahedral angle 
the highest maximum. However, there is still a nontrivial amount of 
defect structure. The predominance of tetrahedral, linear hydrogen bond- 
ing arrangements is consistent with the high boiling point of water, while 
defects (60” configurations) may provide reasonably low energy interme- 
diates for flow. 

in the first coordination shell until a il value of 0.75 is 
reached. 

The structural ambiguity displayed by the averages 
and two-body correlations as discussed above can be better 
understood in terms of the O-O-O angle distribution func- 
tions at each of the five /z points, provided in Figs. 11-13. 

~The angle distribution is evaluated by binning the dot 
product of two vectors emanating from a central oxygen to 
two of its nearest neighbors, where all possible dot prod- 
ucts are considered. Despite the agreement of the two-body 
correlations at the perturbation coupling parameter end- 
points, the three-body correlations (Figs. 11 and 13) at 
these end points are quite different. In fact for /z=O.OO- 
0.50 there appear to be many approximately equilateral 
triangular configurations in contrast to the tetrahedral an- 
gle maximum expected for fully coupled water. Only as the 
hydrogen bond coupling strength increases to (again) 75% 
of its maximum do the 60” structures begin to diminish. In 
addition, a shift in the second maximum to the proper 
tetrahedral value of 109.5” does not occur until the aniso- 
tropic coupling reaches 75%. However, the 60” configura- 
tions still persist to some extent even in the fully coupled 
water case. We return to a discussion of these nontetrahe- 
dral network defects in the last two sections. Overall, the 
angle distributions for intermediate il values (0.25475) 
are quite broad, especially in the 60”1120“ range. The angle 
distribution functions are quite effective in portraying the 
potential energy playoff between a highly defective tetra- 
hedral network characterized by the /2=0.00 reference 
fluid, and the icelike tetrahedral structure of the fully cou- 
pled water case. Since the higher maximum in the angle 
distribution functibns for these two end points are differ- 
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ent, intermediate 2 values sample a wider array of angles 
between the two angle extremes. 

The main conclusion to be drawn from this section is 
that interaction anisotropy as a property in itself is not as 
important as the strength of the anisotropy in determining 
liquid water structure. Evidently the means by which G+, 
and @r individually produce proper oxygen pair correla- 
tion come into conflict in the intermediate coupling regime, 
and give rise to frustration. The two- and three-body cor- 
relations together provide the following structural picture 
to support this conclusion. The inexactness in the second 
and third peaks (and troughs) observed for the pair dis- 
tribution functions at intermediate /z values is due to the 
flatter and broader distribution of angles, especially around 
the 60” and tetrahedral-hydrogen bonded geometry max- 
ima. Clearly the intermediate coupling electrostatic inter- 
actions permit partial reorientation and translation from 
defective equilateral triangle configurations toward those 
which are close to, but not quite, tetrahedral. The greater 
number of near- 180” configurations, and the breadth of the 
distribution around this angle, may be a consequence of 
triangles sharing a vertex, and pivoting about this vertex 
gives rise to a range of near-linear alignment of three ox- 
ygens. Not until close to full hydrogen bonding strength is 
reached do we see a significant loss of defect (nontetrahe- 
dral) structure, and an orientational commitment to the 
tetrahedral network which characterizes liquid water as we 
know it. 

VI. INHERENT STRUCTURES DETERMINED FROM 
ROOM TEMPERATURE SIMULATIONS 

Inherent structure theoryI has provided a working 
foundation for understanding the structural properties of a 
wide array of liquids. While inherent structure concepts 
have already been useful for understanding structure in 
(models of) pure liquid water, 14p26 the inherent structures 
determined from our perturbation end points (il=O and 1) 
reveal with much greater clarity the relative roles of di- 
rected hydrogen bonds and thermal vibrational deforma- 
tions in defining observed water structure. 

During the course of the Monte Carlo simulations for 
/z =0 and 1 described in Sets. II and III, configurations 
were saved every 10 000 steps for later mapping onto po- 
tential energy minima by the method of steepest descents. 
Properties discussed in this section are based on averages 
of these 50 inherent structures for each ;1 end point (in- 
herent structures for /2= 1.0 were evaluated from configu- 
rations generated in the second half of the corresponding 
Monte Carlo simulation). 

Figure 14 shows goo(r) evaluated from the inherent 
structures and from the 298 K simulation prior to quench- 
ing, for /2=0. The removal of thermal vibrations amplifies 
the underlying short-ranged order dramatically. In partic- 
ular, the first peak is sharpened to such an extent that no 
configurations with pair separations between 3.0 and 3.3 A 
are observed. Apparently .the narrow, positive energy min- 
imum of the HNC-derived reference potential displayed in 
Fig. 2 is responsible for trapping particles in order to main- 
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FIG. 14. A comparison of the Monte Carlo simulated goo(r) of d=O.oO 
at 25 “C and 1.0 kg// (solid line) and that determined from inherent 
structure theory for the reference fluid (dotted line). Removal of thermal 
vibration reveals the first peak of the quenched goo(r) to be so sharp that 
no configurations below 55” and between $5” to 70” are observed. Note the 
unexpected appearance of a peak at 5.7 A. 

tain this aspect of the short-ranged water structure. The 
second and third peaks are also sharper, but broader than 
the first, and likely correspond to the shallow minima in 
V,(r) at r=-4.5 and -6.5 A, respectively. The unex- 
pected feature at -5.7 A in Fig. 14 is also an indirect 
consequence of the narrow positive energy minimum, and 
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FIG. 15. The G-G-O angle distribution function derived from quenched 
configurations of the /l.=O.OO reference fluid. The inherent structure pro- 
cedure best exemplifies the highly defective tetrahedral network of the 
reference fluid. 
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FIG. 16. A breakdown of the O-O-O angle distribution function derived 
from quenched configurations of the ,l.=O.OO reference fluid into the con- 
tributions from four (top), five (center), and six (top) nearest neighbors 
only. While there are equal contributions to tetrahedral structure (109.5”) 
from four and six nearest neighbors for the /2=0.00 fluid, the tetrahedral 
structure arises predominantly from the high density region of five nearest 
neighbors. In addition, a majority of defect structure (60”) is due to local 
regions of high density (five or more nearest neighbors). 

its physical explanation will be revealed when we discuss 
the angle distributions below. 

The distribution of nearest neighbors for the quenched 
il=O configurations is tabulated in Table IV. In contrast to 
the premapping results (Table IV), the quenched distribu- 
tion is narrower, while the average number of nearest 
neighbors shifts from 4.6 to 4.7. Figure 15 shows the angle 
distribution functions for our reference fluid after potential 
minimum mapping. Again, this quenching provides a stark 
portrayal of the short-ranged order now exhibited in the 
three-body correlations. While the peak at the tetrahedral 
angle of 109.5” has sharpened somewhat after quenching, 
the peak at 60“ has narrowed so substantially that no sam- 
pling of angles below 55” and between 65” and 70” is ob- 
served. 

The observation of a larger proportion of near linear 
angles for the il = 0 reference fluid as compared to the it = 1 
case has already been discussed in Sec. V. The unexpected 
peak at 5.7 A alluded to above seems to be a consequence 
of the higher proportion of equilateral triangular configu- 
rations, induced by the first minimum at -2.85 A of the 
reference potential (Fig. 2), where linear arrangements 
can result when two triangles are joined at one vertex. The 
breadth of the angular distribution peaks at the tetrahedral 
and linear angles are presumably structurally inherent, and 
not a result of thermal broadening, due to the large range 
of angles available as two triangles pivot about a shared 
vertex. This structural flexibility is evident in the weakness 
of the radial distribution function peak at 5.7 AL, and the 

The removal of thermal vibration has revealed the ref- 
erence fluid to be a highly defective tetrahedral network. 
Figure 16 provides a breakdown of the ;1= 0 angle distri- 
bution function for O-O-O triplets in the inherent struc- 
tures into contributions from four, five, and six nearest 
neighbors, respectively. It is clear from the figure that the 
equilateral triangular configurations are contributions from 
high density polyhedral clusters of five and six water mol- 
ecules in the first solvation shell about a central water mol- 
ecule. Configurations which we have displayed with mo- 
lecular graphics show that the underlying structure of the 
reference fluid exhibits a network of equilateral triangles 
sharing vertices, edges, and faces, connecting opposite ex- 
tremes of the periodic cell. While individual triangles, or 
isolated pairs of triangles sharing a vertex or an edge are 
observed, all configurations which we have examined by 
graphics indicate that the il=O fluid is above the percola- 
tion threshold in this type of networking. 
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Next we consider the structural probes generated from 
the ;1= 1 inherent structures. Figure 17 exhibits the 
quenched goo( r) for il= 1 where it is clear that structural 
features have also sharpened after removal of thermal vi- 
brations. However, the relative change upon quenching is 
much less dramatic than for the il=O fluid. Figure 18 por- 
trays the angle distribution function where we find that 
there is now a smaller population of 60“ configurations 
(network defects), and a sharpening of the tetrahedral an- 
gle, relative to the prequenched results. The nearest- 
neighbor distribution tabulated in Table IV is found to be 
sharper than its prequenched analog, and the mean num- 
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FIG. 17. A comparison of the Monte Carlo simulated goo(r) of /2= 1.00 
at 25 “C and 1.0 kg/E (solid line) and that determined from inherent 
structure theory for the fully coupled water cas’e (dotted line). The degree 
to which vibration contributes to water structure is much smaller than the 
reference fluid (see Fig. 14). Thus hydrogen bonding interactions “lock- 
in” structure so that water is less susceptible to vibrational distortion. 

resistance of the tetrahedral and linear angles to sharpen 
appreciably upon quenching. 



T. Head-Gordon and F. H. Stillinger: Orientational perturbation theory for Hz0 3325 

E 

9 ul 
0 - 
6 
6 ‘E 
=J 
e 0 - 
zi .- 
n 
a, 
= 2 u-l 

0 I 
1 , I I 

0 50 100 150 

Theta (Degrees) 

FIG. 18. The G-O-G angle distribution function derived from quenched 
configurations of the ~=I.00 fully coupled water case. The inherent 
structures reveal a largely tetrahedral network, with some network de- 
fects. Like goo(r) (Fig. 17), the angle distributions are not subject to 
much change upon removal of thermal vibrations due to the strong in- 
teraction strength of hydrogen bonding which “locks-in” structure. 

ber of nearest neighbors has shifted downward from 4.8 to 
4.7. 

Bearing the /2=0 inherent structure results in mind, 
the inherent structures derived from the fully coupled wa- 
ter case reveal the structural nature of hydrogen bonding in 
a new light. First, directional hydrogen bonding provides 
enough structural rigidity so that fully coupled water is 
quite resistant to thermal deformation. By contrast, fluids 
with little or no orientational preference have a great deal 
of underlying structure which is washed out due to thermal 
broadening, even for our reference fluid which is “water- 
like” in some respects. The highly defective network of the 
reference fluid is still present, albeit to a much smaller 
extent, in the fully coupled case. A breakdown of the angle 
distribution into contributions from oxygens with only 
four, five, and six nearest neighbors (Fig. 19) indicates 
again that the nontetrahedral defects arise from high den- 
sity regions where there are five and six neighbors around 
a central oxygen, although these high density regions con- 
tribute to tetrahedral configurations as well. With the full 
hydrogen bonding interaction present, we provide a visual 
example of the structure of these local defect clusters in 
Fig. 20. Again, complex polyhedra providing triangular 
faces are evident, as well as structures broadly defined 
about the tetrahedral angle, as triangles share vertices, 
edges, and faces. We have found by graphical display, and 
quantified below, that the triangular configurations are sta- 
bilized by a diverse set of hydrogen bonding arrangements. 
Figure 20 shows that these triangular structures arise due 
to contributions from bifurcated hydrogen bonds (one pro- 
ton engaged in two hydrogen bonds), as well as nearly 
linear hydrogen bonds between water molecules whose ox- 

9 s 
9 
0 

I.0 s -r .- 
3 
P 
z 22 0 
cl - 
u 
F 
a LO 

0 

0 50 100 150 

Theta (Degrees) 

FIG. 19. A breakdown of the O-G-G angle distribution function derived 
from quenched configurations of the A = 1.00 case into the contributions 
from four (bottom), five (center), and six (top) nearest neighbors only. 
This figure provides direct evidence that for fully coupled water virtually 
no tetrahedral network defects exist for local water densities of four near- 
est neighbors. It is evident that local regions of high density incorporate 
both defect structure and tetrahedral configurations of oxygen triplets, 
and may serve as low energy intermediates for flow processes. 

ygens define the triangle, and packing effects where the 
three water molecules hydrogen-bond to other molecules 
not in the local complex. 

The relative frequency of these types of hydrogen 
bonding interactions within a local defect as exemplified by 
Fig. 20 is given in Fig. 21. In Fig. 21 we have evaluated the 
dot product of the two central oxygen-hydrogen bond vec- 
tors with all possible vectors joining the central oxygen 
with its four, five, and six nearest oxygen neighbors for all 

FIG. 20. A representative configuration of a local region of high density 
(five nearest neighbors about a central water molecule) in the inherent 
structure of ST4 water simulated at 25 “C and 1 kg/edensity. Notice the 
cluster involves triplets of oxygens arranged in equilateral triangles (solid 
lines); by sharing vertices and edges, other triplet geometries such as 
tetrahedral angles are present. The cluster represented here are apparently 
stabilized by bifurcated hydrogen bonds as well as linear hydrogen bonds. 
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FIG. 21. The O-H.*-0 angle distribution derived from quenched con- 
figurations of the ST4 water model simulated at 25 “C and 1 kg//density, 
for four (bottom), five (center), and six (top) nearest neighbors only. 
Geometries corresponding to linear hydrogen bonds ( -O”), and triplets 
of oxygens in tetrahedral arrangements where two of the oxygens are 
hydrogen bonded ( - 109.5”) are easily accommodated in local regions of 
icelike structure and local regions of high density. Geometries corre- 
sponding to bifurcated hydrogen bonds ( --6o”) are virtually nonexistent 
for four nearest-neighbor densities and are found only in local regions of 
high density. Bifurcated hydrogen bonds incorporated into such a tetra- 
hedral network may provide the energy lowering of intermediates to aid 
flow processes in liquid water. 

50 inherent structures. The angle distributions which result 
indicate the occurrence frequency for linear hydrogen 
bonds ( -O”) and bifurcated hydrogen bonds ( -60”). The 
peak at 109.5” is due to tetrahedral arrangements of three 
oxygens with one hydrogen bond. It is quite clear that 
linear hydrogen bonds dominate, although bifurcated 
bonds are present, as are many other intermediate hydro- 
gen bonding geometries. Nonetheless, these high density 
clusters seem to be genuine local breakdowns of tetrahedral 
structure. Because these regions of high density incorpo- 
rate tetrahedral geometries which can alternate easily be- 
tween the local defect and surrounding tetrahedral net- 
work, the local defects are likely incorporated because they 
are not too energetically costly, and may well be implicated 
in flow properties of liquid water.14 Furthermore, bifur- 
cated hydrogen bonds are also present as a well defined 
structural entity in our model of water, and may provide 
confirmation for its assignment in the Raman 3460 cm-’ 
region,27 assuming they are insensitive to quanta1 features 
not explicitly incorporated into our classical model. In ad- 
dition to verifying the existence of bifurcated hydrogen 
bonds, Fig. 21 shows that bifurcated hydrogen bonds arise 
solely as local defects. Whether bifurcated hydrogen bonds 
are initiators of local defects, or are a result of packing 
whereby several intersecting solvation shells are required 
to stabilize their incorporation, remains an open 

quest&i until appropriate electronic structure calculations 
become available. 

VII. DISCUSSION AND CONCLUSIONS 

This work embodies a novel approach for understand- 
ing the role of directional hydrogen bonding for defining 
the structural and energetic aspects of pure liquid water. A 
unique statistical mechanical reference potential with no 
orientational preference was designed to reproduce the 
short-ranged oxygen order observed from the neutron dif- 
fraction17 experimental go0 ( Y). To reinsert the appropriate 
orientational hindrances characterizing hydrogen bonding, 
we have introduced a new model for fully coupled water 
which we call ST4. The ST4 model of water provides good 
descriptions of the pair correlation functions for liquid wa- 
ter, and improved optimum hydrogen bond energy and 
quadrupole description. Given an isotropic reference iluid 
and a potential which mimics the orientational anisotropy 
of liquid water, an investigation of pure water properties 
and their dependence on directional hydrogen bonding is 
possible. While we have provided formal perturbation ex- 
pressions for the thermodynamic energies and pair corre- 
lation functions, the influence of directional hydrogen 
bonding was more fruitfully investigated by Monte Carlo 
simulation using the perturbation potential defmed in Eq. 
(2.1). A wide variety of energetic and structural properties 
were evaluated, including two- and three-body correla- 
tions, in order to isolate the role of directed hydrogen 
bonds in determining these quantities. 

We have found that maintaining the oxygen-oxygen 
short ranged order while allowing the hydrogens to rotate 
freely, characteristics which define our il = 0 reference sys- 
tem, results in a fluid which displays a waterlike tetrahe- 
dral network, but with a very large number defects (local 
regions of high density). An examination of the inherent 
structures derived from A=0 configurations show that 
these defects can be structurally defined as a complex net- 
work of equilateral and near equilateral triangles sharing 
vertices-and edges. These local polyhedral complexes also 
incorporate triplets of oxygens which are “tetrahedral,” as 
a result of two triangles connected at one vertex rotating in 
such a way to produce a tetrahedral angle, for example. 
The reference fluid potential seems to lower the energy of 
local defects by accommodating some tetrahedral geome- 
tries within high density regions, and therefore defects are 
readily incorporated into the isotropic fluid structure. 

Despite an underlying tetrahedral structure which is 
highly defective in this manner, the reference fluid poten- 
tial reproduces the experimental go0 ( Y) for liquid water at 
25 “C. One can see then that inverse Monte Carlo proce- 
dures,‘* which produce configurations consistent with the 
pair correlation function(s) of a fluid of interest in order to 
infer higher order structural correlations, will not neces- 
sarily be meaningful. Reproduction of the pair correlation 
function will not necessarily exhibit the correct three-body 
correlations, as exemplified by the pair correlation func- 
tions and angular distributions of the coupling parameter 
end points of 0 and 1. This is similar to the situation of 
devising a charge distribution for a given molecule to re- 
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produce its observed monopole and dipole values, while 
grossly misrepresenting the higher order multipoles. 

The restoration of directional hydrogen bonding inter- 
actions, as introduced by the anisotropic potential in Eq. 
( 1.1)) destabilize tetrahedral network defects. However, 
we have shown that an adequate strength of the anisotropic 
interactions is necessary in order to relieve the system of 
the profusion of such defects as exhibited by the A=O.OO- 
0.50 simulations. Nonetheless, some defects remain as is 
appropriate and consistent with the known properties of 
liquid water. While the large amount of cohesive energy, 
and hence high boiling point for such a small molecular 
weight substance as water is consistent with a strong hy- 
drogen bonding network, energetically accessible local de- 
fects are necessary to describe the flow processes14 of liquid 
water. In addition, our model of fully coupled liquid water 
demonstrates the existence of bifurcated hydrogen bonds,27 
and clearly shows that they appear only in local defect 
regions of high density, i.e., where the number of nearest 
neighbors for a given central water molecule exceeds four. 

We note that we have also evaluated for supercooled 
water at 198 K the same set of structural probes and in- 
herent structures at the same density discussed in Sets. V 
and VI, for our /2=0 and 1 end points. While we see a 
sharpening of structural features which are more icelike 
than the simulations at room temperature, these changes 
depend only weakly on temperature; this is consistent with 
the conclusions of Sciortino et al.,14 where greater struc- 
tural effects are observed with changes in density. 

While this paper has strictly focused on the effect of 
directional hydrogen bonding on properties of water at 
25 “C and a mass density of 1 kg/l: several important fu- 
ture directions are currently forseeable. First, further ex- 
perimental structural studies which characterize water 
over a wider range of temperatures and densities will allow 
the statistical mechanical perturbation approach presented 
here to extend to these other thermodynamic points of 
interest, such as the supercooled and/or stretched water 
regimes. Furthermore, while pure water properties have 
been investigated in this work, the same anisotropic per- 
turbation formalism and Monte Carlo simulation can be 
applied to water solutions. As a consequence of widespread 
interest in protein folding where the effect of water is 
known to be important for describing the folding mecha- 
nism and understanding how water stabilizes the folded 

state, we will soon report on the perturbation scheme de- 
scribed here, but applied to the hydrophobic interaction. It 
is interesting to note that Pratt and Chandler’s semiempir- 
ical theory of the hydrophobic effect*99 represents water- 
water correlations by the experimental go0 ( Y) correlation 
function. The present work has revealed that the higher 
order ()3) structural correlations differ substantially be- 
tween the reference fluid (essentially that used by Pratt 
and Chandler) and the fully coupled water case. How this 
difference manifests itself, if at all, in the hydrophobic in- 
teraction will be the subject of our companion paper on the 
effect of orientational anisotropy on water solution prop- 
erties. 
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