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Molecular-dynamics simulation has been employed to investigate a previously proposed statistical-
mechanical model [F. H. Stillinger, Phys. Rev. B 46, 9590 (1992)] for dimer buckling on the reconstruct-

ed Si(001) surface.

Using model parameters suggested by low-temperature scanning-tunneling-

microscopy observations, the calculations reveal a weakly first-order phase transition from a low-
temperature ¢ (4X2) pattern of buckled dimers, to a disordered high-temperature phase in which dimers
have the untipped state as their most probable configuration. Alterations of input parameters establish
that the thermal behavior of the generic model is sensitive to their specific values. Cases of strong first-
order and of higher-order (Ising-like) phase transitions have also been simulated, as well as a case devoid

of transitions.

I. INTRODUCTION

A conceptually simple model was recently introduced’
to describe the cooperative buckling (tipping) of surface
dimers on semiconductor crystals. This development oc-
curred in response to a long and contentious history of
experimental’ ® and theoretical’ !> studies devoted to
the existence and status of dimers, specifically on the
Si(001) surface. Analogous dimerization has also been
observed on Ge(001),'>!7 and for Ge monolayers deposit-
ed on Si(001).'®1°

Wolkow’s recent low-temperature (120 K) scanning-
tunneling-microscopy (STM) images of the dimerized
Si(001) surface® have been interpreted' as suggesting that
both buckled and unbuckled dimer patterns separately
possess mechanical stability, but that the former attains
the lowest possible energy by adopting a ¢(4X2) pattern.
The generic model defined in Ref. 1 exhibits such
behavior with the proper choice of parameters. Howev-
er, it has heretofore remained an open question whether
the existence of such ordered buckling patterns is associ-
ated with a strict (i.e., thermally sharp) surface order-
disorder phase transition. The purpose of the present pa-
per is to investigate the phase transition behavior of the
generic buckling model, using the molecular-dynamics
simulation technique, to see in principle what possibilities
exist.

The following Sec. II outlines our model. The simula-
tion protocols appear in Sec. III. Rather detailed simula-
tion results are presented in Sec. IV for a ‘“standard”
choice for the four parameters appearing in the model;
this choice may be a reasonable set for the Si(001) appli-
cations but may need modification for Ge(001).%° Alter-
native parameter sets are briefly considered in Sec. V to
provide a more comprehensive view of the phase transi-
tion richness inherent in the generic model, which viewed
from the conventional statistical-mechanical perspective
is a bit unorthodox. Section VI takes up the issue of as-
signing dimensions and units to the model to permit
direct comparison with experiments and other theoretical
calculations. Finally, Sec. VII offers some discussion and
summarizes conclusions.
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II. MODEL

Figure 1 illustrates schematically the rectangular array
of surface dimers on Si(001) in the symmetric untipped
(unbuckled) state, and after tipping (buckling) to produce
the c(4X2) pattern that presumably minimizes the ener-
gy. We suppose that dimer i can be described by a single
angle variable «; that vanishes in the untipped
configuration. Our model amounts to a proposed form
for ®(a, - * - ay), the potential-energy function for an ar-
bitrary set of buckling angles for the N dimers.

For present purposes we will suppose that the dimer
system is defect-free (however, see Ref. 1 for a proposed
coupling to surface defects).

The general form assigned to ® is as follows:!

N
o =¥ fla;,B;)+ P, ,
i=1
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FIG. 1. Schematic views, from above, of dimers on the recon-
structed Si(001) surface.
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where

fla,By=a*+Ba? (2.2)

plays the role of an effective single-dimer buckling poten-
tial, and where ®;;, represents interactions between near-
by dimers. Experiments suggest a strong buckling-sense
anticorrelation along the columns indicated in Fig. 1, and
a weaker anticorrelation in the other surface direction.
This feature is accommodated in the model by anisotropy
in ¢, .

The present study has considered only the case of
nearest-neighbor interactions in ®;,. Hence we take

(with J,e20)

nt*

Di=3J [(1—e) ¥ aa;+e ¥ apey |,

column oW

(2.3)

where the indicated sums respectively include (once) each
nearest-neighbor pair along the columns and along the
rows. The observed anisotropy requires 0 <e < 1.

The effective single-dimer potential f, Eq. (2.2), has a
single minimum, at =0, if B >20. However, it becomes
a bistable potential for B <0 with minima displaced
symmetrically from the origin. A fundamental charac-
teristic of our generic model is that both cases are permit-
ted to occur, depending on the status of the neighboring
dimers. It is by this means that both buckled and un-
buckled patterns of surface dimers can possess mechani-
cal stability. Utilizing two more positive parameters K
and A, B; has been assigned the form

B;=—2+1K[(1—e) 3 (aj—A%?

column

+e3 (el -2,

oW

(2.4)

which incorporates the same column-row anisotropy as
in ®;,,. Because B, refers to a single dimer i, each of the
two sums in Eq. (2.4) contains only a pair of terms: the
two nearest neighbors in the same column for the first,
and the two nearest neighbors from flanking columns in
the second.

If the four neighbors of dimer / all were tipped to an-
gles A, B; would reduce to —2. In this circumstance
the effective single-dimer potential f(«a;, —2) would have
minima of depth —1 at a;==*1. Any deviations of the
four neighbors’ angles from A cause B; to rise above
—2, and eventually to become positive. While the B,
influence the buckling of dimers, they do not distinguish
between same-sense and opposite-sense buckling of neigh-
bors.

The expressions (2.3) for @, and (2.4) for B; cause the
full potential ® to be a sixth-order multinomial in the an-
gle variables «a,'--ay. It is easy to show that @
possesses the necessary symmetry and stability require-
ments, and leads in the large system limit to proper ther-
modynamic behavior. Four non-negative parameters
J,K,¢, and A appear in ®, whose magnitudes we shall see
below strongly influence phase transition behavior of the
model.
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III. DYNAMICAL SIMULATION PROCEDURE

Our dynamical simulations were carried out for an ar-
ray of N =240 dimers located in ten columns, each of 24
dimers. Periodic boundary conditions applied in both
surface directions. Time evolution was described by
Newton’s classical equations of motion that correspond
to the assumed reduced Hamiltonian function:

N
H*=13 ai+®la; - ay),

i=1

(3.1

with potential ® having the form specified in Sec. II.
Units have been chosen in Eq. (3.1) to make the effective
mass equal to unity for each angular degree of freedom.
For all of the calculations described below the equations
of motion,

_ o

= =1
da; U

“N), (3.2)

1
were numerically integrated using the sixth-order Gear
algorithm?! with a time increment (in reduced units) of
0.002 to respect energy conservation to high precision.

The bulk of our calculations utilized the following
“standard” parameter set (“case 17):

J=2.2, K=1.0, ¢=0.11, A=1.6; (3.3)

this was identified in the prior paper' as appropriate
(roughly) for description of the Si(001) case, at least as
judged by the available low-temperature STM observa-
tions.? Three other contrasting cases have also been stud-
ied; they correspond, respectively, to setting J=0, to
K =0, and to €=0.5, but in each case keeping the other
three parameters at the case 1 values shown in Eq. (3.3).

Molecular-dynamics production-run sequences fol-
lowed a uniform protocol for all four cases. Starting at
low temperature, pairs of runs at the same total energy
were generated: the first (for equilibration) spanned
4% 10* dynamical steps, the second (to provide statistical
averages) spanned 2 X 10° dynamical steps. Both heating
and cooling sequences were produced to check for hys-
teresis effects, particularly in phase transition regions.
The former involved momentum scale factor 1.02 at the
beginning of each equilibration run, while the latter in-
volved scale factor 0.98.

IV. SIMULATION RESULTS,
“ STANDARD” PARAMETER SET

Figure 2 presents the mean potential energy per dimer,
{®) /N, versus reduced temperature,

T*=<N*1 s (a.)2>

i=1

4.1)

for the standard parameter set in Eq. (3.3). The data
shown emerged from a cooling sequence as specified in
the preceding Sec. IIl. A very similar curve has been
produced by an analogous heating sequence.

The nearly vertical rise appearing in Fig. 2 is the strik-
ing signature of a phase transition. In fact we identify
this behavior as a weakly first-order transition accom-
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FIG. 2. Mean potential energy per dimer vs reduced temper-
ature, for the standard “case 1” set of model parameters. These
data were generated during a molecular-dynamics cooling se-
quence.

panied on the low-temperature side by a substantial
“premelting” phenomenon. The data shown convey a
slight sigmoid shape due to a very small extent of super-
cooling prior to phase transition. We estimate that the
implied thermodynamic melting transition in the infinite
system limit would occur at

*=1.80 . 4.2)

The natural long-range order parameter for the system
is the following intensive quantity:

R=N"'S(—1»Palx,y),
X,y

4.3)

where x and y are integer indices locating the dimer on
the surface. In the fully ordered ground state with the
standard interaction set (3.3), the angles alternate be-
tween values 11.493 51, so R must lock onto one of these
values as T* goes to zero.

Figure 3 shows R(T*), evaluated during the same
cooling sequence that yielded Fig. 2. The tipping angles
are fully disordered above T, and so R vanishes in this
high-temperature regime. But the phase transition sud-
denly orders the dimers in the expected alternating pat-
tern as T* falls below T,., and indeed R approaches
+1.493 51 in the low-temperature limit. Linear devia-
tions from this value at low, but positive, T* are the re-
sult of vibrational motions.

That the system chose the positive R branch at T, was

reduced temperature

FIG. 3. Long-range order parameter vs reduced temperature
during a case 1 cooling sequence.

a matter of pure chance. Other cooling simulations have
spontaneously selected the negative R branch. It is clear
from Fig. 3 that strong configurational fluctuations occur
near the phase transition point, temporarily driving the
long-range order parameter to negative values.

The distribution of tipping undergoes a dramatic
change in character as the system passes through the
phase transition. Figures 4~6 provide illustrations from
another cooling sequence (virtually identical behavior has
been obtained during heating). The first of these, Fig. 4,
shows the distribution in the ordered state at T* =1.464,
well below the “melting” transition. As expected, the
distribution is symmetric but vividly bimodal, with peaks
located near the T* =0 values mentioned above. Clearly
each dimer experiences an effective bistable function f,
Eq. (2.2). If separate sublattices in this ordered state were
to have been distinguished, each would have displayed
just one of the two peaks appearing in Fig. 3; we have
chosen to combine them. At the given temperature the
dimer vibrations are sufficiently anharmonic to produce
perceptible skewing of the peaks toward zero angle, but
at lower temperature this skewness disappears as the
separate peaks narrow.

Figure 5 displays the drastically different angle distri-
bution that obtains in the disordered state at T*=2.388.
Now the distribution has become unimodal, but broad
and with distinct shoulders in the ranges, roughly, of the
T*=0 tipping angles.

Figure 6 indicates the result of yet a further rise in
temperature, to 7*=4.917. While the distribution con-
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FIG. 4. Angle distribution for case 1 in its ordered state at
T*=1.464.
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FIG. 5. Angle distribution for case 1 in the disordered state
at T*=2.388.
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FIG. 6. Angle distribution function for case 1 in the disor-
dered state at T*=4.917.

tinues to be broad, it has surprisingly returned to bimo-
dality, though only weakly so. Of course this is not the
result of a return to an ordered state, but of substantially
increased vibrational amplitudes that frequently drive the
la;| to the neighborhood of A=1.6, and consequently
permit the B; in Eq. (2.4) occasionally to adopt strongly
negative values.

Identification of ‘“‘inherent structures” (i.e., potential-
energy minima) during cluster’?”?* and condensed
phase®® ™% simulations has often been an important
source of physical insight. Presuming the same may be
the case for surface phenomena, we have examined in-
herent structures for the present model, utilizing random-
ly chosen (but presumably typical) system configurations
from the simulations as starting points. Given any such
initial configuration, a steepest-descent relaxation is then
carried out on the ® hypersurface in the full space of tip-
ping angles to identify the relevant local (or global) @
minimum.

When the dimer system is in the low-temperature or-
dered phase, the steepest-descent mapping simply recov-
ers the global minimum, one of the two degenerate alter-
nating patterns of angles +1.49351. The only effect of
reduction to the inherent structure is to remove vibra-
tional excursions of the dimer angles from these fiducial
values.

Inherent structures obtained by steepest-descent map-
ping from the disordered high-temperature phase corre-
spond to higher-lying ® local minima. The correspond-
ing sets of tipping angles show characteristic patterns
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with columns of dimers (see Fig. 1) in either of two states.
Approximately one-quarter of the columns consist of di-
mers all of which are substantially untipped. The
remaining columns have all their dimers tipped at rough-
ly the fiducial values =*1.49351; while these are
significantly anticorrelated from one to the next, blocks
of one or more within the column will frequently have re-
versed sign.

The time scale of configurational fluctuations controls
the behavior of the tipping angle correlation function:

A(t)=<ai(to)ai(t0+t)> ’ (4.4)

which at equilibrium will be independent of dimer index 7
and time t,. Figures 7 and 8, respectively, show the ini-
tial portions of 4(¢) for a low-temperature ordered state
(T*=0.944) and a high-temperature disordered state
(T*=2.271). The low-temperature behavior shown in
Fig. 7 is highly oscillatory, but only involves small-
amplitude, essentially harmonic, dimer vibrations about
the value dictated by the long-range order R for that tem-
perature. The result in Fig. 8 has quite a different ap-
pearance, decaying to zero, albeit with slight overshoot
and rebound. The long positive tail in A (¢) for this latter
case is probably connected to persistence of column-type
patterns (tipped vs untipped) that were revealed by the
high-temperature inherent structures discussed above.
The time scales differ substantially for these two cases:
the first 4(¢) minimum occurs at reduced times ¢ *=0.22
and 0.93, respectively, for Figs. 7 and 8.
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FIG. 7. Angle autocorrelation function vs reduced time for
case 1 at T*=0.944 (low-temperature ordered phase).
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FIG. 8. Angle autocorrelation function vs reduced time for
case 1 at T*=2.271 (high-temperature disordered phase).

V. ALTERED PARAMETERS

In order to attain a more comprehensive understanding
of the dimer-buckling model it has been useful to vary the
basic parameters J,K,€,A from the standard set (case 1)
shown in Eq. (3.3). Three other cases have been exam-
ined with molecular-dynamics simulation. Each differs
from the standard set only by alteration of one of the pa-
rameters. Table I provides details.

Case 2 is obtained by setting K =0. This has the effect
of pinning all B; to the value —2, as Eq. (2.4) makes
clear. Each dimer is then always subject to a bistable
buckling potential f(a;, —2) regardless of the state of
tipping of its neighbors. The resulting invariable bimo-
dality suggests that this case may be similar to the field-
free two-dimensional Ising model, and indeed the simula-
tion appears to show the presence of a critical tempera-

TABLE I. Parameter sets and transition characteristics.

Case 1 Case 2 Case 3 Case 4

J 2.2 2.2 0.0 2.2
K 1.0 0.0 1.0 1.0
€ 0.11 0.11 0.11 0.5
A 1.6 1.6 1.6 1.6
transition 1.80 1.00 oe e 1.80

temperature
transition 1 >1 R 1

order
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ture and higher-order phase transition. Figure 9 shows
the mean potential energy per dimer, and Fig. 10 the or-
der parameter, both versus reduced temperature, during
a cooling sequence (heating sequences have produced
similar results). The former seems to be consistent with
an Ising-like logarithmic heat capacity singularity at
T} =0.25, and the latter with an Ising-like magnetization
critical exponent §=1. However, our simulation system
is too small and the running times too short to permit
direct quantitative verification of these presumptions.

Case 3 differs from case 1 by having J=0. Neighbor-
ing spins still interact, though only through the
bistability-controlling quantities B;, Eq. (2.4). These re-
sidual interactions suffice to create inherent structures
with stably tipped dimers; in particular any con-
figuration with all |a;|=1.40716... is a local ® mini-
mum. However, these 2V degenerate inherent struc-
tures all lie substantially higher in & than the non-
degenerate global minimum at a;=a,= ‘' =ay=0,
ie, ®/N=0.62647... vsO.

Simulation indicates that no phase transition occurs
for case 3. The mean potential energy per dimer rises
smoothly with temperature, displaying no hint of a verti-
cal tangent. The order parameter remains zero at all
temperatures.

Case 4 is the isotropic version of case 1, obtained sim-
ply by setting €=0.5. Figures 11 and 12, respectively, ex-
hibit the potential per dimer and the order parameter as
functions of temperature. The data shown in this in-
stance were generated during a heating sequence. Evi-
dently making the interactions isotropic has converted
the weakly first-order transition of case 1 to a
significantly stronger first-order transition. Both Figs. 11
and 12 show obvious superheating of the ordered phase
before melting. That a stronger first-order phase change
is present receives support from the fact that cooling
from high temperature at the standard rate used for all
four cases fails to nucleate the ordered phase. Instead of
freezing into the pattern of alternating tipped dimers re-
quired by equilibrium, the system supercools to T*=0,
ending in the totally untipped configuration.

A reasonable estimate of the melting temperature for
case 4 (the location of a vertical tie line in Fig. 11) is

T*=1.380, (5.1)

the same, within our precision, as for the anisotropic case
1. The jump discontinuity in potential energy per dimer
is

{(A®)/N=0.70 , (5.2)

leading to the following estimate of the entropy change
per dimer upon melting:

AS /Nky=0.39 . (5.3)

Results from the four simulation cases can be com-
bined with a few general considerations to provide a more
global view of the phase transition character of the
dimer-buckling model. Figure 13 presents our tentative
view of the J,K plane (first quadrant) with £=0.11,
A=1.6, divided into regions according to the type of
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FIG. 9. Mean potential energy per dimer vs reduced temper-
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FIG. 13. Approximate partitioning, by phase transition type,
of the first J,K quadrant for the dimer-buckling model with
€=0.11, A=1.6.

phase transition expected (if any). This view has incor-
porated the following considerations.

(1) For sufficiently small (but nonzero) K the system
should continue to fall in the field-free Ising universality
class. Hence the higher-order phase transition region
should contact the entire positive J axis.

(2) When J =0, the potential is insensitive to signs of
the «; as noted above in the discussion of case 3. To
identify the ground state and possible instabilities, set all
a; =a, so the potential per dimer becomes

D/N=Ka®+(1—2KA%)a*+(KA*—2)a? . (5.4)

When 0= K <0.446, this expression possesses a pair of
negative minima at nonzero «. But when K passes
through 0.446 these minima rise through zero, and are
preempted by a zero-potential minimum at a=0. A sim-
ple argument suggests that this crossover point should be
associated with loss of the Ising-like phase transition.
Beyond this point the remainder of the positive K axis
should contact a “‘no transition” strip.

(3) If K >0 is held fixed, taking J to + o« asymptotical-
ly should always return to the Ising universality class
[with the transition temperature increasing in proportion
to (J /K )'/#, asymptotically].

(4) In the K — + o asymptotic limit, the form of B; re-
quires either that all the a; cluster closely around +A, or
that all cluster closely around zero. The value of J con-
trols which of these types of inherent structures produces
the lowest energy. If J<2A?—4 the latter yields the
lower energy; for J>2A>—4 the former does. This
should produce a finite range of J over which a first-order
transition exists.

VI. ASSIGNMENT OF UNITS

The buckling model theory and molecular-dynamics
calculations thus far have been presented entirely in di-
mensionless form. Contact with observations on the real
Si(001) surface requires redimensioning the model. This
involves identifying appropriate scale factors (units) for
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time, energy, and tipping angle, to be denoted, respective-
ly, by 79, €, and 6,

Figure 14 provides a simple geometric picture of a tip-
ping dimer which can serve as the basis for redimension-
ing. The view shown is along the surface, perpendicular
to the dimer axis. As the dimer tips, its two silicon atoms
(denoted by 1 and 2 in the diagram) remain in the plane
of the drawing. For simplicity of interpretation we as-
sume that (a) the dimer bond length / remains unchanged
by tipping, (b) the projected bond lengths b of dimers to
atoms in the layer below (actually an eclipsed pair of
bonds) also remain unchanged during tipping, and (c) the
projected positions P and Q of the substrate atoms
remain fixed.

The actual dimer-tipping angle has been denoted by 6
in Fig. 14. Elementary trigonometry shows that it is re-
lated to the angles ¥, and 3, of the projected bonds at P
and Q by

siny, —siny, =(/ /b )sinf . (6.1)
To leading order in 8 this implies
Y1 =1Py—16/(2b cosyy) ,
(6.2)

Y, =Py +16/(2b cosyy) ,

where 1), is the common value of ¥, and ¥, in the un-
tipped state. Equations (6.2) should suffice for the
present purposes, where tipping angles are not expected
to be large.

The classical Hamiltonian for dimer-tipping degrees of
freedom on a Si(001) or Ge(001) surface may be written as
follows:

H=1m 3 {{v(x,y, D]+ [v(x,y,2)}} +V({6(x,p)}) .
X,y

(6.3)

Here 0(x,y) is the tipping angle for the dimer located on
the surface by coordinates x,y, and V is the potential en-
ergy for the given surface state. The velocities v(x,y,1)
and v(x,y,2) refer to the in-plane motions of atoms 1 and
2 for the dimer at surface location x,y, as illustrated in
Fig. 14. The mass of an atom is m, which for the average
isotopic composition of Si is

m=4.6510X10"2 g . (6.4)

The velocities appearing in the kinetic-energy portion of

FIG. 14. Schematic mechanical linage used in assigning di-
mensions to the generic buckling model. Silicon atoms
comprised in the dimer are denoted by 1 and 2, positions P and
Q represent immobile substrate atoms.
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H, Eq. (6.3), have magnitudes equal to by, and bi,.
After invoking the linear approximations (6.2), we thus
obtain

ml?

H=———3[6(x,y) >+ V({6(x,y)}) .

4cos’yY, oy

(6.5)

Next, introduce the time, energy, and angle units 7, €,
and 8, so as to define the following reduced quantities:

H*=H/g;,, ®=V/g,,
(6.6)
t*=t/1q alx,y)=0(x,y)/6, .

Consequently, expression (6.5) for the Hamiltonian can
be recast into the reduced form:

. ml*63

4807'(2) coszzpo o

2

da(x,y) +d({alx,y)}) .

dr*

(6.7)

This replicates the form (3.1) used in the molecular-
dynamics simulation provided that one chooses

172 190

cosy,

m

2, . (6.8)

7o

Roberts and Needs'® have reported pseudopotential to-
tal energy calculations for reconstructed Si(001) surfaces,
whose results are useful in the present context. They find

1=2.23 A,
Py=55°,

(6.9)

for the surface displaying a (2X 1) symmetrical (unbuck-
led) dimer pattern. Their calculations indeed show that
buckling reduces the surface energy slightly; the mean
tipping angle 8, [in a p(2 X2) structure] was found to be

6, =11.93°. (6.10)

If one accepts the standard case 1 as an acceptable di-
mensionless representation of Si(001), then 6,, would cor-
respond to

a,, =1.4451 . (6.11)
Hence we must fix the angle unit at the value
6,=90,,/a,,
=8.256° . (6.12)

Dimer-buckling energies represent small differences be-
tween large absolute energies. Consequently the corre-
sponding quantum-mechanical calculations suffer from
considerable uncertainty. Instead of using predicted
buckling energies to fix the energy unit ¢,, we prefer in-
stead to use an indirect estimate. In particular, the STM
observations® for Si(001) suggest that a dimer-buckling
phase transition exists between 120 K and room tempera-
ture. Using recent low-energy -electron-diffraction
(LEED) observations for guidance,’® we assume that this
transition occurs at 200 K. By identifying this point with
the case 1 molecular-dynamics phase transition, T} in
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Eq. (4.2), we conclude that
e5=kp(200 K)/1.80

=1.534X10"" erg

=9.574 meV . (6.13)

We can now proceed to evaluate time unit 7, utilizing
results (6.4), (6.9), (6.12), and (6.13) for substitution into
Eq. (6.8). One obtains

7o=0.6898 ps . (6.14)

This assignment permits real-time interpretation of the
autocorrelation functions in Figs. 7 and 8. As an exam-
ple, the time intervals to the first minima appearing in
Figs. 7 and 8 are 0.155 and 0.640 ps, respectively.

VII. DISCUSSION

The molecular-dynamics simulations reported herein
unambiguously demonstrate that the generic dimer-
buckling model defined in Sec. II (and originally in Ref.
1) has the capacity to undergo phase transitions. The
simulations also establish that the presence, thermo-
dynamic order, and temperature of those dimer-buckling
phase transitions depend sensitively on the parameters of
the model. The standard ‘“case 17 set of parameter
values, Eq. (3.3), has tentatively been suggested as a
reasonable choice to describe the structurally perfect
dimerized Si(001) surface, and appears to produce a weak
first-order transition.

The LEED experiments for Si(001) by Tabata, Aruga,
and Murata®® appear to provide strong evidence for a di-
mer order-disorder transition at 200 K, and indeed we
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have used this temperature to fix the energy scale for our
standard case 1 in the preceding Sec. VI. These authors
interpret their observations as a “second-order order-
disorder transition.” In view of the extent of structural
imperfection likely to be present in any real experiment,
with a resulting smearing effect on any transition, it is
certainly possible that a weakly first-order transition
would occur after elimination of surface imperfections.
In any case it is desirable to seek repetitions of at least
LEED and STM observations vs temperature for a wide
and controlled range of surface imperfections.

The theoretical literature contains several prior
statistical-mechanical studies of dimer-buckling transi-
tions on Si(001). Ihm et al.*' have examined a spin-1 Is-
ing model, with two-spin and four-spin interactions, us-
ing a renormalization-group approach. Saxena, Gawlin-
ski, and Gunton®? employed Monte Carlo simulation for
the same model. Recently, Kochanski and Griffth® in-
troduced a Ginsburg-Landau model, with coupling of di-
mers to surface electric fields such as those near STM
tips. None of these approaches, however, has the capaci-
ty to yield a mechanically stable untipped dimer state,
which is a characteristic feature of the present generic
model.

Finally, it is worth stressing the apparent level of pre-
cision that quantum-mechanical calculations of surface
energies will have to attain in order to a make reliable
predictions about dimer-buckling phenomena. The units
assignment of the preceding Sec. VI indicates that
characteristic energies are of the order of 0.01 eV. Com-
putational errors will have to be substantially lower, say
2-3 meV. Unfortunately this seems to be out of reach
with present ab initio methods.
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