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We study the potential energy landscape~many-atom potential energy as a function of atomic
positions! of solid hcp 4He in the vicinity of the 0 K crystal structure using an accurate pair
potential. At the melting point, the potential energy of the helium lattice is far above the minimum
hcp interatomic potential energy. We confirm previous conclusions~based on less accurate
potentials! that all of the classical phonon frequencies at the 0 K melting pressure are imaginary,
indicating that the melting-point crystal corresponds to a local maximum in the potential landscape;
a pressure of about 1300 bar, however, makes it a local minimum. We find that the atomic
arrangements that lie at local minima in the potential landscape~‘‘inherent structures’’! are glassy
and porous, and have much lower potential energy than the crystalline form at the same density. We
have quantitatively characterized the glassy structures by their radial distribution functions and
coordination number distributions; they qualitatively resemble inherent structures for classical
monatomic liquids, but exhibit differences of detail. Amodel variational calculation has been carried
out for the melting-density ground state. It utilizes separate basis functions for each of the inherent
structures, predicts a large Lindemann ratio for the crystal, and indicates that the probability
distribution is a maximum at the perfect lattice configuration. ©1995 American Institute of
Physics.
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I. INTRODUCTION

It has been recognized for many years that of all th
elements in their solid forms, helium exhibits the stronge
quantum effects. Theoretically, this can be seen by comp
ing the pair interaction energy,V(a), with the zero-point
energy, '\2/(ma2! ~m5atomic mass anda5interatomic
spacing!. For most elemental crystals, the interaction energ
far exceeds the above zero-point energy, but for solid heliu
they are comparable, with the zero-point energy slight
larger.1 This means that while classical mechanics with a
oms localized at lattice sites~providing a means of distin-
guishing one atom from another! explains the behavior of
most crystals under most circumstances, one needs quan
mechanics with indistinguishable, intrinsically delocalize
atoms to explain the behavior of solid helium. The presen
of strong quantum effects gives solid helium unusual pro
erties: for instance,4He remains a liquid at 0 K and only
solidifies when pressurized to 25 bar;2 also, the large zero-
point motion makes helium a rather soft crystal that has
rough, instead of faceted shape at 0 K.3 This and other
unique properties of solid helium have made it a popul
subject for both experimental and theoretical study ov
much of the past century.4

To understand the helium crystal fully, one must firs
understand the multidimensional geometry of the potential
which its atoms move. Currently, good empirical pair poten
tials for helium exist5–7 that fit the experimental gas-phase
transport coefficient data over a wide temperature range; th
appear to be qualitatively similar to Lennard-Jones pote
tials, but differ in quantitative detail. Further, experimenter
recently observed a very weakly bound helium dimer,8 con-
firming the prediction of the empirical potentials. Howeve
having a good pair potential is not enough: we lack a com
prehensive picture of thelandscapeof potential energy for
J. Chem. Phys. 102 (1), 1 January 1995 0021-9606/95/102(1)
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the system of a large number of helium atoms; that is, th
collectively determined total potential energy as a function o
the entire configuration of the N atoms.

Detailed study of potential energy landscapes, and i
particular of their ‘‘inherent structures’’~local potential en-
ergy minima!, has benefitted the theory of classical liquids
and amorphous solids.9–14 In particular, this approach has
aided in understanding glass transitions,15 cluster
dynamics,16 chemical reactivity,17 and molecular conforma-
tional equilibria.18 For classical crystals, the inherent struc-
tures are simply the crystal structures~possibly containing
defects! without phonon motions, and the analysis of thes
structures adds little to conventional understanding of th
solid state. However, the inherent structure formalism fo
study of the underlying potential energy landscape can als
be used in the quantum regime,19 and under proper circum-
stances has the capacity to illuminate nonobvious aspects
the quantum solid state, as results reported below illustrate

In order to examine the potential energy landscape o
helium, we assume that the additive pair potential from Re
5 ~referred to as ‘‘the Azizet al.potential’’! provides a good
representation of interactions for a large collection of helium
atoms. Using one of the other potentials6,7 does not substan-
tially change the results. Section II below discusses the Az
et al. potential and its implications for helium atoms at, and
infinitesimally displaced from, the regular hcp lattice of solid
helium, over a wide density~i.e., pressure! range. The mea-
sured lattice spacingaM for solid helium at its 0 K melting
point is substantially larger than the value that minimizes th
summed Azizet al. potential, owing to the dilating effect of
zero-point kinetic energy. In accord with earlier less-accurat
calculations based on Lennard-Jones interactions,20 we find
that at lattice spacingaM all classical phonon modes are
unstable, indicating that the observed crystal structure nom
nally corresponds to a localmaximumin the potential land-
457/457/8/$6.00 © 1995 American Institute of Physics
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458 J. A. Hodgdon and F. H. Stillinger: Potential energy of solid 4He
scape. Upon compression, though, more and more of
classical phonons become stable, a process that comp
when the helium crystal is subjected to a pressure of ab
1300 bar. At this stage the helium crystal corresponds t
local potential minimum~but still not the global minimum!.

Section III explores the inherent structures for the low
pressure crystal. Specifically, these are the local minima
the potential landscape found by gradient descent on the
tential energy surface from various starting configuratio
The number of distinguishable inherent structures is e
pected to be exponentially large inN, the number of helium
atoms; we presume only to have generated a few represe
tive examples. Our calculations demonstrate that these in
ent structures possess tenuous structures of porous gl
character. They have much lower potential energy than
regular hcp lattice and than the configuration from whi
they were generated, and scarcely retain any memory of
lattice periodic order. Pair correlation function and neighb
number distribution function calculations are also report
for the inherent structures in Sec. III.

In order to demonstrate the relevance of the inher
structures to the crystalline4He ground state, a model varia
tional calculation has been set up and investigated num
cally in Sec. IV. Although it is based on a simplified repre
sentation of the multidimensional potential energ
hypersurface for analytical tractability, it nevertheless co
forms to the results obtained for the system’s inherent str
tures, and utilizes separate basis functions for each inhe
structure. This variational calculation verifies our workin
assumption that the perfect lattice configuration is a pro
ability maximum.

Finally, in Sec. V, we consider some of the implication
of our findings. These include the relation of present resu
to inherent structures found previously for classical mo
atomic systems~both solid and liquid!, and to the resonating
valence bond picture of electronic structure in chemica
bonded systems.

II. INTERACTION POTENTIAL AND LATTICE
PROPERTIES

Solid helium at 0 K forms an hcp crystal with lattice
spacingaM53.65 Å at the melting point~25 bar!.2 As a first
step in examining the potential energy landscape of heliu
it is natural to ask where~in potential energy! this crystal
structure lies in comparison to other possible structures.
answer that question, we sum the Azizet al. pair potential,5

V~r !5eV* S rrmD ,
V* ~x!5A exp~2ax!2SC6

x6
1
C8

x8
1
C10

x10 DH~x!, ~2.1!

H~x!5H exp@2~D/x21!2# for x,D

1 for x>D
,

~where rm52.9673 Å, e510.8 K, A50.544 850 463106,
a513.353 384, C651.373 241 2, C850.425 378 5, C10
50.178 100, andD51.241 314! over all pairs of atoms. As
an example, we have carried out the sums for both hcp
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fcc lattices for a wide range of lattice spacings. We find th
the hcp structure always has slightly lower energy than t
fcc structure, but the difference of about one part in 14

~nearly constant for all lattice spacings! cannot suffice to
explain the observed relative stability of the hcp crystal. F
both structures the minimum interatomic potential energy p
particle, ata52.90 Å, is286.6 K, well below the value of
235.4 K found ataM ~see Fig. 1!; also, the interatomic po-
tential energy at reasonable solid-helium densities lies w
below the ground-state energy of solid4He, which has its
minimum value of26.0 K at the 0 K melting point.21

Clearly, the helium crystal found at the 0 K melting point
does not correspond to the global minimum in the potent
energy landscape, and quantum effects~e.g., zero-point ki-
netic energy! must play a large role in stabilizing its crystal
line form, besides supplying an energy of about 30 K to th
solid. Qualitatively, these attributes have long been reco
nized as solid helium properties.20,22

This lattice sum calculation does not by itself rule ou
the possibility that the observed 0 K melting-point crystal
corresponds to alocal minimum in the potential landscape
One probes the local environment in the potential landsca
by calculating the classical phonon spectrumv~q! in the
standard way.23 The hcp crystal is a simple hexagonal bas
lattice with a two-atom basis, so there are six branches in
phonon spectrum. The Azizet al. potential is short ranged,
which makes calculating the sixv~q! branches to arbitrary
precision possible by cutting off the required sums over t
base lattice at an appropriate reasonable distance.

There is no guarantee that the phonon-problem eigenv
ues v2 are positive, and in fact, we find that all phono

FIG. 1. Summed Azizet al. ~Ref. 5! potential energy~per particle! for both
hcp and fcc lattices vs lattice spacing. The curve for hcp lies slightly belo
the fcc curve, but the difference is smaller than the thickness of the lin
Note that the lattice spacing at the 0 K melting point, 3.65 Å, is far from the
potential energy minimum.
, No. 1, 1 January 1995
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459J. A. Hodgdon and F. H. Stillinger: Potential energy of solid 4He
modes for the Azizet al.potential at lattice spacingaM have
imaginary frequencies@see Fig. 2~a! for a typical v2 plot
along one direction in the Brillouin zone#—hardly surpris-
ing, since a similar result had been found using the less
alistic Lennard-Jones interaction for helium.20 This confirms
that at the 0 K melting point, the ideal lattice for the hc
helium crystal is unstable~in potential energy! to all infini-
tesimal displacements; i.e., the observed crystalline form c
responds to a local maximum in the potential energy lan
scape.

We have also examined the behavior of the phonons
the Azizet al. interaction as the lattice is compressed, cor
sponding to increasing the pressure on the ground-state
lium crystal. When the lattice spacing has been reduced fr
aM53.65 Å toa53.3 Å, for example, some but not all o
the phonons have converted from imaginary to real frequ
cies; at this stage the ideal lattice configuration has becom
high-order saddle point on the multidimensional potential e
ergy surface. Further compression toa53.2 Å completes
the conversion—all phonons then have real frequencies@see

FIG. 2. Classical harmonic phonon spectra along the@100# direction for hcp
crystals with lattice spacing~a! a53.65 Å,~b! a53.2 Å, out to the edge of
the first Brillouin zone. The atoms in the crystal interact with the potential
Eq. ~1!. We plot the squared frequencyv2 in the nonstandard units of K/
(mHe Å

2! vs the wave vectorq in Å21. In ~a!, the crystal found at the 0 K
melting point, all the phonon modes~including those in all other directions!
have imaginary frequencies. In~b!, the crystal observed under a pressure
1300 bar at 0 K, all phonon modes have real frequencies, and the so
speed for acoustic modes is about 390 m/s. Solid lines indicate acoustic
dotted lines optical, phonon modes.
J. Chem. Phys., Vol. 102
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Fig. 2~b!# and the ideal lattice configuration becomes a local
potential minimum.

Experimentally it is known24 that a pressure of about
1300 bar is required to attain the lattice spacinga53.2 Å
for hcp crystalline4He. This is still considerably expanded
compared to the spacinga52.90 Å that minimizes the lat-
tice sum for the Azizet al. pair interaction, which would
require a pressure of about 6000 bar.24 These attributes con-
trast vividly with the situation for a classical crystal, which at
0 K would always correspond to a local potential minimum,
regardless of pressure.

III. INHERENT STRUCTURES

The information presented in Sec. II concerned the per
fect lattice and its infinitesimal distortions. Our main objec-
tive in this paper, however, involves construction and char-
acterization of inherent structures for the low-pressure
helium crystal, which are appreciably displaced from the per-
fect lattice. These inherent structures owe their existence t
the presence of imaginary classical phonon frequencies fo
the undistorted lattice, and can be found by following gradi-
ent paths on the potential surface starting in the immediate
vicinity of the lattice configuration, or from configurations
which differ appreciably from the perfect lattice, as we will
see below.

Inherent structures in the quantum regime19 are the local
potential energy minima that contain configurations sampled
by the quantum wave functionC in their basins of attraction.
These structures can be found by gradient descent on th
potential energy surface from configurations supplied by the
density matrix. In low-density 0 K solid helium, observation
tells us thatC2 has a maximum at each of theN! equivalent
perfect hcp lattice arrangements of theN helium atoms, al-
though these arrangements are local potential energ
maxima. We would expectC2 to spread out approximately
isotropically around these configurations into the descent ba
sins of the various inherent structures that have the perfec
hcp lattice structure as a common boundary point, and this is
in fact, what we find in the model variational calculation
presented below in Sec. IV. For that reason, one way to
sample the density matrix is to add very small displacement
to the hcp crystal configuration; each choice of random dis-
placement will select a descent basin for an inherent struc
ture. This method may not, however, result in finding all of
the inherent structures that could be sampled by the helium
wave function—conceivably there might be other inherent
structures that do not contain the hcp lattice in their basins o
attraction, but that are nonetheless sufficiently close to the
perfect crystal configuration to have appreciable wave func
tion amplitude. These inherent structures could be found by
gradient descent from configurations which have large ran
dom displacements from the perfect crystal.

We model the infinite crystal undergoing local rearrange-
ments as a small cell, typically 83838 atoms, with periodic
boundary conditions that preserve the cell volume. We searc
for nearby local minima in interatomic potential energy by
adding random perturbations to the perfect hcp lattice, and
then minimizing the total interatomic potential energy using
the conjugate gradient method~we sum over all pairs of at-
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460 J. A. Hodgdon and F. H. Stillinger: Potential energy of solid 4He
FIG. 3. Structures of solid helium, all shown from the same perspective.~a!
An hcp helium crystal with a small amount of random displacement, th
starting point for a typical conjugate-gradient minimization of the lattic
potential energy.~b! The inherent structure that results from the minimiza
tion. ~c! An atypical cracked inherent structure, obtained by adding a bi
towards forming a crack to the initial configuration and then minimizing.
J. Chem. Phys., Vol. 102,
oms in the cell, using the pair potential of the closest image
of each pair in the periodic boundary conditions!. In some of
our searches, we use a small random perturbation of abo
5% of a lattice constant, to sample the inherent structure
closest to the perfect lattice configuration, which should hav
the highest access probability. For other searches, we use
large random perturbation of about 1/3 of a lattice constan
to sample inherent structures with lower access probability
We find that the inherent structures for these two differen
starting configurations were very similar, as described below
We also conducted one search from a biased starting co
figuration that led to the formation of a crack. We expect tha
such inherent structures have extremely low access probab
ity, but they are still of interest since they are a part of the
overall landscape of inherent structures for helium.

Both the cracked and uncracked inherent structures th
we find have irregular forms, with compacted regions and
rarefied regions~see Fig. 3!. These structures do not look at
all crystalline, and in the course of the computation, the at
oms move a distance on the order of the original lattice spac
ing aM , subtracting the center of mass motion~see Table I!.
The interaction energies of the inherent structures are muc
lower than the energy of the hcp crystal at the 0 K melting
point, but not as low as the286.6 K per particle found for
the minimum-energy hcp crystal~see Table I!; the structure
with the crack has even lower energy than the uncracke
structures. We also note that both the hcp crystal and th
inherent structures we find at this density have much lowe
energy than the ‘‘lattice gas’’ formed by removing particles
at random from the minimum-energy hcp lattice to reach the
desired density: the melting-point 0 K crystal is less dense
than the minimum-energy hcp crystal by a factor of 0.502
which gives the lattice gas an energy of~0.502!2 ~286.6
K!5221.8 K.

We use several methods to characterize the structure

e

s

TABLE I. Characteristics of solid helium inherent structures and the perfect crystal. The first line of the table
shows the characteristics of the hcp solid at the 0 K melting point, which corresponds to a local maximum in
the potential landscape. The rest of the lines in the table correspond to inherent structures obtained by descend-
ing into potential energy minima from various starting points: small random displacements from the perfect
crystal, larger random displacements, and slightly cracked. We show the lattice energy of the structures, in units
of K per particle; the ratio between the number of nearest-neighbor bonds in the structure and in the perfect
crystal; the Debye–Waller factors corresponding to Bragg reflection off the~001! and~100! planes; and the root
mean square distance moved by an atom in a structure from its starting point in the perfect crystal, subtracting
the center-of-mass motion, in Å.

Starting point Energy Bond frac. ~001! DWF ~100! DWF Dist. moved

Perfect hcp 235.4 1.00 1.00 1.00 0.00

Small disp 263.7 0.852 0.000 34 0.000 47 4.13
Small disp 265.5 0.886 0.000 24 0.001 6 4.19
Small disp 263.3 0.851 0.000 88 0.000 13 3.79

Large disp 264.0 0.868 0.000 80 0.002 0 4.06
Large disp 263.6 0.873 0.000 70 0.000 04 3.88
Large disp 265.8 0.888 0.000 50 0.001 1 4.58

Crack 268.5 0.928 0.003 5 0.000 14 3.57
No. 1, 1 January 1995
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461J. A. Hodgdon and F. H. Stillinger: Potential energy of solid 4He
geometrically. First, we look at the pair distribution
function23

g~r !5
1

rN (
aÞb

N

^d~r1xa2xb!&, ~3.1!

wherer5number density,N5number of atoms,d~r ! is the
Dirac delta function, and the brackets denote an average o
the direction ofr . For the uncracked inherent structures,g(r )
has a strong peak at 2.90 Å~the lattice spacing of the
minimum-energy hcp crystal!, with several other peaks at
larger distances, eventually settling tog(r )51 ~see Fig. 4!;
the cracked inherent structure has a very similarg(r ). This
form for g(r ) is very different from a crystallineg(r ), which
has large, sharp peaks at the first, second, third, etc., near
neighbor distances, out tor5`. However, the inherent struc-
ture g(r ) is qualitatively similar to that found for Lennard-
Jones glasses,25,26 except that the peaks at smallr are larger
and narrower in the present inherent structureg(r ). We be-
lieve the difference is due to the pores in the helium inhere
structures: atoms bordering on an open space have the f
dom to reorder into a more crystalline structure, which bo
sharpens and increases the height of the peaks in the hel
pair distribution function; these effects decrease asr exceeds
characteristic pore dimensions. Note also that the asymm
ric triplet of second, third, and fourth peaks is better resolve
in the present case than for Lennard-Jones glasses.25,26

The first minimum in the inherent structureg(r ) lies at
3.8 Å, and this provides a convenient cutoff for the definitio
of nearest-neighbor atoms. With this definition, we can ma
a second geometrical characterization of the structures

FIG. 4. Pair distribution functiong(r ) ~dimensionless! vs r ~Å!, averaged
over the three typical inherent structures;g(r ) for the cracked inherent
structure is very similar, and both differ markedly from the crystalline pa
distribution function.
J. Chem. Phys., Vol. 102,
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computing the atoms’ coordination numbers~distributions
shown in Fig. 5! and the number of nearest-neighbor bond
in the structure as a fraction of the number in the perfec
lattice ~shown in Table I!. We find that the most probable
coordination number in the inherent structures is 12, th
value in the hcp crystal, but that the distributions of coordi
nation numbers are rather wide and asymmetric. The distr
butions have shoulders at a coordination number of 9 or 1
which we believe largely correspond to atoms on the edge
of open spaces~pores or cracks! in the structures. The inher-
ent structures have about 85% of the number of neares
neighbor bonds in the perfect hcp crystal, and~not surpris-
ingly! there is a strong negative correlation between th
number of nearest-neighbor bonds and the energy~see Table
I!. The qualitative nature of the coordination number distri
bution and the correspondence of total bond number wit
interatomic potential energy do not change when we us
other reasonable cutoffs for the nearest-neighbor definition

Finally, we also characterize the inherent structures b
computing their Debye–Waller factors. The Debye–Walle
factor for a structure is defined to be the ratio of the scatte
ing intensityI for a wave undergoing momentum changeG
divided by its scattering intensityI 0 in the perfect crystal
lattice27

r

FIG. 5. Coordination number distributions for helium inherent structures
Fraction of atomsp(C) with coordination numberC ~open symbols! for ~a!
the three typical inherent structures@the filled symbols are the average
p(C)# and ~b! the cracked inherent structure. Lines are guides to the eye.
No. 1, 1 January 1995
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462 J. A. Hodgdon and F. H. Stillinger: Potential energy of solid 4He
I

I 0
5

1

N2 U(
j

N

exp~ iG•xj !U2. ~3.2!

We find that for both the cracked and uncracked inher
structures the Debye–Waller factor is near or below t
value 1/N50.0020 expected for a completely random plac
ment of the 512 atoms in the cell, for two different choices
G ~see Table I!; this implies that virtually none of the long-
range order of the hcp crystal remains in the structures. T
one slight exception to this is forG perpendicular to the
crack surface in the atypical cracked inherent structu
where the Debye–Waller factor of 0.0035 indicates tha
shadow of the original crystal lattice structure remains f
planes parallel to the crack surface.

IV. VARIATIONAL WAVE FUNCTION

Inherent structure results contained in Table I for the 0
crystal at its melting point display a striking consistency wi
respect to their energy, mean atomic displacement from
regular lattice, and overall geometric pattern. Although ra
exceptions exist~e.g., last line of Table I!, the conclusion is
that nominally distinct but very similar inherent structure
are almost always reached by steepest descent, starting a
independent directions from the unstable lattice configu
tion. These observations suggest that a simple model ca
lation, in variational format, can be carried out for the crys
ground state to illustrate how the inherent structures comb
to yield the system’s wave function.

To be specific, we assume that the potential ene
minima are all at a common distance in the 3N-dimensional
configuration space from the perfect-lattice configuratio
and are uniformly distributed in direction. The vertices of
3N-dimensional hypercube provide a specific realization
this geometry; the number of its vertices,

23N5exp~N ln 8! ~4.1!

exhibits the requisite exponential rise withN ~the ln 8 is an
approximation to the correct coefficient, at present not ac
rately known!.

In order to represent this array of minima surroundin
the central maximum, it is necessary to invoke at least qu
tic anharmonicity in the expansion of the potential ener
hypersurface. Without needing to specify the hypercube o
entation, we can introduce collective configuration variab
u1 ,...,u3N by coordinate axis rotation so that the potenti
energy locally has the simple approximate form

F52A (
i51

3N

ui
22~B/3N!S (

i51

3N

ui
2D 2

1C (
i51

3N

ui
4,

~4.2!

whereA,B, andC.B are suitable positive constants. Her
for convenience, we set the potential equal to zero
the perfect lattice configuration at a53.65 Å
~u15•••5u3N50!. It is trivial to show that the minima ofF
are located at the 23N positions

uj56@A/2~C2B!#1/2 ~ j51,...,3N!, ~4.3!

all at a common distance from the origin equal to
J. Chem. Phys., Vol. 102
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R5@3NA/2~C2B!#1/2, ~4.4!

and all with the same depth

Fmin523NA2/4~C2B!. ~4.5!

Data in Table I can be used to fixR andFmin . Equiva-
lently this provides two constraints on the model potential’s
parametersA, B, andC. Specifically we find

A53.432 498 K/Å2,
~4.6!

C5B10.305 551 0 K/Å4.

The remaining parameterB must eventually be chosen so
that the ground state energy occurs at

E0 /N529.4 K, ~4.7!

to agree with experiment.
The F minima can be denoted by a set of Ising spins

m1,...,m3N561, where the sign ofm j is the same as that of
the collective variableuj . Then for each minimum we intro-
duce a Gaussian basis function

f~uum!5expS 2a (
i51

3N

~ui2sm i !
2D . ~4.8!

Herea ands are nonlinear variational parameters. Although
the center of this Gaussian is displaced from the origin to
ward its corresponding potential minimum, the two need no
be coincident.

The nodeless ground stateC will be approximated by a
symmetric sum over all basis functions

C~u!5(
m

f~uum!. ~4.9!

Three quantities are required, the normalization integral

I ~a,s!5E C2 du, ~4.10!

the kinetic energy matrix element

K~a,s!52~\2/2m! E C¹2C du, ~4.11!

and the potential energy matrix element

V~a,s!5E C2F du. ~4.12!

Then the ground state is inferred from the variational mini-
mum with respect toa ands of

E0 /N5min
~a,s!

~K1V!/I . ~4.13!

Upon inserting Eq.~4.8! into Eq. ~4.9!, it is straightfor-
ward to expandC about the origin~the perfect lattice!. One
easily obtains
, No. 1, 1 January 1995
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463J. A. Hodgdon and F. H. Stillinger: Potential energy of solid 4He
C523N exp~2as2!F11a~2as221! (
i51

3N

ui
210~u4!G .

~4.14!
Consequently it is the sign of 2as221 that determines
whetherC ~and probability distributionC2! possesses a loca
maximum or a local minimum at the origin.

Evaluation ofI (a,s) is greatly simplified by the fact tha
overlap integrals for distinct basis functions depend only
the number of Ising spin discrepancies between the two,
not on which spins differ. One readily obtains the simp
exact result

I ~a,s!5~2p/a!3N/2@11exp~22as2!#3N. ~4.15!

Obtaining theK and V expressions is somewhat more t
dious, but reasonably straightforward. We find

K~a,s!5~\2/2m!~3NI !S a2
4a2s2 exp~22as2!

11exp~22as2! D ;

~4.16!

V~a,s!523NIAS 1

4a
1

s2

11exp~22as2! D
23NIBS 1

4a
1

s2

11exp~22as2! D
2

13NICS 3

16a21
s41~3s2/2a!

11exp~22as2! D10~1!. ~4.17!

Our interest concerns primarily the large-N limit, so the 0~1!
portion ofV(a,s) has been suppressed.

Variational minimization leads to the following numer
cal results when condition~4.7! is imposed:

a52.2293 Å22, s50.4238 Å,
~4.18!

B542.92 K Å24.

Since this implies that

a~2as221!520.4441, ~4.19!

the probability density is at a maximum at the origin.
One of the contributions included inV(a,s) is equiva-

lent to the mean-square particle displacement, due to z
point notion, in the ground state. Specifically,

N21 (
i51

3N

^ui
2&53S 1

4a
1

s2

11exp~22as2! D
5~0.8416 Å!2 ~4.20!

upon substituting the values found fora ands. The nominal
lattice spacing is 3.65 Å at the melting point as noted befo
Consequently the Lindemann ratio~of rms particle displace-
ment to lattice spacing! is found to be

0.8416/3.65>0.23. ~4.21!

This is in close agreement28 with results from extensive
variational Monte Carlo calculations for crystalline4He, and
significantly exceeds the corresponding melting point ra
found for classical many body systems~>0.15!.
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V. DISCUSSION

The construction and analysis of inherent structures fo
solid helium at 0 K and 25 bar provides an illuminating
demonstration of the profound influence of quantum effects
and generates instructive contrasts with the correspondin
inherent structures obtained for classical~or nearly classical!
systems. In some respects, the large zero-point kinetic ener
in the solid helium ground state acts like thermal motion in a
classical crystal. However, the latter at low temperature dis
plays only the perfect crystal as its sole inherent structur
and even at its melting point the family of inherent structure
only extends to include configurations with a smattering o
point defects.29 The inherent structures generated for solid
helium display a very different character: they are typically
porous, glassy, and individually seem to retain virtually non
of the periodicity of the crystal itself.

In the case of the classical liquids, a general argume
leads to the conclusion that the number of distinguishab
inherent structures is exponentially large inN, the number of
particles in the system.9 Basically the same argument is ap-
plicable to the low-pressure helium crystal. However, we
noted in Sec. II that classical phonon instabilities in the per
fect lattice configuration are sequentially eliminated by com
pression, and at 1300 bar no such instabilities remain, i.e
there are fewer and fewer remaining directions of gradien
descent as the lattice is compressed. Thus the exponen
rise rate withN of the number of distinguishable inherent
structures decreases with increasing pressure, and becom
essentially zero as the pressure passes 1300 bar.

The inherent structures for liquid4He should be similar
to those of low pressure solid4He, aside from having a lower
density—they cannot be perfect crystalline or even polycrys
talline structures, because for lattice spacings above 3.2
hcp crystalline structures are local maxima in interatomi
potential energy; in contrast, nonquantum liquids tend t
have inherent structures with at least distorted polycrystallin
order.26Also, since the interatomic potential does not depen
on the isotope of helium,3He structures inhabit the same
potential landscape as4He structures. Since the observed 0 K
3He solid is less dense than4He, it must also correspond to a
local maximum in the potential landscape, and the inhere
structures for3He should also be glassy and even more po
rous. We cannot yet be so definite about the potential lan
scapes of the other strongly quantum crystals, H2 and D2,
because their potentials clearly differ from that of helium
but we speculate that the quantum effects that cause the 0
4He crystal to stabilize at a local maximum or high-order
saddle point in the potential energy landscape do the sam
for H2 and D2, and the nearby inherent structures may als
be glassy and porous, with both positional and orientation
disorder. It would be fascinating to study these structures an
find out if our speculation is indeed correct.

The single-structure basis functionsf~uum! employed in
the variational calculation of Sec. IV do not possess the poin
symmetry of the crystalline solid. However, we found tha
the linear combination that best approximates the groun
state recaptures that symmetry in the sense of showing
probability maximum at the perfect lattice configuration.
This situation is analogous to the way that nonsymmetric
, No. 1, 1 January 1995
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partially localized wave functions for the electrons in ben
zene combine to form the symmetric ‘‘resonant’’ quantum
wave function.30

The measured energy of helium at 0 K and 25 bar~26.0
K! is far above the local potential energy maximum at th
perfect hcp lattice~235.4 K!, and even farther above the
potential energy of the typical inherent structures~264 K!.
Since the barrier between the inherent structures is no hig
than the energy of the perfect lattice, and the total energy
the helium ground state is far above that level, moving b
tween neighborhoods of the distinct inherent structures do
not require tunneling through a barrier. Consequently, just
found in the variational model calculation of Sec. IV, bas
functions corresponding to distinct inherent structures shou
overlap strongly at the perfect lattice configuration.

The inherent structure analysis should have an interp
tational value in connection with the path integral Mont
Carlo method, which continues to be an important comput
tional technique for the phases of helium, including th
crystal.4,22 It would be edifying to compare the configura
tions sampled in the course of such computations to our
herent structures, to verify the validity of our own simple
sampling technique, to indicate the preferred pathways alo
which particle permutations occur, and to document the e
fects of isotope changes.
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