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We study the potential energy landscapeany-atom potential energy as a function of atomic
positiong of solid hcp“He in the vicinity of tle 0 K crystal structure using an accurate pair
potential. At the melting point, the potential energy of the helium lattice is far above the minimum
hcp interatomic potential energy. We confirm previous conclusirased on less accurate
potential$ that all of the classical phonon frequencies a €hK melting pressure are imaginary,
indicating that the melting-point crystal corresponds to a local maximum in the potential landscape;
a pressure of about 1300 bar, however, makes it a local minimum. We find that the atomic
arrangements that lie at local minima in the potential lands¢éapberent structures) are glassy

and porous, and have much lower potential energy than the crystalline form at the same density. We
have quantitatively characterized the glassy structures by their radial distribution functions and
coordination number distributions; they qualitatively resemble inherent structures for classical
monatomic liquids, but exhibit differences of detail. A model variational calculation has been carried
out for the melting-density ground state. It utilizes separate basis functions for each of the inherent
structures, predicts a large Lindemann ratio for the crystal, and indicates that the probability
distribution is a maximum at the perfect lattice configuration.1895 American Institute of
Physics.

I. INTRODUCTION the system of a large number of helium atoms; that is, the
collectively determined total potential energy as a function of
It has been recognized for many years that of all thethe entire configuration of the N atoms.
elements in their solid forms, helium exhibits the strongest  Detailed study of potential energy landscapes, and in
quantum effects. Theoretically, this can be seen by compaparticular of their “inherent structures(local potential en-
ing the pair interaction energy/(a), with the zero-point ergy minima, has benefitted the theory of classical liquids
energy, ~h’/(ma’) (m=atomic mass anda=interatomic and amorphous solids!* In particular, this approach has
spacing. For most elemental crystals, the interaction energyaided in  understanding glass transitidhs, cluster
far exceeds the above zero-point energy, but for solid heliundynamicst® chemical reactivity, and molecular conforma-
they are comparable, with the zero-point energy slightlytional equilibria’® For classical crystals, the inherent struc-
larger! This means that while classical mechanics with at-tures are simply the crystal structur§sossibly containing
oms localized at lattice site@roviding a means of distin- defect$ without phonon motions, and the analysis of these
guishing one atom from anotheexplains the behavior of structures adds little to conventional understanding of the
most crystals under most circumstances, one needs quantwvlid state. However, the inherent structure formalism for
mechanics with indistinguishable, intrinsically delocalizedstudy of the underlying potential energy landscape can also
atoms to explain the behavior of solid helium. The presencée used in the quantum regirftand under proper circum-
of strong quantum effects gives solid helium unusual propstances has the capacity to illuminate nonobvious aspects of
erties: for instancefHe remains a liquid @0 K and only  the quantum solid state, as results reported below illustrate.
solidifies when pressurized to 25 Waalso, the large zero- In order to examine the potential energy landscape of
point motion makes helium a rather soft crystal that has delium, we assume that the additive pair potential from Ref.
rough, instead of faceted shape at O° Rhis and other 5 (referred to as “the Azizt al. potential”) provides a good
unique properties of solid helium have made it a popularepresentation of interactions for a large collection of helium
subject for both experimental and theoretical study ovematoms. Using one of the other potentfdisioes not substan-
much of the past centufy. tially change the results. Section Il below discusses the Aziz
To understand the helium crystal fully, one must firstet al. potential and its implications for helium atoms at, and
understand the multidimensional geometry of the potential innfinitesimally displaced from, the regular hcp lattice of solid
which its atoms move. Currently, good empirical pair poten-helium, over a wide densitgi.e., pressurerange. The mea-
tials for helium exist™’ that fit the experimental gas-phase sured lattice spacing,, for solid helium at is 0 K melting
transport coefficient data over a wide temperature range; thegoint is substantially larger than the value that minimizes the
appear to be qualitatively similar to Lennard-Jones potensummed Azizet al. potential, owing to the dilating effect of
tials, but differ in quantitative detail. Further, experimenterszero-point kinetic energy. In accord with earlier less-accurate
recently observed a very weakly bound helium difhegn-  calculations based on Lennard-Jones interacti®mee find
firming the prediction of the empirical potentials. However, that at lattice spacing,, all classical phonon modes are
having a good pair potential is not enough: we lack a comunstable, indicating that the observed crystal structure homi-
prehensive picture of thlEandscapeof potential energy for nally corresponds to a locahaximumin the potential land-
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scape. Upon compression, though, more and more of the
classical phonons become stable, a process that completes
when the helium crystal is subjected to a pressure of about
1300 bar. At this stage the helium crystal corresponds to a
local potential minimunibut still not the global minimum

Section 1l explores the inherent structures for the low- _
pressure crystal. Specifically, these are the local minima in!g
the potential landscape found by gradient descent on the pog
tential energy surface from various starting configurations.%
The number of distinguishable inherent structures is ex-
pected to be exponentially large My the number of helium
atoms; we presume only to have generated a few representd
tive examples. Our calculations demonstrate that these inher®
ent structures possess tenuous structures of porous glassy
character. They have much lower potential energy than the
regular hcp lattice and than the configuration from which
they were generated, and scarcely retain any memory of the
lattice periodic order. Pair correlation function and neighbor : : : : | : : [
number distribution function calculations are also reported 28 28 3.0 30 34 a6 as 40
for the inherent structures in Sec. lll.

In order to demonstrate the relevance of the inherent
structures to the crystallirHe ground state, a model varia-
Gonal caleuaton has been set up and investigated numer3. STt i L S el e B L,
cally ”_] Sec. IV. Although I_t ,IS basgd ona S|mp!|f|ed repre- th(ffcc curve, but the differenc‘:)e is gsJ.maIIer than the thl?cknessgof ilhe line.
sentation of the multidimensional potential energy Note that the lattice spacing atetd K melting point, 3.65 A, is far from the
hypersurface for analytical tractability, it nevertheless con-potential energy minimum.
forms to the results obtained for the system’s inherent struc-
tures, and utilizes separate basis functions for each inherent

structure.. This variational caIcu!ann ve.r|f|es. our working fcc lattices for a wide range of lattice spacings. We find that

as_sgmpnor_l that the perfect lattice configuration is a pr0b7[he hcp structure always has slightly lower energy than the

abllllt:y mlzlixw_nugn. Y i f the implicati fcc structure, but the difference of about one part it 10
inally, In Sec. v, we consider some of the implications (nearly constant for all lattice spacingsannot suffice to

of our findings. These include the relation of present reSUIt‘(céxplain the observed relative stability of the hcp crystal. For

tci mherentt struct?r:es lfgundd ;I)_re\_nouslél tfo;thaSS|cal t.rnonboth structures the minimum interatomic potential energy per
atomic systemgboth solid and liquisi and to the resonating particle, ata=2.90 A, is—86.6 K, well below the value of

valence bond picture of electronic structure in chemically” ¢ 4 « found at (see Fig. 1 also, the interatomic po
. M . ) -

bonded systems. tential energy at reasonable solid-helium densities lies well
below the ground-state energy of softde, which has its

II. INTERACTION POTENTIAL AND LATTICE minimum value of —6.0 K at the 0 K melting poirt

PROPERTIES Clearly, the helium crystal found ateéh0 K melting point
Solid helium @ 0 K forms an hcp crystal with lattice does not correspond to the global minimum in the potential

spacinga, =3.65 A at the melting point25 baj.? As a first ~ energy landscape, and quantum effe@sy., zero-point ki-

step in examining the potential energy landscape of heliumietic energy must play a large role in stabilizing its crystal-

it is natural to ask wherg¢in potential energythis crystal line form, besides supplying an energy of about 30 K to the

structure lies in comparison to other possible structures. T&olid. Qualitatively, these attributes have long been recog-

answer that question, we sum the Agizal. pair potentiaP ~ nized as solid helium propertié*
This lattice sum calculation does not by itself rule out

V(r):eV*(L), the possibility that the .o.bserdelo K meIting—point crystal
r corresponds to &ocal minimum in the potential landscape.
C. C. C One probes the local environment in the potential landscape
6 8 10 . . .
V*(x)=A exp(—ax)—(—6+—8+T)H(x), (2.1) by calculating the classical phonon spectrustq) in the
XX standard way® The hcp crystal is a simple hexagonal base
exd —(D/x—1)2] for x<D lattice with a two-atom basis, so there are six branches in the
H(x)= 1% -D , phonon spectrum. The Aziet al. potential is short ranged,
or x= which makes calculating the siw(q) branches to arbitrary
(where r,,=2.9673 A, ¢=10.8 K, A=0.544 850 4& 1P, precision possible by cutting off the required sums over the
a=13.353 384, C4=1.3732412, C3=0.4253785, C,;;, base lattice at an appropriate reasonable distance.
=0.178 100, and® =1.241 314 over all pairs of atoms. As There is no guarantee that the phonon-problem eigenval-
an example, we have carried out the sums for both hcp andes w? are positive, and in fact, we find that all phonon
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Fig. 2(b)] and the ideal lattice configuration becomes a local
potential minimum.

Experimentally it is knowff' that a pressure of about
1300 bar is required to attain the lattice spacing3.2 A
for hcp crystalline®He. This is still considerably expanded
compared to the spacira=2.90 A that minimizes the lat-
tice sum for the Azizet al. pair interaction, which would
require a pressure of about 6000 BhaThese attributes con-
trast vividly with the situation for a classical crystal, which at
0 K would always correspond to a local potential minimum,
regardless of pressure.

Ill. INHERENT STRUCTURES

The information presented in Sec. Il concerned the per-
fect lattice and its infinitesimal distortions. Our main objec-
tive in this paper, however, involves construction and char-
acterization of inherent structures for the low-pressure
helium crystal, which are appreciably displaced from the per-
fect lattice. These inherent structures owe their existence to
the presence of imaginary classical phonon frequencies for
the undistorted lattice, and can be found by following gradi-
ent paths on the potential surface starting in the immediate
vicinity of the lattice configuration, or from configurations
which differ appreciably from the perfect lattice, as we will

oio ojz o.r4 016 ois 1io 1?2 see below. .
Inherent structures in the quantum regithere the local
d potential energy minima that contain configurations sampled
by the quantum wave functio# in their basins of attraction.
FIG. 2. Classical harmonic phonon spectra along 118)] direction for hcp ~ These structures can be found by gradient descent on the
crystals with lattice spacin@) a=3.65 A, (b) a=3.2 A, out to the edge of  potential energy surface from configurations supplied by the
the first Brillouin zone. The atoms in the crystal interact with the potential in density matrix. In low-densjtO K solid helium, observation
Eq. (1). We plot the squared frequenay in the nonstandard units of K/ 2 . .
(mye A?) vs the wave vectog in A™L. In (a), the crystal found at the 0 K tells us that¥ has a maximum at each of tM equivalent
melting point, all the phonon modémcluding those in all other directions ~ Perfect hcp lattice arrangements of tNehelium atoms, al-
have imaginary frequencies. (b), the crystal observed under a pressure of though these arrangements are local potential energy
1300 bar at 0 K., all phonpn modes have real'fre'quer'lcit.as, and the _SOU%axima. We would expec[,Z to spread out approximately
speed for acoustic modes is about 390 m/s. Solid lines indicate acoustic, and . . . .
dotted lines optical, phonon modes. isotropically around these configurations into the descent ba-
sins of the various inherent structures that have the perfect
hcp lattice structure as a common boundary point, and this is,
in fact, what we find in the model variational calculation
modes for the Azizt al. potential at lattice spacina,, have  presented below in Sec. IV. For that reason, one way to
imaginary frequenciegsee Fig. 2a) for a typical »? plot  sample the density matrix is to add very small displacements
along one direction in the Brillouin zome-hardly surpris- to the hcp crystal configuration; each choice of random dis-
ing, since a similar result had been found using the less replacement will select a descent basin for an inherent struc-
alistic Lennard-Jones interaction for helidfiiThis confirms  ture. This method may not, however, result in finding all of
that at tle O K melting point, the ideal lattice for the hcp the inherent structures that could be sampled by the helium
helium crystal is unstablén potential energyto all infini- wave function—conceivably there might be other inherent
tesimal displacements; i.e., the observed crystalline form corstructures that do not contain the hcp lattice in their basins of
responds to a local maximum in the potential energy landattraction, but that are nonetheless sufficiently close to the
scape. perfect crystal configuration to have appreciable wave func-

We have also examined the behavior of the phonons fotion amplitude. These inherent structures could be found by
the Aziz et al. interaction as the lattice is compressed, corre-gradient descent from configurations which have large ran-
sponding to increasing the pressure on the ground-state hdem displacements from the perfect crystal.
lium crystal. When the lattice spacing has been reduced from We model the infinite crystal undergoing local rearrange-
ay=3.65 A toa=3.3 A, for example, some but not all of ments as a small cell, typically>88x8 atoms, with periodic
the phonons have converted from imaginary to real frequenboundary conditions that preserve the cell volume. We search
cies; at this stage the ideal lattice configuration has becomefar nearby local minima in interatomic potential energy by
high-order saddle point on the multidimensional potential enadding random perturbations to the perfect hcp lattice, and
ergy surface. Further compressionde-3.2 A completes then minimizing the total interatomic potential energy using
the conversion—all phonons then have real frequerises the conjugate gradient methdaie sum over all pairs of at-
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FIG. 3. Structures of solid helium, all shown from the same perspectye.
An hcp helium crystal with a small amount of random displacement, the
starting point for a typical conjugate-gradient minimization of the lattice
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oms in the cell, using the pair potential of the closest image
of each pair in the periodic boundary conditipris some of

our searches, we use a small random perturbation of about
5% of a lattice constant, to sample the inherent structures
closest to the perfect lattice configuration, which should have
the highest access probability. For other searches, we use a
large random perturbation of about 1/3 of a lattice constant,
to sample inherent structures with lower access probability.
We find that the inherent structures for these two different
starting configurations were very similar, as described below.
We also conducted one search from a biased starting con-
figuration that led to the formation of a crack. We expect that
such inherent structures have extremely low access probabil-
ity, but they are still of interest since they are a part of the
overall landscape of inherent structures for helium.

Both the cracked and uncracked inherent structures that
we find have irregular forms, with compacted regions and
rarefied regiongsee Fig. 3. These structures do not look at
all crystalline, and in the course of the computation, the at-
oms move a distance on the order of the original lattice spac-
ing a,; , subtracting the center of mass moti@ee Table)l
The interaction energies of the inherent structures are much
lower than the energy of the hcp crystal a¢ th K melting
point, but not as low as the 86.6 K per particle found for
the minimum-energy hcp crystéee Table )l the structure
with the crack has even lower energy than the uncracked
structures. We also note that both the hcp crystal and the
inherent structures we find at this density have much lower
energy than the “lattice gas” formed by removing particles
at random from the minimum-energy hcp lattice to reach the
desired density: the melting-pai® K crystal is less dense
than the minimum-energy hcp crystal by a factor of 0.502,

potential energy(b) The inherent structure that results from the minimiza- which gives the lattice gas an energy @502 (—86.6
tion. (c) An atypical cracked inherent structure, obtained by adding a biag<)=—21.8 K.

towards forming a crack to the initial configuration and then minimizing.

We use several methods to characterize the structures

TABLE I. Characteristics of solid helium inherent structures and the perfect crystal. The first line of the table
shows the characteristics of the hcp solid & €hK melting point, which corresponds to a local maximum in

the potential landscape. The rest of the lines in the table correspond to inherent structures obtained by descend-
ing into potential energy minima from various starting points: small random displacements from the perfect
crystal, larger random displacements, and slightly cracked. We show the lattice energy of the structures, in units
of K per patrticle; the ratio between the number of nearest-neighbor bonds in the structure and in the perfect
crystal; the Debye—Waller factors corresponding to Bragg reflection of0® and (100 planes; and the root

mean square distance moved by an atom in a structure from its starting point in the perfect crystal, subtracting
the center-of-mass motion, in A.

Starting point Energy Bond frac. (001 DWF (100 DWF Dist. moved
Perfect hcp —-35.4 1.00 1.00 1.00 0.00
Small disp —63.7 0.852 0.000 34 0.000 47 4.13
Small disp —65.5 0.886 0.000 24 0.001 6 4.19
Small disp —63.3 0.851 0.000 88 0.000 13 3.79
Large disp —64.0 0.868 0.000 80 0.002 0 4.06
Large disp —63.6 0.873 0.000 70 0.000 04 3.88
Large disp —65.8 0.888 0.000 50 0.0011 4.58

Crack -68.5 0.928 0.0035 0.000 14 3.57
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FIG. 4. Pair distribution functiom(r) (dimensionlessvs r (A), averaged 8 |
over the three typical inherent structureg(r) for the cracked inherent e
structure is very similar, and both differ markedly from the crystalline pair o A y
distribution function. ° 5 T T T
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geometrically. First, we look at the pair distribution

functionz“" FIG. 5. Coordination number distributions for helium inherent structures.
Fraction of atom$(C) with coordination numbe€ (open symbolsfor (a)

the three typical inherent structurg¢the filled symbols are the average
p(C)] and (b) the cracked inherent structure. Lines are guides to the eye.

1 N
g(r)=p—N > (S(r+Xa—Xp)), (3.0

a#b

where p=number densityN=number of atomsg(r) is the
Dirac delta function, and the brackets denote an average ovebmputing the atoms’ coordination numbegdistributions
the direction ofr. For the uncracked inherent structure§,) shown in Fig. % and the number of nearest-neighbor bonds
has a strong peak at 2.90 fhe lattice spacing of the in the structure as a fraction of the number in the perfect
minimum-energy hcp crystal with several other peaks at lattice (shown in Table ). We find that the most probable
larger distances, eventually settling d¢r) =1 (see Fig. 4 coordination number in the inherent structures is 12, the
the cracked inherent structure has a very singjar). This  value in the hcp crystal, but that the distributions of coordi-
form for g(r) is very different from a crystalling(r), which  nation numbers are rather wide and asymmetric. The distri-
has large, sharp peaks at the first, second, third, etc., nearebtitions have shoulders at a coordination number of 9 or 10,
neighbor distances, out te=>. However, the inherent struc- which we believe largely correspond to atoms on the edges
ture g(r) is qualitatively similar to that found for Lennard- of open spaceores or cracKsin the structures. The inher-
Jones glassesS;?® except that the peaks at smalare larger  ent structures have about 85% of the number of nearest-
and narrower in the present inherent structgie). We be-  neighbor bonds in the perfect hcp crystal, dndt surpris-
lieve the difference is due to the pores in the helium inhereningly) there is a strong negative correlation between the
structures: atoms bordering on an open space have the freeamber of nearest-neighbor bonds and the en&sgg Table
dom to reorder into a more crystalline structure, which bothl). The qualitative nature of the coordination number distri-
sharpens and increases the height of the peaks in the heliubution and the correspondence of total bond number with
pair distribution function; these effects decrease asceeds interatomic potential energy do not change when we use
characteristic pore dimensions. Note also that the asymmetther reasonable cutoffs for the nearest-neighbor definition.
ric triplet of second, third, and fourth peaks is better resolved  Finally, we also characterize the inherent structures by
in the present case than for Lennard-Jones gl&S$és. computing their Debye—Waller factors. The Debye—Waller
The first minimum in the inherent structugdr) lies at  factor for a structure is defined to be the ratio of the scatter-
3.8 A, and this provides a convenient cutoff for the definitioning intensity| for a wave undergoing momentum char@e
of nearest-neighbor atoms. With this definition, we can makelivided by its scattering intensity, in the perfect crystal
a second geometrical characterization of the structures biattice?’
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T 2 R=[3NA/2(C-B)]*?, (4.4)
e > expiG-x)) (3.2)
0 j and all with the same depth

We find that for both the cracked and uncracked inherent CI>mm=—3NA2/4(C—B). (4.5

structures the Debye—Waller factor is near or below the

value 1N=0.0020 expected for a completely random place-  Data in Table | can be used to fR and ®,,,;,. Equiva-
ment of the 512 atoms in the cell, for two different choices oflently this provides two constraints on the model potential’s
G (see Table)t this implies that virtually none of the long- parameter#\, B, andC. Specifically we find

range order of the hcp crystal remains in the structures. The

one slight exception to this is fo& perpendicular to the A=3.432 498 KIR,

crack surface in the atypical cracked inherent structure, (4.6
where the Debye—Waller factor of 0.0035 indicates that a C=B+0.305551 0 K/A.

shadow of the original crystal lattice structure remains fo

r -
planes parallel to the crack surface The remaining parameteé®8 must eventually be chosen so

that the ground state energy occurs at
IV. VARIATIONAL WAVE FUNCTION Eo/N=29.4 K, 4.7

Inherent structure results contained in Table | for the 0 K ) ,
crystal at its melting point display a striking consistency with {0 2gree with experiment. _ _
respect to their energy, mean atomic displacement from the 1€ ¢ minima can be denoted by a set of Ising spins
regular lattice, and overall geometric pattern. Although rares:-#an=+1, where the sign of; is the same as that of
exceptions existe.g., last line of Table)] the conclusion is  the collective variables; . Then for each minimum we intro-
that nominally distinct but very similar inherent structures dUCe @ Gaussian basis function
are almost always reached by steepest descent, starting along 3N
|_ndependent dlrectlops from the unstable. lattice configura- ¢(u|;u)=exp( —a > (U—sw)?
tion. These observations suggest that a simple model calcu-
lation, in variational format, can be carried out for the crystal
ground state to illustrate how the inherent structures combinglere « and's are nonlinear variational parameters. Although
to yield the system’s wave function. the center of this Gaussian is displaced from the origin to-

To be specific, we assume that the potential energyard its corresponding potential minimum, the two need not
minima are all at a common distance in the-8imensional  pe coincident.
configuration space from the perfect-lattice configuration,  The nodeless ground stafe will be approximated by a
and are uniformly distributed in direction. The vertices of asymmetric sum over all basis functions
3N-dimensional hypercube provide a specific realization of
this geometry; the number of its vertices,

23N=expN In 8) (4.1

exhibits the requisite exponential rise with(the In8 is an  hree quantities are required, the normalization integral
approximation to the correct coefficient, at present not accu-

rately known).
In order to represent this array of minima surrounding |(a’3):f P2 du, (4.10
the central maximum, it is necessary to invoke at least quar-
tic anharmonicity in the expansion of the potential energythe kinetic energy matrix element
hypersurface. Without needing to specify the hypercube ori-
entation, we can int.roduce gollectiye configuration variablles K(a,s)= —(72/2m) f WYY du, 4.11)
uq,...,Usy by coordinate axis rotation so that the potential
energy locally has the simple approximate form

3N 3N 2 3N
d=-A u?—(B/sN)(Z u?) +C X uf,
i=1

i=1 i=1

4.9

i=1

V(W)=2, ¢(ulp). (4.9
“

and the potential energy matrix element

V(a,s)=f V20 du. (4.12
4.2
whereA,B, andC>B are suitable positive constants. Here Then the ground state is inferred from the variational mini-

for convenience, we set the potential equal to zero af’um with respect tar ands of
the perfect lattice configuration ata=3.65 A

(uy=---=uzy=0). It is trivial to show that the minima ob EO/N:(TIQ (K+W)/I. 4.13
are located at the® positions
. Upon inserting Eq(4.8) into Eq.(4.9), it is straightfor-
= _R)L2 _
uj=*[A/2(C-B)] (J=1,....N), 43 ward to expandV about the originthe perfect lattice One
all at a common distance from the origin equal to easily obtains
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V=2 exp—as?)| 1+ a(2as?—1) >, u?+0(u?)|.
i=1

(4.19
Consequently it is the sign of as*—1 that determines
whether¥ (and probability distributiont’) possesses a local
maximum or a local minimum at the origin.
Evaluation ofl («,s) is greatly simplified by the fact that
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V. DISCUSSION

The construction and analysis of inherent structures for
solid helium & 0 K and 25 bar provides an illuminating
demonstration of the profound influence of quantum effects,
and generates instructive contrasts with the corresponding
inherent structures obtained for classi@a nearly classical
systems. In some respects, the large zero-point kinetic energy
in the solid helium ground state acts like thermal motion in a

overlap integrals for distinct basis functions depend only orclassical crystal. However, the latter at low temperature dis-
the number of Ising spin discrepancies between the two, anplays only the perfect crystal as its sole inherent structure,
not on which spins differ. One readily obtains the simpleand even at its melting point the family of inherent structures

exact result
I(a,s)= (2l a)3N?[1+exp —2as?)]®N. (4.15

Obtaining theK and V expressions is somewhat more te-
dious, but reasonably straightforward. We find
40%s? exp(—2as?)
1+exp —2as?)

K(a,s)z(ﬁZ/Zm)(3Nl)( a—
(4.1

1 s?
Vias)=—3NIA| gt
1 SZ 2
_3NIB(E+1+exp(—2asz))
3NIC SHES2e) |00 @
* 16a2+1+exp(—2asz) +0(1). 4179

Our interest concerns primarily the largglimit, so the 1)
portion of V(«,s) has been suppressed.

Variational minimization leads to the following numeri-
cal results when conditiot.7) is imposed:

a=2.2293 A2 s=0.4238 A,

B=42.92 KA™4 (4.18
Since this implies that
a(2as?—1)=—0.4441, (4.19

the probability density is at a maximum at the origin.

One of the contributions included M(«,s) is equiva-
lent to the mean-square particle displacement, due to zer
point notion, in the ground state. Specifically,

SZ

3N 1
-1 a_g/t S
N El (U =3| 7% T Trexp—2as?)

=(0.8416 A? (4.20

upon substituting the values found farands. The nominal

only extends to include configurations with a smattering of
point defect€® The inherent structures generated for solid
helium display a very different character: they are typically
porous, glassy, and individually seem to retain virtually none
of the periodicity of the crystal itself.

In the case of the classical liquids, a general argument
leads to the conclusion that the number of distinguishable
inherent structures is exponentially largeNnthe number of
particles in the systefhBasically the same argument is ap-
plicable to the low-pressure helium crystal. However, we
noted in Sec. Il that classical phonon instabilities in the per-
fect lattice configuration are sequentially eliminated by com-
pression, and at 1300 bar no such instabilities remain, i.e.,
there are fewer and fewer remaining directions of gradient
descent as the lattice is compressed. Thus the exponential
rise rate withN of the number of distinguishable inherent
structures decreases with increasing pressure, and becomes
essentially zero as the pressure passes 1300 bar.

The inherent structures for liquitHe should be similar
to those of low pressure solftHe, aside from having a lower
density—they cannot be perfect crystalline or even polycrys-
talline structures, because for lattice spacings above 3.2 A,
hcp crystalline structures are local maxima in interatomic
potential energy; in contrast, nonquantum liquids tend to
have inherent structures with at least distorted polycrystalline
order?® Also, since the interatomic potential does not depend
on the isotope of helium®He structures inhabit the same
potential landscape &ble structures. Since the observed 0 K
3He solid is less dense th&Hle, it must also correspond to a
local maximum in the potential landscape, and the inherent
Structures for’He should also be glassy and even more po-
rous. We cannot yet be so definite about the potential land-
scapes of the other strongly quantum crystalg,aAdd D,,
because their potentials clearly differ from that of helium,
but we speculate that the quantum effects that cause the 0 K
“He crystal to stabilize at a local maximum or high-order
saddle point in the potential energy landscape do the same
for H, and D,, and the nearby inherent structures may also
be glassy and porous, with both positional and orientational

lattice spacing is 3.65 A at the melting point as noted beforedisorder. It would be fascinating to study these structures and

Consequently the Lindemann ratiof rms particle displace-
ment to lattice spacings found to be

0.8416/3.65=0.23. (4.21

This is in close agreeméftwith results from extensive
variational Monte Carlo calculations for crystallifide, and
significantly exceeds the corresponding melting point ratio
found for classical many body systers0.15.

J. Chem. Phys., Vol. 102,

find out if our speculation is indeed correct.
The single-structure basis functiogi$u|x) employed in

the variational calculation of Sec. IV do not possess the point
symmetry of the crystalline solid. However, we found that
the linear combination that best approximates the ground
state recaptures that symmetry in the sense of showing a
Pprobability maximum at the perfect lattice configuration.
This situation is analogous to the way that nonsymmetric,
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