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We have examined in detail the structure and properties of the liquid-vapor interface for the two-dimensional 
Widom-Rowlinson model in its low-temperature regime. Various simplifying features permit the deduction 
of several basic results. Included among these are (1) unambiguous definition of capillary wave modes with 
upper wavelength cutoff proportional to ~ 1 - l ’ ~  (el = liquid density); (2) wavelength dispersion of bare surface 
tension; and (3) nonmonotonic intrinsic density profile (i.e., that with vanishing capillary wave amplitudes). 
In an Appendix we show how many of these results can be extended to the three and higher dimensional 
cases. 

I. Introduction 

The structure and properties of liquid-vapor interfaces have 
drawn serious scientific attention for nearly two centuries.’ Even 
so, the subject still elicits clever experimentsz-* and lively 
theoretical d i sco~rse .~- ’~  The present paper focuses on a 
conceptually simple model for liquid-vapor coexistence, in- 
novated by Widom and Rowlinson,16-18 which in its two- 
dimensional version becomes sufficiently tractable analytically 
to yield some new insights for the interface problem. 

The matter distribution at the interface between coexisting 
liquid and vapor phases varies continuously with position, 
smoothly connecting the high bulk density of the former to the 
low bulk density of the latter. The first serious attempt at 
quantitative description of this interfacial density profile must 
be attributed to van der W a a l ~ ; ~ ~ - ~ O  subsequent refinements have 
included a formulation to account for “nonclassical” critical 
point sing~larities.~ The van der Waals intrinsic density profile 
displays a finite characteristic width at all temperatures below 
critical, though this width diverges as the critical point is 
approached. Extemal forces, such as gravity, play no direct 
role in the van der Waals theory for the planar liquid-vapor 
interface. 

More recently it has been recognizedz1 that collective surface 
excitations in the form of capillary waves should be an important 
ingredient in a comprehensive and accurate description of the 
liquid-vapor interface. In particular, for the planar interface 
long-wavelength capillary wave modes become unstable as the 
gravitational field strength goes to zero, with the result that even 
well below the critical temperature the interface mean-square 
width diverges (logarithmically) in that zero-field limit. Al- 
though the original capillary wave model was phenomenological, 
rather than rigorously derived from fundamental principles of 
many-body statistical physics, its basic idea seems to have 
received support both from e ~ p e r i m e n t ~ * ~ , ~ - *  and from exact 
calculations with the two-dimensional Ising modeLZ2 

Both the van der Waals and the capillary wave approaches 
capture important aspects of the interface problem, but neither 
represents a complete description. Consequently several pro- 
posals to combine basic features of the two have now ap- 
peared.11,15,23 This is an attractive prospect, but it is not free 
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of ambiguity: uncertainties remain regarding the number of 
capillary wave modes, and how they interact with, and modify, 
the remaining degrees of freedom that constitute the “van der 
Waals part” of the interface problem. Helping to resolve these 
ambiguities is our primary motivation in the present study. 

Section II defines the two-dimensional version of the Wi- 
dom-Rowlinson (WR) model. Section 111 discusses its liquid- 
vapor coexistence, focusing on the low-temperature regime to 
which the subsequent analysis is restricted. Section IV shows 
that a distinguished set of interface particles provides a natural 
description of the models’ liquid surface, and their positions 
define capillary waves. This permits us to define the intrinsic 
density profile at low temperature in a precise and natural way 
(section V); studying this limit may provide insight into more 
general situations, where other characterizations of the “intrinsic 
profile” may seem equally natural, but whose precise definition 
remains surrounded with some element of ambiguity. l1 Section 
VI examines the wavelength dependence of bare (unrenormal- 
ized by capillary waves) surface tension. Section VI1 offers a 
discussion of several issues, including implications of present 
results for the general theory of liquid-vapor interfaces. An 
Appendix indicates how the principal results can be extended 
to the Widom-Rowlinson model in three (or more) dimensions. 

11. WR Model in Two Dimensions 

The original presentation of the WR model concentrated 
primarily on the three-dimensional case, with a few exact results 
quoted for the one-dimensional version. l6 Subsequent studies 
have only considered three  dimension^.".'^ We now examine 
the two-dimensional case for this classical continuum model. 

Each of the structureless particles in the WR model sits at 
the center of a disk with radius R. The potential energy function 
@ for an arbitrary configuration rl ... rN of N particles in the plane 
is assigned the value 

(2.1) @(r ,... rN) = (du)[A,(r ,... rN) - Na] 

where E > 0 is the basic energy unit in the model, a = nR2 is 
the disk area, and A, is the area in the plane covered by the N 
disks in the given configuration. Obviously A, can be as large 
as Na if no pair of disks is close enough to overlap, but it at- 
tains its absolute minimum a if all particles are coincident. 
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Consequently @ has the following bounds: 

- ( N -  l ) E  I aJ I O  
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The mean field approximation yields a “classical” critical 
point with associated thermodynamic singularities of the van 
der Waals type. A more precise treatment of the WR model 
critical point is expected to yield “nonclassical” critical point 
singularities that fall within the king model universality class.z7 
Since the mean field approximation also erroneously assigns a 
“classical” critical point to the two-dimensional Ising model, it 
seems reasonable to suppose that generally it mistreats the WR 
and Ising models in roughly parallel fashion. On this basis the 
known ratio of mean field to exact critical temperatures for the 
two-dimensional Ising modelz8 can be used to revise the second 
of eqs 3.1: 

This suffices to assure that the thermodynamic limit exists for 
the The various thermodynamic properties of interest 
then can be extracted, for example, from the canonical partition 
partition function 

Z,@) = (LzNN!)-’ s dr,  ... s dr, exp[-P(U + a)] (2.3) 

where p = (k~T)-l, 2. is the mean thermal deBroglie wavelength, 
and U(r1 ... r,) is the potential of extemal forces (if any) acting 
on the system. 

Although Q in eq 2.1 has an elementary geometric interpreta- 
tion, it is not a “simple” interaction potential in the conventional 
sense. It consists of a sum of the type 

N 

@(l ...N) = vn(i ,...in) (2.4) 
n=2 il ... i, 

where each n-body interaction vn can be expressed as a linear 
combination of A,’s for n or fewer particles. 

We note in passing that the one-component WR model just 
defined can be transformed exactly into a symmetrical two- 
component system in which only two-body interactions operate. 
This implies that a basic underlying symmetry exists hidden 
within the starting one-component model with its nonadditive 
interactions.16 However, that symmetry plays no direct role in 
our present study. 

The continuous attractive forces between particles generated 
by CD, eq 2.1, suffice to produce a liquid-vapor phase transition 
at sufficiently low temperature, as discussed in section III. This 
feature alone confers significance upon the WR model. Its 
major shortcoming, however, is the absence of even weakly 
repelling particle cores, and for that reason it cannot crystallize 
at any temperature. However, for our purposes here this 
shortcoming is actually a virtue. It allows us to examine 
properties of the model at very low temperatures, where 
description both of the bulk phases and of the interface structure 
is especially simple. The temperature acts as a natural small 
parameter, permitting an analysis of this continuum model in a 
way that complements the low-temperature analysis of the 
interface in a lattice gas (Ising 

111. Low-T Particle Distribution 

Since the space dimension exceeds 1, the mean field 
approximation supplies a reliable qualitative guide to the bulk 
thermodynamic behavior of the WR model. Application of this 
approximation is a standard statistical mechanical p r o c e d ~ r e , ~ ~ ~ * ~  
so we shall simply quote a few results relevant to the present 
study. 

The principal mean field result for the two-dimensional WR 
model is the presence of liquid-vapor coexistence at all 
temperatures below a critical point located at 

(Nu/A),, = 1 

(3.1) 

The critical density specified by the first of these conforms to 
the exact hidden symmetry alluded to earlier16 and is therefore 
itself to be regarded as an exact result. The second of eqs 3.1, 
however, is only a mean field estimate of the true critical 
temperature. 

@E),, E 4.79 (3.2) 

Of course this is only an estimate; it would be desirable to have 
an accurate direct determination. 

As temperature declines below critical, the densities of 
coexisting liquid and vapor become less and less alike. In the 
low-temperature regime the mean field approximation specifies 
that those densities have the following asymptotic forms: 

= /3da 

e ,  E @&I) exp(-/3E) (3.3) 

which respectively grow without bound and converge to zero. 
That 81 becomes so large is another consequence of the absence 
of repelling particle cores. The Boltzmann factor driving Qv to 
zero in the low-temperature limit reflects the increase in covered 
area by one disk as a particle is transferred from dense liquid 
into substantially empty space (dilute vapor). 

Results (3.3) lead to the observation that at low temperatures 
the interior of both liquid and vapor phases dynamically have 
the character of ideal gases, with particles moving along linear 
trajectories substantially without collisions. This is obvious for 
the extremely dilute vapor. Within the dense liquid virtually 
all points are covered simultaneously by many disks, so @ 
remains invariant to the motion of any one disk, implying no 
force on that disk. For these reasons, the mean field results 
(3.3) should be asymptotically correct at low temperature. In 
the Appendix we rederive (3.3) using this ideal gas description 
of the bulk partition functions. 

With fixed particle number N and system area A, a tempera- 
ture reduction sufficiently far below critical will always cause 
phase separation into an adjoining pair of macroscopic phases, 
the positions and shapes of which depend on the extemal forces 
present. We can assume in the following that a weak gravita- 
tional field is present only to localize the liquid and vapor phases 
and to produce a macroscopically flat interface between them. 

Suppose that the centers of the Nl particles comprising the 
dense low-temperature liquid are confined to the liquid-phase 
area AI 5 A, whose boundary has length Lo. 

AI = @,N, (3.4) 

Particles at or near the boundary have disks extending beyond 
that boundary. Because el is large, the covered area will extend 
with negligible error a full strip of width R beyond the boundary, 
as Figure 1 illustrates. Provided the region A1 remains convex, 
it is easy to show that the extended region covered by liquid- 
phase disks is 

A, + L,,R + O(1) (3.5) 

This, in connection with the WR potential function eq 2.1, 
implies that the excess potential energy per unit length of flat 
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covered by liquid-particle disks. Bulk particles are all the rest; 
they are the ones moving along linear trajectories within the 
liquid’s gapless interior, eventually to encounter and scatter from 
the surface. 

Figure 2 illustrates a group of surface particles that contribute 
a section of the outer boundary of the liquid-phase A,. The 
circular arcs whose union determines that outer boundary have 
been darkened for emphasis. Note also the presence of an inner 
boundary (dashed line in Figure 2) below which the center of 
a bulk particle must stay in order to remain a bulk particle. 
This inner boundary consists of radius R circular arcs, centered 
at cusps of the outer boundary, and passing through centers of 
surface particles. 

Figure 2 shows the possibility of a surface protrusion, 
specifically a single surface particle sitting atop another surface 
particle. It is distinguished by the fact that the inner boundary 
limiting bulk particle positions does not pass through its center. 
Consequently, its presence does not increase the configurational 
freedom of the Nb bulk particles; but creating such a protrusion 
involves expenditure of an excitation energy of order E .  Similar 
observations apply to larger protrusions in the form of longer 
particle chains attached at one end to the liquid phase. A chain 
of particles attached at both ends (a “handle”) amounts to a 
gap in the bulk liquid, which we have argued above is a 
negligible occurrence. As a result of these considerations the 
concentration of all protrusions must vanish exponentially as 
temperature goes to zero. 

Consequently, the configuration of the surface particles is 
simple in the sense that they present an uninterrupted and 
unbranched chain from left to right. Furthermore, in this low- 
temperature regime where the interior of the liquid is dense and 
gapless, the WR potential function a, eq 2.1, depends only on 
the surface particle positions r1 ... rN,. Let Ab be the area available 
to each of the Nb bulk particles when the surface set is in place. 
We can now write the canonical partition function ZN, eq 2.3, 
for the low-temperature WR model in two dimensions as follows 
(Nb = N - Ns): 

R 

Area At = Nt/pt 

Boundary 
Length = Lo 

Figure 1. Schematic illustration of area A, occupied by the dense low- 
temperature liquid. Particle centers are confined by the length & 
boundary. 

boundary, or surface tension yo at T = 0, is given by 

AWLo yo = c/(nR) = rRla (3.6) 

Note that the surface tension remains bounded and behaves quite 
normally at T - 0 despite the divergence of the bulk liquid 
density in (3.3). 

IV. Capillary Waves 

We now examine the structure of the liquid surface in detail. 
By confining attention to the low-temperature regime /3 >> p,, 
we can consistently assume that the vapor density vanishes, i.e. 

First observe that the particles of the liquid phase fall into 
two sets, “surface” particles and “bulk” particles. Their numbers 
vary with configuration but in all cases will be denoted by Ns 
and Nb, respectively. Surface particles are those whose disks 
contribute circular arcs to the outer boundary of A,, the region 

N1 N. 
Nb 

Here we assume that the identical surface particles are serially 

Dilute Vapor 

Outer 

Inner 
Boundary 
For Bulk Dense Liquid 
Particles 

Figure 2. Illustrative configuration of surface particles at the outer edge of the dense liquid phase. 
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Vapor 

t lsI Yi 

Liquid 
Figure 3. Regular reference configuration of surface particles. Coordinates xi, yi measure displacement of particle i from its reference site. 

ordered (say from left to right), and of course the integrations 
must observe that ordering and be consistent with the definition 
of surface particles. Although expression 4.1 contains a sum 
over Nb, or equivalently N,, we expect dominance by the 
neighborhood of a maximum term, to be determined below. 

In order to facilitate further analysis, it will be convenient to 
refer the positions of the surface particles to a locally linear 
and periodic array of reference sites. These are depicted in 
Figure 3. If & is the nominal interface length, the horizontal 
spacing between successive sites will be 

General configurations of surface particles will be specified by 
sets of displacements xi, yi for every particle i from its reference 
site, respectively giving tangential and normal components (see 
Figure 3). We can require that the area A?) available to bulk 
particles when all surface particles are at their reference sites 
has the value required by the liquid density el in eq 3.3: 

The total covered area in this reference configuration, A$, is 
larger of course; one readily finds 

As surface particles stray from their reference sites, we have 
area changes 

Ab@ l...rN) =A:’’ + dAb(r1 . . X N )  (4.5) 

and 

Ac(r l...r,,,,) =A>) + dAc(r l...rN) 

(ak)@(r l...rN) +Na (4.6) 

Then since 

(4.7) 

the canonical partition function ZN, eq 4.1, can be put into the 
following form: 

Here we have used Stirling’s approximation for Nb!, with neglect 
of the thermodynamically insignificant factor (2nNb)l’’. Just 
as before, the integrals in eq 4.8 must only involve configura- 
tions that are consistent with the surface particle definition, and 
with the serial ordering along the interface. 

The difference dA, - dAb represents the change, with surface 
particle displacements, of the area between the two scalloped 
curves shown in Figure 3, each of which is composed of radius 
R circular arcs. Figure 4 indicates that this area generally can 
be resolved into a sequence of circular sectors whose vertices 
altemate between the inner and outer curves. 

Since present interest concems the nominally flat interface, 
it is feasible and convenient to suppose that periodic boundary 
conditions apply in the horizontal direction. In other words, 
the interface has macroscopic period &, returning to its original 
height and configuration after wandering through intervening 
surface fluctuations. With this horizontal periodicity imposed, 
it is easy to establish that the total area of all circular sectors 
whose vertices lie on the outer (vapor side) curve exactly equals 
the total area of all circular sectors whose vertices lie on the 
inner (liquid side) curve. Furthermore, the area of any sector 
is proportional to its vertex angle, and all sectors have radius 
R.  In view of these facts, one finds 

NS 

dA, - dAb = R2E x 
i= 1 

[Wccos(l - $1 - .-.s[l - Zj] (4.9) 

where li is the distance between successive surface particles i 
and i + 1 in the general displaced surface configuration: 

1; = (1, + - xi)’ + (ri+l - yi)’ (4.10) 

The horizontal-direction periodicity requires that XN,+I, YN,+I be 
identified as X I .  y1. 
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Vapor 

Liquid 
Figure 4. Resolution of area A, - A b  (between bold and dashed curves) into an alternating sequence of circular sectors. When periodic boundary 
conditions apply in the horizontal direction, the total areas of shaded and of unshaded sectors are equal. 

Upon substituting eq 4.9 into eq 4.8, we obtain 

(4.1 1 )  

The product form of the integrand would permit straightforward 
exact evaluation of the multiple integral, using convolution 
techniques, except for the configurational constraints imposed 
by definition of the surface particles. However, the low- 
temperature regime under consideration again comes to the 
rescue. Surface tension is expected to be large, and the result- 
ing surface stiffness should limit the particle excursions X i ,  yi 
to small values. Therefore, we can expand the exponent in 
the integrand of eq 4.1 1 and drop terms higher than second 
order: 

Notice the automatic appearance of the Boltzmann factor in front 
of the Ns sum, containing the interface nominal length LQ times 
the excess energy per unit length, eq 3.6, for the undisturbed 
surface. 

The normal direction displacement coordinates remaining in 
ZN, eq 4.14, determine the capillary waves for the two- 
dimensional WR model, at least in its low-temperature limiting 
behavior. To find their expected number and contribution to 
the surface free energy, we must evaluate the remaining 
Gaussian integrals. In principle these are constrained by the 
horizontal periodicity that has been imposed, and by the 
(virtually) fixed area Ab of the liquid bulk. But in the 
thermodynamic limit of interest, the Ns relative normal displace- 
ments yi+l - yi may be treated as independent variables. 
Therefore, ZN finally adopts the form 

The next task is to identify the maximum term Ns* in the Ns 
sum. This requires 

X 

O = - l n - -  aNs a [ Ns! 1 r)N@] R3Ns 

which leads to the following result for the linear density of 

(4.16) 

(4.12) 
(1 - surface particles: 4R2 

- xi)2 + Qi+, - yi) 

As we shall confirm momentarily, the high liquid-phase areal 
density produces a high linear density of surface particles, so 
that 

(4.17) 

I ,  << R 
On account of the first of eqs 3.3 this can be reexpressed as 

(4.13) follows: 

Consequently the x-direction restoring forces are negligibly 
small compared to those for the y direction. Then aside from 
the serial ordering of the Ns surface particles, their x-direction 
motion may be treated as substantially free in eq 4.12. After 
utilizing (4.13) consistently for other terms in eq 4.12, we arrive 
at the expression 

Is* = LdNs* = ( e R / k ~ , ) ” ~  (4.18) 

It is usually assumed5.I2 that the short-wavelength cutoff on 
capillary waves well below the critical point is proportional to 
the nearest-neighbor spacing in the liquid, which for the present 
two-dimensional case would require the density factor gl-li2. 
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However, the naturally appearing surface modes in our analysis 
are fewer in number and produce instead the factor though 
admittedly the model and its low-temperature limit are rather 
special. Nevertheless, this legitimately raises questions about 
the validity of short-wavelength cutoff criteria employed in the 
usual capillary wave treatments. 

By retaining only the N,  = Ns* term in expression (4.15), In 
ZN can be evaluated correctly through the requisite thermody- 
namic order. The resulting free energy contains both bulk-phase 
contributions and an interfacial free energy proportional to the 
nominal interface length Lo. This permits us to identify the 
line tension y for the interface: 

I '  
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y =-- E - -(-) 3 2E 113 

ZR 2R ep2 
(4.19) 

The temperature-independent leading term is nothing but the 
surface excess energy identified previously in eq 3.6. The 
negative second term is the contribution of independent capillary 
waves. 

Had it been possible to avoid the low-temperature approxima- 
tions that were invoked in our analysis above, eq 4.19 surely 
would have contained higher-order terms in temperature. One 
can reasonably expect these higher-order terms to be significant 
on account of the large density change in the liquid phase that 
accompanies its heating up to the critical point (estimated earlier 
in eq 3.2), with the complicating features of voids in the bulk 
liquid and of interfacial overhangs or protrusions. Support for 
that expectation comes by observing that expression 4.19 
vanishes linearly at 

BE = (27n3/4e)'" 

= 8.7746 ... (4.20) 

nearly a factor of 2 lower in temperature than was previously 
estimated for the critical point, where the surface tension actually 
should go to zero. 

V. Intrinsic Density Profile 
By setting all capillary wave mode amplitudes to zero (i.e 

all yi = 0), the particle distribution through the interface by a 
natural definition becomes the intrinsic density profile, to be 
denoted now by pin(y). As a result of the foregoing, it can be 
resolved into surface and bulk particle contributions: 

The bulk particle contribution will be a continuous function of 
y subject to the obvious limit 41 as y - --. We continue to 
adhere to the low-temperature regime for which we must take 

Evaluation of @in& proceeds most easily by using the identity 

where Q(y) is the normalized probability distribution for the 
normal-direction position of the scalloped bulk-particle boundary 
(dashed curve in Figures 2-4), when all surface particles lie 
on the line y = 0. Recall that the tangential (x) direction motion 
of surface particles is essentially free in the low-temperature 
limit, aside from their serial ordering. The depth of penetration 
into the bulk liquid of the radius R circular arc connecting a 
successive pair of surface particles depends on their tangential 
separation I ,  and so we must account for the fact that the 

1.2 

1 

0.8 
2 
2 0.6 

0.4 

0.2 

0 

t Constrained 
Surface 

-14 -10 -6 -2 2 6 
8 R ~ / ( 1 : ) ~  

Figure 5. Intrinsic density profile for the two-dimensional WR model 
at low temperature. Surface particles contribute a delta function at 
the origin. 

normalized distribution of these 1 values, with mean ls*,  has 
the usual form for nearest neighbors on a line,29 

P(1) = (l/ls*) exp(-l/Z,*) (5.4) 

We next obtain p(y/Z), the normalized distribution of y for a 
single circular arc spanning an interval of length 1. It is 
consistent to replace that circular arc by its quadratic approxi- 
mation, a parabola, since 1 is virtually always much smaller than 
R. This leads directly to a simple expression, 

(-12/8R < y I 0) 
- (2R)Il2 - 

11y + (12/8R)]'12 

=o (0 < y) (5.5) 

Results (5.4) and (5.5) now can be combined to produce an 
expression for Q(y). After taking due account of the fact that 
intervals 1 must be weighted proportionately to their lengths, 
we find for y I 0 

Here K ,  is the order-v modified Bessel function of the second 
kind.30 One easily verifies that Q is indeed properly normalized. 

The next step is to integrate eq 5.3, using the specific Q form 
just derived. The result is the following 0, 5 0): 

The intrinsic density profile is plotted in reduced form in Figure 
5. It may be of interest to note that for large negative y, eq 5.7 
indicates the following asymptotic approach to the bulk phase 
density : 
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Owing to the presence of the surface particle delta function 
in eq 5.1, the intrinsic density profile is a nonmonotonic function 
of y .  This departs from the usual expectation of a rapidly 
varying, but monotonic, profile shape. Note, however, that an 
analogous Kronecker delta would appear in the low-temperature 
description of the two-dimensional king model, where the 
intrinsic profile would be keyed to the unique “long 
Furthermore, even the continuous part due to the bulk particles 
shown in Figure is quite asymmetric about its midpoint ~112. 
Finally, the liquid-side asymptotic decay rate exhibited in eq 
5.8 is slower than the conventionally expected simple expo- 
nential. 

The decline of @h,b(j’) below QI for y I 0 amounts to a surface 
deficit of particles, the number per unit interface length of which 
is found to be (e/47c)(Ns*/&). This amount is comparable to, 
but quantitatively less than, the lineal density of surface particles 
NS*/b. This implies that the Gibbs equimolar dividing line32 
for pin is displaced from y = 0 toward the vapor 0, > 0) by a 
distance 

A = 7 ~ ( 2 / e ) ” ~ [ l  - ( e / 4 n ) ] @ ~ ) - ~ / ~ R  (5.9) 

VI. Surface Tension Dispersion 

yj to define the quantities 
Use the Ns* surface particle normal-direction displacements 
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mode can immediately be calculated from the corresponding 
continuous perturbed boundary position 

y(x) = F cos(kx) (6.6) 

by means of the usual length formula: 

j=1 

NS* 

G(k) = ( 2 / N s * ) c  sin(kjls*>yj 
j= 1  

These linear relations can be inverted. For the assumed 
tangential-direction periodic boundary conditions, k will be 
restricted to the values 

k = 0, 2dL0 ,  4 d L 0 ,  ..., (N,* - l ) d L 0  (Ns* odd) 

= 0, 2dL0 ,  4n/L0, ..., Ns*n/Lo (Ns* even) (6.2) 

Then we have 

where the sum spans the appropriate set (6.2). In this expression 
it is clear that the F(k) and G(k) are the capillary wave 
amplitudes. 

Examination of the partition function in the earlier eq 4.15 
shows that the surface particles experience a quadratic potential 
energy: 

Upon inserting expressions 6.3, this interaction adopts the form 

as= - [ l  - ~0~(kl,*)][F2(k) + G2(k)] (6.5) [ 2nRLO ]? 
displaying independent quadratic contributions from each of the 
N,* capillary wave normal modes. 

Consider a single mode, say the cosine case for some k > 0. 
The formal interface length increment d& attributable to this 

6Lo = Jb &[l + (y’)2]1/2 - Lo 

= F2pLd4 + O ( F )  (6.7) 

The associated energy expenditure can be written as yo(k) d&, 
where y&) is a “bare” surface tension for the given wavelength. 
By comparing eqs 6.5 and 6.7 we find 

Y o W  = ( E / “ V * )  

flu) = (2/u2)(1 - cos u) (6.8) 

The functionflu) declines monotonically from 1 at the origin 
to 4/n2 = 0.405 28 ... at u = n, the upper limit for the capillary 
waves. Notice that yo(O+) is nothing but the excess potential 
per unit boundary length for a flat interface, eq 3.6. Short- 
wavelength interface disturbances by contrast incur a reduced 
surface energy, i.e., reduced bare surface tension. 

VII. Discussion 

The advantage of studying the two-dimensional WR model 
is clear: in its low-temperature regime various simplifications 
permit a rather complete analysis to be carried out and several 
important results to be extracted. The latter include unambigu- 
ous enumeration of surface capillary modes and their upper 
wavelength cutoff, identification of bare surface tension disper- 
sion, and explicit evaluation of an intrinsic density profile that 
is nonmonotonic. Of course the model and its temperature 
restriction are very special circumstances, so it must be asked 
if these results have significant implications for the general 
theory of liquid-vapor interfaces. 

It was remarked above that a major physical shortcoming of 
the WR model family is the absence of short-range particle 
repulsions. This can easily be rectified, say by adding a sum 
of hard-sphere (or hard-disk) pair potentials to the WR interac- 
tion. If the collision diameter of these core interactions were 
small compared to the length R, it should be possible at least in 
part to account for the effects of this perturbation in a variety 
of standard methods, including Mayer cluster theory.33 Unfor- 
tunately, the introduction of hard cores blocks use of the strategy 
described above, where temperature is a natural small parameter. 
The low-temperature phase now is crystalline, not liquid, and 
its density is strictly bounded due to hard core exclusions. 
Nevertheless, for small cores it seems reasonable to expect that 
near the liquid’s low freezing temperature surface modes still 
could be identified, and the intrinsic density profile would 
continue to exhibit nonmonotonic shape. 

In order to extend the study to somewhat higher temperatures, 
several features require attention. The nonvanishing vapor 
density and gaps in the bulk liquid phase become important in 
principle, but once again these should only require renormal- 
ization of quantities appearing in the low-temperature regime. 
The presence of protrusions (as shown in Figure 2)  may pose 
technical problems, but it appears that they would be integrated 
out to provide additional renormalization of the motion of the 
primary surface particles (those in Figure 2 whose centers lie 
on the dashed curve). 

The natural sequential ordering of surface particles along the 
one-dimensional interface is a convenient characteristic in 
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analyzing the two-dimensional WR model, since any surface 
configuration can then be referred to the unique regular reference 
array. The corresponding three-dimensional WR model is more 
problematic. While surface particles can still be identified as 
those contributing parts of their radius R spheres to the outer 
boundary of the liquid, the choice of a regular reference site 
lattice is not unique, and a continuum treatment for the 
interfacial free energy such as that given in the Appendix 
necessarily involves as-yet undetermined constant factors of 
order unity in the interfacial free energy. Whatever the specific 
choice, we believe on the basis of general statistical-thermody- 
namic arguments given in the Appendix that extension of present 
results to the three-dimensional case would inevitably lead to 
an upper cutoff on surface mode Ikl's that is proportional to 

in the low-temperature regime. Furthermore, a nonmono- 
tonic intrinsic density profile must emerge from the analysis, a 
feature that occasionally has been anticipated in prior s t ~ d i e s . ~ , ~ ~  

The principal conclusion to be drawn from the present work 
is that the general theory of the liquid-vapor interface still lacks 
an important ingredient. It offers no general rule for the full 
separation of degrees of freedom into surface modes and bulk 
modes. Consequently, it has no general procedure for precise 
enumeration of the surface (capillary wave) modes and thus no 
unambiguous criterion for location of an upper wave vector 
cutoff. Unless this need is fulfilled, it will remain uncertain in 
general how to determine intrinsic density profiles, presuming 
they are to be defined as the interfacial density distribution with 
all surface modes constrained to vanishing amplitude. It will 
also remain uncertain whether nonmonotonicity must be ac- 
cepted as a universal characteristic of intrinsic density profiles. 
We hope the present paper will stimulate the required strength- 
ening of the general theory. 
Appendix 

In this Appendix we present an alternate approach that can 
be used to derive many of the results in the main text. The 
method is more heuristic but can be used to generalize those 
results to arbitrary dimensions d. 

The basic idea is very simple. Since the surface particles 
can be precisely defined in the low-temperature limit, we can 
calculate a "surface phase" partition function by integrating over 
all permitted motions of the surface particles. This essentially 
involves calculating the free energy of long-wavelength distor- 
tions of a nominally flat interface, and we can use methods 
similar to those in standard capillary wave This 
surface phase is in equilibrium with coexisting bulk liquid and 
vapor phases. The average density of surface particles can be 
determined by requiring equality of the chemical potentials 
calculated from the surface and bulk partition functions. 

To implement this program let us first calculate the coexisting 
bulk phase densities and the chemical potential at very low 
temperatures. In the dilute vapor phase the potential energy 
(2.1) vanishes and the partition function is simply that of a 
classical ideal gas: 
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Here v is the volume of the WR sphere. Two-phase coexistence 
requires equality of the pressure, calculated from a In Z / W ,  and 
the chemical potential, calculated from -8 In ZlaN. Thus from 
(A.l) and (A.2) we find 

-pEIV + el = e, ('4.3) 

and 

' V  zv = - 
/FVN,! 

Here V, is the d-dimensional volume of the ideal gas. As 
discussed in the text, particles in the bulk liquid phase also 
behave ideally, while moving in a uniform potential proportional 
to the covered volume as in eq 2.1; thus 

V;" exp[-@dv)(V, - N,v)] 
('4.2) 

P I N , !  
Z =  

Thus the coexisting densities are 

and 

To lowest order these agree with eq 3.3. This shows the 
consistency of our ideal gas picture for the bulk phases at 
sufficiently low temperatures in the WR model. Henceforth, 
we ignore terms of O(e-BE), setting eV to zero. Note from (A.3) 
that the liquid phase then has zero pressure. The chemical 
potential from (A.4) is 

/3p = 1n(QlAd) - BE = 1n@dd/v) - BE (A.7) 

Finally, al, the Helmholtz free energy per particle for the bulk 
liquid, is given by pal = b,u - p p / ~ l .  Since p = 0 in this case, 
we have 

pal = pp = 1n(elAd) - B E  (A.8) 

Now we calculate the surface partition function, Z,. This 
clearly involves the energetics of the N,  surface particles 
confined to the surface strip. Using capillary wave theory, we 
expect that long-wavelength fluctuations of the strip are 
controlled by the surface tension times the change in area, and 
the constraining effects of surface tension become increasingly 
important at low temperatures. While in general there is some 
debate about what is the proper (bare or renormalized) surface 
tension to use in capillary wave t h e ~ r y , ' J ' J ~ . ~ ~  for our purposes 
here it is clearly sufficient to use the limiting low-temperature 
value 

as in eq 3.6. Let be the nominal d' = d - 1 dimensional 
surface area (analogous to LQ in Figure 1). We are primarily 
interested in determining the surface particle density 

e, = N,/% (A.lO) 

and the associated length scale 

1 s -  = @-l/d s (A. 1 1) 

as in (4.2). 

written as 
Thus it is plausible that the surface partition function can be 
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Here 6a is the change in area due to motions of the N, particles, 
and the integrations are constrained to displacements consistent 
with the definition of surface particles. The exponential term 
outside the integral is the energy of the undistorted strip 
calculated using eq 2.1; note that a & / v  = yo@. Proceeding 
as in the main text we treat the integrations over the d transverse 
components xi of each position vector ri as free, and introduce 
Stirling's approximation. This yields 
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We are now able to determine the equilibrium values 1, and 
e, in terms of el by requiring that the chemical potential Pp, = 
-8 In ZJaN, calculated from (A.18) equals that of the bulk 
liquid, eq A.7. Recalling the definitions (A.lO) and (A.ll) we 
find 

where zi is the coordinate normal to the interface for particle i 
and d{zJ denotes integration over the set {zi} of all z 
coordinates. In the near-continuum limit, the distortions of the 
interface implied by a particular choice of the {zi} can be 
described using a single-valued function z(x) giving the "height" 
of the interface at transverse position x. Let us introduce the 
Fourier series 

1 4max 

(A.14) 

where the sum is over a set of N,  wave vectors q whose 
components satisfy 

for distinct choices of integers nj Here ?,I, = NS1/$ and the sum 
is cut off at a maximum wave vector lqmaxl d l S ,  consistent 
with the typical spacing I ,  of neighboring surface particles. (Our 
continuum description of interface displacements cannot be 
extended to smaller length scales.) Then the change in area 
6a can be approximated 

4 

and Z, becomes 

2, = (qe/N,;ld)NS exp(-Py,q -I- PEN,) S ... S d{2(q)} x 

exP[-PYoW{2(q)I)l (A. 17) 

noting that the Jacobian of the transformation {zi} - (2(q)} in 
(A.14) is unity. The steps leading up to (A.17) have been 
discussed in many papers on capillary wave theory. Introducing 
dimensionless variables 4 = ql, and Z(4) = [2(q)/1s1@~01s")'/2 
in eq A.17, carrying out the Gaussian integrations, and taking 
logarithms yields 

(A. 18) 

Here 

cd dij In i j  (A.19) 

is a constant of 0(1) whose precise value is unimportant for 
what follows, and which in any case cannot be determined 
reliably using our continuum methods. The integration in (A.19) 
is restricted to the region 1ij1 I x. 

1, = (C'dR/@l)l'(d+l) (A.20) 

which generalizes eq 4.19. Here c'd is a constant of O(1). This 
is the main result of the Appendix. Note that the usual scaling 
I ,  = would have followed from (A.18) and (A.7) if Pyol," 
were of 0(1), which is usually the case for real liquids with 
repulsive cores with radius of order R = 1,. Using (A.lO) and 
(A.11) we also have 

(&l)/(d+l) 

(A.21) (d-l)/(d+l) oc R(PE)  
V e, OC ( e m  

The approach taken here has much in common with that of 
section IV in the main text. If we take the appropriate maximum 
term values for N b  and Ns in eq 4.8 such that N = Nb + N,, ZN 
defined there can in essence be written as 

zN = q(Nb;@l)zs(Ns) (A.22) 

(Recall that a serial order was imposed on the surface particles 
in section IV.) The notation Zl(Nb;@l) in (A.22) emphasizes that 
the Nb particles have the proper bulk density @1 given by (3.3). 
In order to extract the capillary wave corrections to the limiting 
surface tension yo from (A.22) we must remove the bulk 
contributions proportional to N, i.e., those contained in Zl(N,@l). 
By definition, the surface tension y then satisfies 

zl(Nb;@l) + In Z,(N,) (A.23) -Prq = 4&] = l n [ Z G T l  

Using eqs A.8, A.18, and A.21 in (A.23), we note that the terms 
involving 1 cancel, and after some algebra we are left with 

Pr = Pro - c1es (A.24) 

where c1 is a constant of O(1). Using (A.21), we obtain the 
capillary wave corrections to the surface tension as 

(A.25) 

which generalizes eq 4.20. 
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