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Collective aspects of protein folding illustrated by a toy model
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A simple toy model for polypeptides serves as a testbed to illuminate some nonlocal, or collective, as-

pects of protein folding phenomena. The model is two dimensional and has only two amino acids, but
involves a continuous range of backbone bend angles. Global potential energy minima and their folding
structures have been determined for leading members of two special and contrasting polypeptide se-

quences, center doped and Fibonacci, named descriptively for their primary structures. The results

display the presence of spontaneous symmetry breaking, elastic strain, and substantial conformational
variation for specific embedded amino acid strings. We conclude that collective variables generated by
the primary amino acid structure may be required for fully effective protein folding predictors, including
those based o'n neural networks.

PACS number(s): 87.10.+e, 87.15.By, 82.90.+j

I. INTRODUCTION

The general protein folding problem continues to
present formidable scientific challenges. In an effort to
isolate and clarify a few aspects of protein folding phe-
nomena, the theoretical community has introduced and
examined several highly simplified, but still nontrivial,
models. These have included a large family of lattice
models [1—8], models based on spin glass concepts
[9—12], and continuum polymer models that incorporate
simplified backbone potentials and interresidue interac-
tions [13—15]. The present paper concerns an example of
the last of these three categories; it was recently created
to explore the adaptation of neural networks to predic-
tion of folding patterns of proteins from their primary
structure (amino acid sequence along the backbone)
[16,17].

While the immediate neighbors along the backbone of
any amino acid residue exert considerable statistical
inAuence on the conformation of that residue in the prop-
erly folded state, it is clear that other "nonlocal" effects
are also significant. Collective features of the folding
bring residues into contact that may be widely separated
in the primary structure, i.e., along the backbone. The
inability, in general, to anticipate these larger-scale as-
pects of folded structures has had a limiting effect on the
predictive ability specifically of various neural network
schemes that have been proposed [18—22].

The objective in the present work has been to illustrate
the source and the complex inhuence of nonlocal, or col-
lective, effects in protein folding using our very simple
"toy model" [16]. Specifically, we have obtained the
lowest-energy folded states for the leading members of
two special and contrasting sequences of toy polypep-
tides. These include examples containing up to 55 resi-
dues. For reasons that will become clear, these sequences
are named "center-doped" and "Fibonacci" sequences.

It is our hope that results and interpretive comments
offered below will have a stimulating inAuence in develop-
ment of new theoretical tools to cope with the general
protein folding problem.

Section II briefly defines the toy model and lists a few
of its elementary properties. Sections III and IV present
the global energy minima for the first few members re-
spectively of the center-doped and Fibonacci sequences.
Section V summarizes our conclusions based on those
minima. Section VI contains some additional discussion
and perspective on possible future research directions.

II. TOY MODEL

The calculations to follow are based on a two-residue
( A, B), two-dimensional, linear polymer model [16].
Links between successive residues along the backbone
have fixed length unity, but the backbone can bend con-
tinuously between any pair of successive links. The po-
tential energy function @ contains two kinds of contribu-
tions and for an n-residue molecule is written

n —1

1=2

n —2 n

(2.1)

f;(A)=+1, g;(B)=—1 . (2.2)

The backbone bend potential Vi has a simple tri-
gonometric form (we use reduced units)

V, (8; ) = —,'(1 —cos8; ), (2.3)

which has extrema at 0; =0, +m. The residue pair in-
teractions V2 (which only operate between unlinked resi-

Here —sr ~ 0; (sr is the backbone bend angle (away from
linear) at nonterminal residue i, r, is the distance be-"
tween residues i and j, and the discrete variables g;
denote residue species
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dues) possess a species-dependent Lennard-Jones form

V (r, , g, , g )=4[r, ' —C(g;, g )r; ],
C(g;, g )= —,'(1+(', +gj+5(;g ) .

(2.4)

The coe%cient C is +1, +—,', and —
—,', respectively, for

AA, BB, and AB pairs, thus producing an intrarnolecu-
lar mix of strong attraction, weak attraction, and weak
repulsion, roughly analogous to the situation in real pro-
teins.

The presence of the backbone bend potentials V& in @
causes the strictly linear conformation (all 9; =0) to be a
local N minimum for all n and for all residue sequences.
But if n & 6, regardless of the residue sequence, the global
minimum corresponds to a nonlinear folded geometry
that takes advantage of attractive A A and BB pair in-
teractions, while avoiding a substantial penalty in repul-
sive AB pair interactions. The delicate interplay between
competing contributions to N creates great diversity in
the structures of optimally folded toy polypeptides and in
particular causes some, but not all, point mutations to in-
duce substantial shifts in the most stable folding pattern
[16,17].

One last element of model simplification should be not-
ed. Unlike real proteins, the backbone of the toy model
molecules has no preferred directionality: forward and
back are basically indistinguishable. This has a minor
effect on the enumeration of fundamentally distinct toy
model proteins containing n residues. If n —=2m is even,
the number of distinct molecules is 2 '(2 + 1); for odd
n —=2m+1 the number is 2 (2 +1). If the backbone
were directed, of course, the result would always be 2".
Several extensions of the toy model are possible (such as
dipoles embedded in the A's and B's), which would re-
rnove this bidirectionality.

III. CENTER-DOPED SEQUENCE

Not only does the number of distinct molecules rise
essentially exponentially with n, but so too does the com-
putational difticulty of locating the global @ minimum
for any one of the n-mers. For these reasons it has thus
far only been practical [16,17] to catalog all stable folding
structures for n (8. In order to penetrate substantially
larger degrees of polymerization n one can focus atten-
tion on special families of primary sequence patterns.
One such family involves the center-doped rnolecules
(m &0)

(A)~ B—(A)— (3.1)

i.e., a single 8 residue Ranked symmetrically by pure-A
tails. We have not examined the inequivalent reverse
case with a single A Hanked by 8 tails.

The m =1 case A-B-A possesses a single backbone
bending degree of freedom and direct minimization [16]
shows that the lowest energy is attained when the bend
angle 0&=+111.4 . The potential energy @ for this op-
timal shape is listed in Table I.

The search over the 2m —1 angles for global minima of
subsequent family members involved a mixed strategy.
In part this strategy utilized a high-temperature Monte

TABLE I. Potential energies at the global minima for succes-
sive center-doped molecules ( A) —8 —( A)

0
1

2
3
4
5
6
7
8

9
10
11
12

0.0000
—0.6582
—2.5317
—4.8794
—7.7251

—11.0670
—14.3573
—17.9292
—21.3945
—25.2030
—28.6905
—32.5054
—36.4139

Carlo procedure [17] to generate a large, unbiased set of
initial configurations for subsequent minimization by
both quasi-Newton and conjugate-gradient routines
[17,23]. These initial configurations were supplemented
by a relatively small, but select, set of configurations
created by hand to represent intuitive guesses about likely
candidate structures. As it turned out, global minima
were redundantly and consistently produced from both
sources of initial configurations, thus lending confidence
to results reported below.

Table I collects the potential energies of the global
minima found for the center-doped sequence through
m =12 (n =25); entries of course are expressed in terms
of the energy unit selected for the model, the A-A pair
interaction depth. The values shown in Table I have a
smoothly declining trend, approaching approximately
linear behavior with increasing m. First differences
4(m +1)—@(m), however, are not monotonic, showing
that subtle effects are embedded in the results.

Figures 1 —3 illustrate the folded forms of the global
minima. The central 8 residue is shown as a black circle
for clarity, the A s as white circles. Not surprising1y, the
8 dopant in all cases occurs at the exterior of the com-
pact shape, consigned in fact to a relatively remote
corner. This is expected since the AB pair interaction is
positive for all pair separations, while that for AA pairs
is negative beyond unit separation.

%'e remark in passing that the excitation energies for
the center-doped sequence, from global minimum to the
next lowest minimum, are on the order of several tenths
of an energy unit, but vary considerably and irregularly
with m. Even in the cases of small excitation energy (e.g. ,
0.015 936 for m =4), the configurational change involves
a substantial shift of a large portion of the molecule.

An important characteristic that is clear from the Figs.
1 —3 is a spontaneous symmetry-breaking phenomenon.
Nominally the two pure-A tails linked together at the
central 8 residue are indistinguishable. But in the op-
timally folded forms for all m & 1 the two tails adopt ine-
quivalent shapes. Since there are two ways of assigning
the tails to these different shapes, the global minima must
be at least doubly degenerate. Furthermore, each op-
timal structure is mirror asymmetric, that is, inequivalent
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FIG. 1. Structures for the erst six members of the center-
doped sequence of toy-model polypeptides, each at their global
potential energy minima. Open circles represent A units, filled
circles represent 8 units.

FIG. 3. Global potential energy minimum structures for
center-doped molecules with A tails of lengths 10—12.

A7 —B —A7
-17.9292

A8 —B —A8

-21.3945

Ag —B —Ag

-25.2030 n

FIG. 2. Global potential energy minimum structures for
center-doped molecules with A tails of lengths 7—9.

to its image obtained by reflection across any line in the
embedding plane. Therefore each global minimum is
fourfold degenerate for m & 1, but twofold degenerate in
the simple m = 1 case.

The mutual arrangement of A residues from both tails
exhibits considerable regularity. It seems appropriate to
describe the spatial patterns roughly as "crystalline, "
keeping in mind that the outcome for any m represents a
complex compromise of competing effects. On the one
hand, the attractive A A pair interactions by themselves
would lead to a compact aggregate with maximal internal
contact (close packing) and minimal surface. On the oth-
er hand, any A aggregate must necessarily be entirely
threaded by the backbone of unit-length bonds between
successive residues, a "Hamilton chain" in the terminolo-
gy of graph theory [24]. Furthermore, this Hamilton
chain must have its central node, the 8 dopant, protrud-
ing from the exterior of the aggregate. In order to mini-
mize the penalty of backbone bend, the circuit should
have as few major direction changes as possible.

A significant disparity exists between the unit bond
lengths along the backbone and the distance
r, =2' =1.12246. . . at which the AA Lennard-Jones
attractive pair interaction attains its minimum. This im-
plies that the natural crystal structure for linear and
parallel A chains in the plane is distorted from the famil-
iar sixfold symmetric triangular array. Consequently,
global minima for the center-doped sequence that display
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one tail enfolding a compact arrangement in the other
tail (e.g. , m =6 in Fig. 1) or even of another portion of it-
self (e.g. , m = 12 in Fig. 3) must involve elastic distortion
and elastic energy.

One of the surprises presented by our results was the
nonconformity of the m = 12 case to the few that preced-
ed it. As tail length m increased from 7 to 11 a pattern
regularity appeared to emerge, building up an A crystal-
lite row by row, while maintaining the central B dopant
at its exterior. Straightforward extrapolation of the
7 ~ m & 11 patterns to m =12 would not anticipate the
overall exterior shape or the obvious bend across the inte-
rior displayed in Fig. 3.

IV. FIBONACCI SEQUENCE

1

1

2
3
5

8
13
21
34
55

'The number of residues n (i) =f; + &.

0.0000
0.0000
0.0000

—0.0303
—0.0057
—1.4682
—3.2235
—5.2881
—8.9749

—14.4089

TABLE II ~ Potential energies at the global minima for lead-
ing members of the Fibonacci sequence of molecules.

n(i)'

fo=0 f)=1 f +(=f )+f (i )0} (4.1)

The magnitudes of the f, increase rapidly with index i,
approaching the asymptotic limiting form

f; -0.447213. . . y', (4.2)

where y is the reciprocal of the famous "golden mean"
ratio

The center-doped sequence discussed in the preceding
section represents an extreme of simplicity in its primary
structure (residue sequence along the backbone). Its
members are nominally symmetric about the backbone
midpoint and approach pure-A composition in the limit
of large degree of polymerization. We now examine a
starkly contrasting sequence.

The arithmetic sequence of Fibonacci numbers fo, f&,f2, . . . is generated by the specification [25]

Each of these properties provides a contrast with the
center-doped sequence of Sec. III.

The search for global minima was carried out as de-
scribed above. The resulting potential energies are listed
in Table II. While these energies seem to be declining
montonically with n, it is not clear what the asymptotic
behavior for large n should be.

The geometric structures of the Fibonacci sequence
global minima appear in Figs. 4—7. They exhibit far less
regularity than the center-doped sequence results, owing
to the more nearly equal proportions of A's and B's dis-
tributed uniformly along the backbone, with consequent
overall interaction frustration.

The hierarchical character of the primary structure, in-
dicated in Eq. (4.6), strongly suggests comparing the
geometries of nominally equivalent, embedded, sub-

y=(5'i + I)/2 . (4.3)

A simple mapping generates strings of A's and B's from
the Fibonacci numbers and we interpret those strings as
the members of the Fibonacci sequence of toy model po-
lypeptide molecules. The analog of Eqs. (4.1) is

-0.0303

So= A, Si =B, S+i=S; i+S;, (4.4)

where now e means concatenation of the literal strings.
Following this rule, the leading members of our Fibonac-
ci sequence are found to be

A, B,AB,BAB, ABBAB,BABABBAB, . . . (4.5)

Several basic properties can easily be demonstrated for
the Fibonacci molecule sequence: (i) all A residues are
isolated along the backbone, i.e., Hanked on both sides by
B's; (ii) B's appear only isolated or in pairs, never as
longer uninterrupted B strings; (iii) the limiting fraction
of B's for very large strings is y '=0.618033. . . ; (iv} the
number of residues in S; is f;+ &, (v) the molecules have
an hierarchical string structure

S;=S; ~eS; 3+S;

4E
%F 4E

'%F

-0.0057

-1.4682

=(S; 4+S; 5eS; „)e($; 5eS; 6+S, 5)

e(S; 4+S; s» S; 4)

~ ~ ~ (4 6)

FIG. 4. Structures for the first three members of the Fi-
bonacci sequence. Each molecule is shown at its absolute po-
tential minimum. A and B units are shown, respectively, as
open and filled circles. Close A A contacts are indicated by dot-
ted lines.
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-3.2235

-5.2881

strings. Following the first of the Eq. (4.6) identities, we
can, for example, partition the n = 13 case as follows:

ABBAB eBAB e ABBAB . (4.7)

Then, by examining the optimized n =13 structure in
Fig. 5, one sees that the initial and final parameters have
roughly siniilar (but certainly not identical) "dipper"
shapes reminiscent of the form adopted by the isolated
n =5 molecule, Fig. 4.

The next member of the sequence, n =21, presents a
rather different behavior. The corresponding string
dlvlslon 1s

BABABBAB e ABBAB +BABABBAB . (4.8)

While the central pentamer again roughly adopts the

FIG. 5. Global minimum structures for the fourth and fifth
members of the Fibonacci sequence, containing 13 and 21 units,
respectively.

-
I 4.4089

FIG. 7. Global minimum structure for the seventh member
of the Fibonacci sequence, containing 55 units.

dipper shape, the two terminal octamers differ substan-
tially from one another: one is relatively extended, the
other more compactly folded. This kind of discrepancy
between the terminal substring shapes is also evident in
the n =34 and 55 optimal folding geometries.

Close contacts between nonbonded but strongly at-
tracting AA pairs have been highlighted with dotted
lines in Figs. 4—7. These of course provide the principal
stabilizing elements in the global minimum structures.
The intrinsic dispersal of the A s along the Fibonacci se-
quence backbones means that not all A's can cluster
compactly together, even though this by itself would
lower the potential energy substantially. Instead, the A' s
are forced by the backbone connectivity to aggregate into
several smaller separated groupings. Predicting how
many groupings should appear in the global minimum
and which A's they should incorporate does not seem to
be possible using elementary concepts.

V. CONCLUSION

FIG. 6. Global minimum structure for the sixth member of
the Fibonacci sequence, containing 34 units.

The intrinsic difhculty of solving the protein folding
problem has been illustrated using a simple (but nontrivi-
al) toy model. Global potential energy minima and their
folding structures have been determined for the toy po-
lypeptides forming leading members of two contrasting
sequences: center doped and Fibonacci. The results
confirm earlier suggestions [16] based on neural network
analysis of lower-order (smaller molecule) folding pat-
terns in the model, namely, that primary sequence local
information is generally insufhcient to predict overall
folding geometries. As a result of competing interactions
in the toy model (just as in real proteins), collective efFects
emerge that effectively involve all monomers. The spon-
taneous symmetry-breaking phenomenon observed in the
center-doped sequence is one of these, ' so too is the unan-
ticipated bend that suddenly appeared across the center
of the 25-residue member of this sequence. And in spite
of the inherent hierarchical nature of the primary struc-
tures in the Fibonacci sequence, competing and frustrat-
ed interactions over the entire molecules prevent the nat-
ural Fibonacci subsets from consistently adopting the
same forms from case to case.
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VI. DISCUSSION

The presence and inhuence of large-scale collective
phenomena in toy model protein folding is consistent
with the exponential-in-n difBculty that should be expect-
ed for minimization problems of this general class. This
suggests that an efficient, accurate, and universally appli-
cable algorithm will never be attained to solve all con-
ceivable protein folding problems. Pursuing such an am-
bitious goal is not necessary however. The preponder-
ance of biological evidence seems to suggest a much more
limited objective, namely, the ability to predict the fold-
ing outcome for a very small subset of all possible po-
lypeptides, specifically those that reproducibly renature
from an unfolded state without substantial kinetic hin-
drance due to deep metastable traps [8]. Presumably it is
only this special subset that can be useful to living organ-
isms. Even within a distinguished "foldable" subset,
whether for a toy model or for real polypeptides, a
worthy short-term goal would be to improve upon the
statistical success rates of the various secondary and ter-
tiary folding structure predictors. This may best proceed
by recognizing important collective variables for the pro-
tein molecules as a whole, to supplement the local amino
acid "window" that has traditionally been employed, par-
ticularly in neural network applications [18—22].

In our initial study of the present toy model [16], a
complete data base of optimally folded structures was
created for several small values of n and then the simplest
neural network architecture was identified, which could
act as an error-free "predictor" (more precisely, a read-
only memory device) for that entire data base.
Significantly, these optimal networks contained hidden
layers of neurons whose operation was to create collective

q(k) = g g exp(ikj), (6.1)

for appropriate k's, with real and imaginary parts sup-
plied as neural network inputs. Alternatively, one might
examine Legendre or Chebyshev polynomial [26] trans-
forms as candidate collective variables. Real proteins
contain 20 distinct residues rather than just 2, but for
them the g; sequence might appropriately be replaced by
a numerical hydrophobicity-hydrophilicity index. In any
event, the sl(k) have the requisite nonlocal character for
collective folding variables and may even be appropriate
for the description of the elastic strain that results above,
suggesting that it may be important in real proteins.
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variables from the primary sequence specification and to
supply those collective variables downstream to the out-
put neurons. It strikes us as important generally to try to
identify such relevant collective variables, whether for a
toy model or for real three-dimensional proteins, without
the necessity of solving the very difficult problem of op-
timizing over all possible neural network architectures.

One possibility that automatically comes to mind are
Fourier transform variables. . In the present toy model
context these would simply be generated from the binary
species variable string g&
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