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Structures and Energies of SiO2 Clusters
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We have employed extensive configurational searches for numerical characterization of neutral (SiO2)n clusters
in their mechanically stable forms,i.e., at local potential energy minima. These calculations have used additive
pair interactions derived by Tsuneyukiet al., supplemented with small-distance configurational constraints.
A nearly complete catalog of structures and energies has been obtained for 1e n e 4, and we also report the
most stable clusters found for 5e n e 8, as well asn ) 18. Also a few key sequences of metastable
oligomers have been examined. Although the results illustrate the basic tendency toward tetrahedral
coordination of silicons by oxygens, none of the stable clusters structurally resemble any of the known
crystalline SiO2 polymorphs. Then ) 18 results suggest that the surfaces of extended crystalline or glassy
SiO2 phases may exhibit anomalously coordinated silicons with formal valences+3 and+5.

I. Introduction

Silicon dioxide (principally as quartz) and the related silicate
minerals serve as major constituents of our planet.1 Further-
more, glasses based on silica have played a prominent role
virtually throughout all of recorded history in the rise of
commerce, technology, and science.2 One of the most recent,
and technologically demanding, requirements on silica glasses
arises from optical fiber communications.3

But, despite these important connections, the molecular-level
understanding of SiO2 and its fundamental interactions remains
rudimentary. On the experimental side this can be attributed
to the extremely low volatility of the condensed phases of SiO2

and to the apparent high reactivity of molecular SiO2 and its
clusters, particularly with water. As a consequence, rather little
theoretical effort thus far has been devoted to the study of the
isolated SiO2 molecule and its small gas-phase oligomers,
although the present status of computational quantum mechanics
makes such investigations quite feasible. An exception to which
we allude below is a high-accuracyab initio survey by
Raghavachari.4

The present investigation was undertaken to generate a
theoretical database of information about gas-phase (SiO2)n
species at a well-defined level of approximation. Specifically
we have employed the additive pair interactions that were
created by Tsuneyukiet al. (TTAM) to simulate bulk condensed-
phase SiO2 phenomena;5,6 as explained below, it is necessary
to append a set of small-distance constraints to these functions
to avoid unphysical divergences.
Our motivations for concentrating on the TTAM approxima-

tion to the (SiO2)n potential surfaces include the following:
(a) It has been widely used, and is moderately successful, in

simulational studies of crystalline and amorphous condensed
phases of silica.5-10

(b) It is conceptually simple and computationally straight-
forward to use.

(c) The existence of a concrete set of results, even for a simple
and approximate theoretical model, should have a beneficial
stimulating effect, both on experiment and on high-accuracy
quantum calculations.
(d) It is important to observe whether structural motifs familiar

from the known crystalline SiO2 polymorphs11-13 spontaneously
appear in the small clusters, and if not, why not.
(e) The cluster geometries may suggest useful new ways to

interpret studies of liquid and amorphous glassy SiO2, especially
in connection with the “inherent structure” formalism.14-16

(f) The results for the specific TTAM pairwise additive model
considered can be a base from which an improved approxima-
tion to the Born-Oppenheimer ground-electronic-state potential
surface could be developed, perhaps incorporating explicit three-
body interactions17-19 or many-body polarization effects.20-22

The following section II recalls and discusses the TTAM pair
potential approximation. Section III introduces our procedures
for locating potential energy minima and presents our results
for the smaller oligomers (SiO2)n, 1e ne 4, which may include
all possibilities in this size range. Section IV presents our results
for the larger clusters 5e ne 8; although it has been infeasible
to catalog all clusters in this range, we believe we have identified
the most stable clusters (for the model). Section IV also
discusses some results for linear and cyclic oligomer sequences.
Motivated by a desire to understand how known crystal
structures might arise asn increases, we have also devoted effort
to the n ) 18 case, with results reported in section V. The
paper concludes, in section VI, with some further discussion of
our findings for the TTAM model and their implications.

II. Pair Potential Approximation

Given a collection ofN atoms (or ions) located respectively
at positionsr1...rN, the Born-Oppenheimer ground-state po-
tential energy surface will be denoted byΦ(r1...rN). This
function must satisfy the following conditions:
(1) In the absence of external interactions (e.g., wall forces

and gravity) it must exhibit translational and rotational invari-
ance.
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(2) It must be symmetric under interchange of the positions
of identical particles.
(3) It must be continuous, differentiable, and bounded above

when all particle pair distancesrij are positive.
(4) It must be bounded below by some negative number

proportional toN.
The present application hasN ) 3n, and comprisesn Si

particles and 2n O particles, i.e., the equivalent ofn SiO2

molecules. For simplicity in the following, we impose the
convention thatr1...rn are Si atom (ion) positions andrn+1...r3n
are O atom (ion) positions. The TTAM model5,6 approximates
Φ by a sum of central pair interactionsφRâ for each of the 3n(3n
- 1)/2 pairs of particles present:

This format automatically satisfies conditions 1 and 2 above.
The TTAM model composes each of the three pair potentials

φRâ(r) out of three kinds of terms, a long-range Coulomb
interaction, anr-6 attractive dispersion interaction, and a short-
range exponential repulsion. When they are expressed in terms
of angstroms and of kilocalories per mole as the length and
energy units, respectively, the pair potentials adopt the specific
forms:5,6

The Coulombic contributions appearing here correspond to
fractionally charged particles, 2.4e on Si and-1.2e on O.
Choices 2.2-2.4 cause condition 3 above to be satisfied.
Although the TTAM version ofΦ vanishes when all 3n

particles are widely separated, this dispersed state has no
physical significance on account of the partial charges. However
this is a benign artifact that plays no role in the present or
previous applications of the TTAM model. Our study focuses
on changes inΦ associated with changing aggregation patterns
of substantially intact SiO2 units.
Owing to the presence of attractive dispersion contributions

(∝r-6), each of theφRâ diverges strongly to minus infinity asr
f 0. Consequently condition 4 above onΦ is formally violated.
However, these violations occur in an unphysical regime and
can simply be declared to fall outside the domain of applicability
of the TTAM model. We observe that theφRâ each exhibit
unphysical maxima, respectively, at distances (Å)

We have demanded in our calculations, and have always
verified, that no particle pair distance ever falls below its
correspondingRRâ. This amounts to appending physically

sensible strong repulsive short-range forces to the TTAM
functionsφRâ. With this supplementary constraint, condition 4
above is obeyed.

III. Small Clusters (n e 4)

For each value of the oligomerization degreen, mechanically
stable cluster structures and their energies have been extracted
from computer searches of the respective potential energy
surfaces. Three kinds of minimization routines have been
employed: an iterative sequential optimization that proceeds
one Cartesian coordinate at a time, a steepest descent optimiza-
tion, and a variant of the conjugate-gradient method (MINOP).
Initial conditions for the configurational searches included both
random positions (subject to distance cutoffs (2.5)), as well as
those based on known silica structural principles. Completeness,
accuracy, and local stability of results were assured by producing
cluster structures several times (in most cases) with the different
optimization routines and with a variety of initial conditions.
The SiO2 monomer in the TTAM model has a symmetric

linear form (D∞h), analogous to the CO2molecule.23 The Si-O
bonds, 180° apart, have length 1.4644 Å. The energy of this
triatomic species is found to be

(compared to three widely separated, fractionally charged,
TTAM particles).
Unfortunately, direct experimental information on the struc-

ture of the isolated SiO2 molecule does not seem to exist.
However there is little reason to doubt the symmetric linear
form assigned by the TTAM model. In fact,ab initio quantum
mechanical calculations support this presumption; Raghava-
chari,4 for example, finds theD∞h structure with bond length
1.48 Å (Hartree-Fock level) or 1.53 Å (Moller-Plesset second-
order level).
The TTAM model produces a doubly bridged stable dimer

structure. It hasD2h symmetry. Two of the four oxygens in
this (SiO2)2 cluster form a symmetric double bridge between
the silicons, while the other two are external to that rhombus.
The dimer energy value is computed to be

so that comparison with monomer result 3.1 reveals the binding
energy of two SiO2 units to be-123.362 kcal/mol. This binding
energy may be compared with the value-99 kcal/mol indicated
by ab initio quantum mechanics at the second-order Moller-
Plesset level.4 We stress that these energies strictly refer to
static, mechanically stable cluster structures; no account has been
taken of nuclear zero-point vibrational motion.
Figure 1 illustrates the TTAM model dimer. Note that in

this and all following figures silicons are small dark circles,
oxygens are larger light circles, and any Si-O pair is connected
by a line if and only if it is closer than 1.80 Å. It should also
be noted in passing that although the (SiO2)2 species has not

Φ ) ∑
i)1

n-1

∑
j)i+1

n

φSiSi(rij) + ∑
i)1

n

∑
j)n+1

3n

φSiO(rij) +

∑
i)n+1

3n-1

∑
j)i+1

3n

φOO(rij) (2.1)

φSiSi(r) ) 1913.2812/r - 537.3124/r6 +
0.06570 exp[(1.7376- r)/0.06570] (2.2)

φSiO(r) ) -956.6406/r - 1631.1766/r6 +
0.20851 exp[(2.9162- r)/0.20851] (2.3)

φOO(r) ) 478.3203/r - 4951.9369/r6 +
0.35132 exp[(4.0948- r)/0.35132] (2.4)

RSiSi ) 0.0877

RSiO ) 1.0613 (2.5)

ROO ) 1.4760

Figure 1. Structure of the stable silica dimer in the TTAM model.
Bond lengths are in angstroms.

Φ[SiO2] ) -1031.567 kcal/mol (3.1)

Φ[(SiO2)2] ) -2186.497 kcal/mol (3.2)
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been experimentally characterized itself, the double oxygen
bridge between silicons has a precedent. This arrangement has
been synthesized in a compound which replaces the two pendant
oxygens of (SiO2)2 with four mesityl groups.24

Two distinct structures emerge from our silica trimer calcula-
tions. They are both shown in Figure 2. One has a planar ring
structure (symmetryD3h); the other has a pair of double oxygen
bridges in perpendicular planes (symmetryD2d). The former
can be viewed as the result of SiO2 insertion into the 4-ring of
the dimer to form a 6-ring; the latter can be viewed as a
repetition of the dimerization process to produce a central silicon
with distorted tetrahedral coordination.
The respective energies found for the two (SiO2)3 structures

are

The corresponding binding energies for three isolated SiO2

molecules into these trimer structures are

Both of the trimeric species are found in theab initio quantum
mechanical study, but the order of stability is reversed at the

second-order Moller-Plesset level of approximation;4 the
predicted binding energies to compare with results 3.4 are-189
kcal/mol forD3h and-212 kcal/mol forD2d. That the TTAM
model apparently overestimates small cluster binding energies
and misassigns relative stabilities may not be surprising, since
it was created to describe extended condensed phases. We
might reasonably expect the TTAM model to perform better in
these respects for largern, the degree of oligomerization.
The geometry of the planar 6-ring shown in Figure 2 for the

D3h trimeric cluster compares reasonably well with that found
experimentally for its chemical relative hexamethylcyclotrisi-
loxane.25 Bond lengths around the ring in this analogue are
1.66(0.04) Å, and the bond angles are 125(5)° for SiOSi and
115(5)° for OSiO.
We have found five distinct tetramers. Two of these possess

symmetryD2h and are illustrated in Figure 3. Two others of
roughly comparable stability have symmetriesD4h andC2V and
appear in Figure 4. The last has symmetryTd and is by far the
least stable of the five; it is shown in Figure 5. The binding
energies (relative to four isolated monomers), in increasing order
of stability, are found to be

No ab initio quantum mechanical results are available for
comparison.
If we leave aside the anomalously high-energy tetramer in

Figure 5, all of the other clusters for 2e ne 4 exhibit structural

Figure 2. Silica trimers for the TTAM model.

Figure 3. Silica tetramers withD2h symmetry for the TTAM model.

Φ[n)3,D3h] ) -3357.499 kcal/mol

Φ[n)3,D2d] ) -3347.602 kcal/mol (3.3)

∆Φ[n)3,D3h] ) -262.798 kcal/mol

∆Φ[n)3,D2d] ) -252.900 kcal/mol (3.4)

Figure 4. Silica tetramers in the TTAM model with symmetriesD4h

(top) andC2V (bottom).

∆Φ(n)4,Td) ) -317.178 kcal/mol

∆Φ(n)4,D2h,bridged cyclic)) -376.943 kcal/mol

∆Φ(n)4,D2h,linear)) -382.007 kcal/mol

∆Φ(n)4,D4h) ) -386.096 kcal/mol

∆Φ(n)4,C2V) ) -393.395 kcal/mol (3.5)
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characteristics that are useful for anticipating cluster forms for
larger n. Although all of the “bonds” shown in Figure 1-4
are indicated by single lines, they can each be chemically
classified as single or double bonds: all Si-O bonds to pendant
external oxygens are double, while all those within rings are
single. With this classification each Si formally has chemical
valence+4, and each oxygen,-2. Lengths of double bonds
all fall close to 1.49 Å, while single bonds are all approximately
1.64 Å.

IV. Larger Cluster (5 e n e 8)

Although one can confidently expect to discover and analyze
all mechanically stable TTAM clusters for smalln, this clearly
becomes an impractical and physically pointless task for large
n. The results presented in the preceding section II forn < 5
already hint at the proliferation of possible cluster structures as
n increases, and general arguments suggest that in unbounded
space the number of distinguishable cluster structures should
asymptotically grow withn as exp(constant× np), 1 < p e 2.
Consequently we have focused our search on identifying at least
some of the most stable structures in the range 5e n e 8,
supplemented by examination of a selected additional set of
metastable structures to provide a proper interpretive context.
The search through candidate structures was markedly simplified
by observing valence, bond length, and (to a lesser degree) bond
angle constraints, along with obvious nonoverlap conditions.
Table 1 summarizes our results for the most stable clusters

found for the TTAM model. Information presented includes
the cluster symmetry, its binding energy∆Φ relative to isolated
monomers, and the binding energy per monomer∆Φ/n. In the
large-n limit this last quantity should converge to a value
characteristic of the most stable crystal form of silica at zero
pressure and temperature, for the model. Results presented in

ref 5 indicate similar binding energies for the four silica
polymorphs examined:-203.5 kcal/mol forR-quartz,-199.6
kcal/mol for R-cristobalite,-205.3 kcal/mol for coesite, and
-202.5 kcal/mol for stishovite. In fact,R-quartz should be the
most stable polymorph, and the listed experimental binding
energy26 is -216.2 kcal/mol, suggesting that a slight revision
of the model parameters might be in order.
The structures of the stable clusters represented in Table 1

are diverse and do not suggest a simple growth principle. The
cases forn e 4 discussed in the preceding section III do not
uniquely suggest the form of the optimal pentamer. However,
our calculations reveal that it contains a pair of equivalent planar
6-rings (alternating Si and O), perpendicular to one another,
with a shared Si vertex. This structure exhibits four pendant
double-bonded oxygens, two attached to each ring.
The most stable hexamer also possesses four pendant double-

bonded oxygens. It can be viewed topologically as having come
from the pentamer upon replacement of its shared Si vertex with
a pair of Si’s that are themselves connected across the cluster
by a double oxygen bridge. Figure 6 provides an illustration
of this (SiO2)6; all atoms are coplanar except for the two oxygens
forming the central double bridge.
The optimal heptamer can be obtained structurally from the

hexamer in Figure 6 by reacting (as in the basic dimerization
process) one of its pendant SidO units with a monomer. This
yields a protruding SidO unit connected to the remainder with
a double oxygen bridge.
Figure 7 shows the most stable octamer discovered in our

search. It contains a pair of double oxygen bridges and can be
viewed as the next member of a “ladder” sequence of linear
polymers containing an even number of SiO2 molecules. The
top portion of Figure 4 and Figure 6 show the first two members
of this ladder sequence. Except for the four corner silicons
linked to pendant double-bonded oxygens, all of the ladder
polymer silicons reside nearly at the centers of vertex and edge-
sharing oxygen tetrahedra. These calculations, supplemented
by a few others for larger ladder polymers, establish that the

Figure 5. Least stable TTAM tetramer (symmetryTd).

TABLE 1: Most Stable Silica Clusters Found for the
TTAM Model versus the Oligomerization Degreen

n symmetry ∆Φa ∆Φ/n a

1 D∞h 0.000 0.000
2 D2h -123.362 -61.681
3 D3h -262.798 -87.599
4 C2V -393.395 -98.349
5 D2d -533.213 -106.643
6 D2h -700.606 -116.768
7 Cs -830.435 -118.634
8 D2h -1004.128 -125.516
18 C1 -2726.871 -151.493

a Total binding energy, and binding per monomer, in kilocalories
per mole.

Figure 6. Optimal hexamer (SiO2)6 for the TTAM model.

Figure 7. Optimal octamer (SiO2)8.
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binding energies rapidly approach a linear asymptote with
increasingn. We find that this asymptote is

when expressed in kilocalories per mole; of course it is only
defined for even values ofn.
An even simpler sequence of linear polymers is defined for

all integersn g 1 and has all silicons collinear. This sequence
begins with the monomer, the dimer of Figure 1, the second
trimer of Figure 2, and the first tetramer of Figure 3. Once
again the binding energies rapidly approach a linear asymptote
with increasingn, the form of which is now found to be (kcal/
mol)

The dimer, the first trimer in Figure 2, and the first tetramer
of Figure 4 are the leading members of a cyclic polymer
sequence. Each of these three is planar. Evidently all subse-
quent members are nonplanar in the TTAM model. The cyclic
pentamer displays a flat ring-distortion potential around the
planar configuration but is definitely unstable with respect to
buckling of one SidO unit out of the plane. The mechanically
stable form of the cyclic hexamer was found to have alternating
up and down directed SidO units. Because of the multiplicity
of the inequivalent ring distortions that are possible for larger
cyclic polymers, it is not clear that their binding energies would
approach a simple linear asymptote analogous to (4.1) and (4.2).

V. Eighteen-Molecule Clusters

One expects that the most stable structures for very large
clusters would be compact and would internally exhibit crystal-
line order. As mentioned in section IV above, the binding
energy per SiO2 unit should be approximately-200 kcal/mol
for the TTAM model;5 the extended ladder and collinear
polymers represented by eqs 4.1 and 4.2 do not come close to
fulfilling this requirement.
Even before internal crystallinity dominates the surface effects

in the optimally stable clusters, asn increases, it is reasonable

to expect that crystalline order might make an appearance among
metastable cluster forms. It was under this presumption that
we decided to focus attention onn ) 18, knowing that a more
exhaustive search over a widern range was impractical. The
specific casen ) 18 offers the opportunity to examine the
behavior of a recognizable fragment of tridymite, a well-known
silica polymorph,11with surface valences appropriately satisfied.
Figure 8 shows a tridymite-like configuration for (SiO2)18

that was created to serve as a starting point for relaxation to a
potential energy minimum. Notice the characteristic stacked
hexagons, each consisting of 12 alternating Si and O, with 3
interhexagon links consisting of additional O’s. Three additional
chains also link Si vertices of the 2 hexagons, to preserve formal
valence rules.
We found it impossible to stabilize this tridymite-like

structure. Instead, application of the optimization routines
caused it invariably to collapse to a grossly different form. This
was true even after minor readjustments of the configuration
of Figure 8 to generate alternative starting configurations for
optimization. Figure 9 shows the final result of one of these
trials, which in fact is the most stable structure found from
tridymite-like initial configurations.
In addition to the tridymite-like initial configurations, a variety

of alternative starting points for optimization were also used.
Some of these were based on the standard valence rules; others
were not. The former included nearby pairs of smaller clusters
that could interact and combine under the optimization routines.
Final binding energies for the 13 distinct cluster forms examined
ranged from approximately-2727 to-1908 kcal/mol.
Figure 10 presents the structure of the lowest-energy cluster

found forn) 18. It contains outward-pointing doubly-bonded
oxygens on its surface and an internal oxygen with no bonds
shorter than the 1.80 Å cutoff to any silicons (but at least two
bonds stretched just beyond this cutoff). This optimal (SiO2)18
is relatively compact and contains closed circuits of SisO bonds
passing through sets of 8, 10, and 12 distinct atoms.
Examination of Figure 10, with simple bond counting, reveals

a striking feature shared by the Figure 9 structure, and several
of the other lower-energy (SiO2)18 clusters. Specifically several
of the silicons appear to deviate from the formal valence+4
that was always observed in the optimal clusters for smallern.

Figure 8. Tridymite-like initial configuration used for part of then)
18 search.

∆Φ[ladder]∼ -150.463n+ 198.262 (4.1)

∆Φ[collinear]∼ -128.915n+ 133.361 (4.2)

Figure 9. Cluster structure forn ) 18, that arises from the initial
configuration of Figure 8 as a result of optimization. Its binding energy
is -2677.261 kcal/mol.
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Seven of these anomalous silicons are only singly bonded to
three oxygens (which themselves connect to other silicons) and
thus have formal valence+3; five other anomalous silicons are
also singly bonded to three oxygens but also doubly bond to a
pendant oxygen and so must be assigned a formal valence of
+5. Note that no change in the 1.80-Å bond criterion used in
preparation of Figures 1-10 could have the effect of restoring
all silicons in Figures 9 and 10 to valence+4.
We cannot guarantee that the cluster shown in Figure 10 is

the most stable form forn ) 18 or that formal silicon valences
+3 and+5 actually occur in that most stable form. However,
our search was biased toward producing compact forms as one
expects the optimal cluster to possess, and formal valence
anomalies may be a way for the system to reduce partially the
high energy cost associated with pendant doubly-bonded oxy-
gens. We suspect that indeed valence anomalies are an intrinsic
characteristic of the surface of large aggregates in the TTAM
model.

VI. Discussion

In the very large cluster regime, binding energies should be
dominated by a bulk contribution proportional ton, with surface
corrections proportional ton2/3. This suggests that the following
expression might be a reasonable choice for approximating
binding energies of the most stable clusters for all values ofn:

∆Φ(n) = A(n- 1)+ B(n2/3 - 1)+ C(n1/3 - 1) (6.1)

HereA-C are suitable numerical constants, and the coefficient
of n0 has been chosen to enforce the obvious condition that the
binding energy of the monomer vanishes. Then1/3 term may
be interpreted roughly as a curvature correction to the surface
energy.
Form 6.1 has been fitted to the∆Φ values in Table 1 by

minimizing the squared error. One finds

A) -218.9 kcal/mol

B) 154.0 kcal/mol

C) 59.1 kcal/mol (6.2)

The fit is not perfect, because the∆Φ values in Table 1 do not
display quite the smooth pattern that eq 6.1 requires; the root
mean square error is 11.14 kcal/mol. Nevertheless the results
of (6.2) seem reasonable, particularly whenA is compared with
bulk condensed-phase binding energies, as discussed in section
IV above. Furthermore, the surface energy termBn2/3 is positive
as expected, and for large spherical clusters with internal density
equal to that ofR-quartz this surface energy amounts to 1967
dyn/cm. If our tentative identification of the binding energy
of the most stable (SiO2)18 cluster were grossly erroneous, these
reasonable fitting values would have been deleteriously affected.
Our observation of formal silicon valences+3 and+5 from

elementary bond counting in the lowest-energy (SiO2)18 raises
the possibility of similar occurrences at the surfaces of glassy
and crystalline macroscopic silica phases. It seems likely that
surface reconstruction simulations using the TTAM model
would encounter significant surface concentrations of these
species, whose identification would be facilitated by mapping
positive-temperature system configurations onto inherent
structures.14-16 Possibly these anomalous valences are an
artifact of the simple TTAM model, so it is important in the
future to check for their occurrence with accurate quantum
mechanical calculations.
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Figure 10. Structure of the most stable (SiO2)18 cluster found in the
search.
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