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A b s t r a c t

Using a compntationa,l pmcrdwre  that imitates tightening of an assembly of
billiard balls, we have generated a number of packings of 1~ equal and non-equal
disks in regions of various shapes. Our experiments are of three major types. In the
first type, the values of n are in thousands, the initial disk configuration is random
and a priori one expects the generated packings to be random. In fact, the packings
turn out to display non-random geometric patterns and regular features, including
polycrystalline textures with “rattlers” typically trapped along the grain boundaries.
An experiment of rhe second type begins with a known or conjectured optrnal disk
packing configuration, which is then “frustrated” by a small perturbation such as
variation of the boundary shape or a relative increasc  of the size of a selected disk
with respect to the sizes of the other disks. WC prcacnt  such frustrated packings for
both large n (- 10,000) and small vz (- 50 to 200). Motivated by applications in
material science and physics, the first and second type of experiments are performed
for boundary shapes  rarely discussed in the literature on dense packings: torus, a
strip cut from a cylinder, a regular hexagon with periodic boundaries. Experiments.
of the third type involve the shapes popular among mathematicians: circles, squares,
and equilateral triangles the boundaries of which are hard reflecting walls. The
values of n m these experiments vary tiom several tens to few hundreds. Here the
obtained configurations could be considered as candidates for the densest packings,
rather than random ones.  Some of these conjecturally optimal packings look regular
and the regularity often extends across  di&reul valuca  or 1~.  Specifically, as n
takes on an increasing sequence of values, n = n(l), n(Z), . ..n(n).  ..,,  the packings
follow a well-defined pattern. This phenomenon is especially striking for packings
in equilateral triangles, where (as far as we can tell from our  finite computational
experiments), not only are there an infinite number of different patterns, each with
its own different sequence n(l), n(2), . ..n(L).  . . . . but many of these sequences seem
to continue indefinitely. For other shapes, notably squares and circles, the patterns
either cease to be optimal OI  even cease to exist (as  packings of non-overlapping
disks) above some threshold value n(ko)  (depending on the pattern). In these cases,
we try to identify the values of n(ko).

Mathematics subject classification numbers, 1991. Primary: 52C1.5.  Secondary:
05B40.

Keu  wordr nn.d  $~roer.  Simulated billiards, random and tight packings, polycrys~
tall+ rattlers, frustration.
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1.  Int roduct ion

Packings of non-overlapping disks or cylinders cm be mechanicall~y  generated
by t,ightening the container boundary [Rj. A variant of this procedure has been im-
plemented on a computer [L] as B discret,e  event “billiards” simulat,ion algorithm.,
Rather t,han  shrinking the container, in the billiards simulations we uniformly cx-
pand the disks. While growing, the disks negotiate the available area. They chaot-
ically push each  other imitat,ing the dynamics of elastic collisions. One expects to
arrive at, a packed configuration when no further growth is possible.

The tool was developed  and first, exercised in settings where a typical num-
ber n of disks involved was is the thousands [LSSO].  The intent in [LSSO]  was to
sample random particle configurations in 2D (disks) and 3D (spheres).  One would
expect the resulting packing to be random because the procedure  in [L] involves
subst,antial randomness and irregularity and  also because the relat,ively  large num-
ber of particles presumably precludes establishing a global order. R.andomly  packed
spheres in 3D may be advanced as reprcsent,ing  the short-range atomic order that
exists in amorphous solids, while the disks packed in 2D model the arrangement,s
of particles adsorbed on smooth surfaces and monolayer colloidal suspensions. Ac-
tually, the packings gcneratcd do not look random. They display, especially in 2D,
many regular features and patterns, including polycryst,alline textures with loose
“rattler” particles which are trapped along the grain boundaries. The (visually
assessed) degree  of regularity in such a packing depends on the speed of disk ex-
pansion. Sufficiently slow expzmsion  often yields packings of a high regularity some
of which might be even conjectured as optimal, i.e., as having the largest possible
disk diameter, given the 7~ and the boundary shape. This is a remarkable fact in
view of thousands of part,icipating disks itnd  local chaoticity of t,heir  motion while
producing the packing.

In the random packing experiment,s  t,he init,ial disk configurat,ion is random
and disk expansion begins with disks of zero  dim&m.  WC  also present a different
type of experiment where  t,he expansion begins with an a priori regular and/or
optimal disk configuration, rather than a random one. A L‘frustration”  is introduced
by varying tither the boundary conditions or disk sizes and arrangements are made
to let disks grow a little more.  The expanding disks try to compensate for the
imperfection. As before the expansion stops at a “‘jammed”  state with “cracks” and
dislocat,ions  caused by frustration. It turns out that when the expansion is slow, the
structure of the cracks and dislocations is quit,e  regular, and it depends very much on
the boundary conditions. We present such frustration experiments for squares and,
rectnngles with periodic boundaries (i.e., a torus), for a,  hexagonal boundary with
appropriate periodic boundary conditions, and for a rectangle, two opposite sides of
which are “glued” (this makes a strip cut from a cylindrical surface). The number
of disks in the frustration experiments vary from about 10,000 in the impurity-
perturbed crystal experiments where we increase the relative size of one disk [SL95]
to under 100 in experiments where we perturb the boundary shape.

We also exercise the same billiards algorithm for small numbers of disks (n of
the order of tens to few hundreds) to see how the algorithm performs in the popular



problems  of finding best packings in circles, squxrs,  and equilateral t,riangles.  IJ~-
cause the intent here  is to produce possibly more  regular packings, hoping perhaps
to reach the density maximum, the disk expansion speed is set at the lowest possible
level  at which the emergence of IIK  packings is not intolerably slow computational-
ly. The packings obt,aincd  by the billiards algorithm compare very fa,vorably  with
those report,ed  in the literature obtained using other m&hods,  see [GMPW] [Gl
[MFP] [NO] [IL] 15711  15791  [VI.  Tl II: dlgwilhm IIOT  only confirms almost all reported
packings but also produces many more  packings, some  wit,h interesting patterns.

Sometimes the same p&tern  recurs as the number of disks n increases along
certain sequences,  n -  ,7*(l),  n(2),  +.:ft,(!c),  ..,, wit,h different patterns corresponding to
different sequences. The case  for packing n(k) = k’ disks in a square is presented in’
[NO], where it is found that the obvious square pattern, while known or conjectured
to be optimal for ‘n =  1,4,9,  lG,Xi, awl 36 disks, becomes non optimal for n =
IcO’  = 49 disks. A disk-packing of 49 disks is presented in [NO] with density higher
than that of the corresponding square packing. We repeat the sivmc  steps for the
other regular pbtte~us  of packings in a square identified in [NO] and [GL96]  and also
for the patterns identified for packings in equilateral triangle [GL95] and in a circle
[GLNO]. In square and circle  sequences of packings, the same pat,tern  seems always
to terminate,  eventually, i.e., Cur  racb  such sequence  n(k) a threshold value n(k(,)
exists such that t,he packings of t,hr  pattern &her  are  not optimal for n 2 n(ko),
or the pattern cannot exist as a packing of non-overlapping disks. However, for
packings in equilat,cral i.~ianglea  uue  regula  pat,tern  hexagonal packing of  n(k)  =
k(k  + 1)/2  disks is known (proven) to exist and be optimal for all k.  We have
conjrxturdly  identified an infinity of such regular patterns since for none of them
were WC able Lo find llie  yatlelll-lerlllillitlirlg  threshold.

2. Using billiards simulation to generate random packings

Figure 2.1 illustrates the work of the billiards simulation algorithm while
packmg  XJUIJ cqnal  disks in a square with periodir:  boundary (torus). The initial
stage at time t = 0 is represcnt,ed  on the top  squxe in the figure where  2000 points
are randomly scattered. To each point an initial velocity vector is randomly assigned
(not shown). Some points lie outside the square; t,hey are periodic images of the
corresponding points inside. When t > 0,  the points grow into disks, and all disks
at each  time t have common diameter d = Et. The growth continues until the
configuration “jams,” at which time we expect to have a packing.

At t = 0 disks do not overlap  bccausc  t,heir  sizes are zero. For t > 0 disks
moves along straight lines wit,h given velocities; their motions may conflict, with each
other. At an instance of such a two-disk conflict,, wc simulate an elastic collision
of these disks assuming their masses arc  equal. At a collision both disks change
their velocit,y  vectors so as to exchange moment,&  and energies according to knowu

‘The only exception  is the packing of 21 disks in a square for which [MFP] provides
the disk diameter  0.27181675.
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mechanical laws~ Note t.hat  t,hn evohltion of the disk ronfig~~rn,t,inn  does DO+,~  rha,ngr
if we proport,ionally change both the disk expansion speed and linear disk velocities.
We normalize the simulation input by assuming the unity mean initial disk velocity.

Increasing the size of disks introduces additional energy n,t collisions, which
may cause the system to “overheat” computationally, i.e, to overflow, especially, if E
is large. Another drawback of the “heat,ing”  is that incrcasr over  time of the average
disk velocity is equix&nt to the decreass ofE. Such uncontmllahle redurt,Lm ofX is
undesirable because  as the experiments show the resulting configuration is sensitive
to E during the cntirc expansion process and we would not be able to study the
dependence  of the resulting configuration on large E if moat of the events occur



under effectively small E. WC “drain” the excessive “heat” by periodically stopping
the run and scaling down the velocities of all the disks.

The main processing load of the simulation algorithm is in locating and pro-
cessing disk collisions. It takes roughly the same computing time for processing the
same number of collisions independent of t,he packing phase. (When disks are very
small it takes somewhat longer to process a collision than when they are  larger,
but this deviation from uniformity is insignificant because the initial phase is pro-
cessed very fast.) The collisions become more frequent as the disks grow. Thus,
it takes almost 10 times longer to reach the configuration at time t = 3.39 (the
bottom square in Fig. 2.1) than that at time t = 2.95 (the middle square in Fig.
2.1). As the configuration is approaching a packed state in a finite simulated t~ime  to
with final disk diameter do  = Eta, the processing time diverges. Computationally,
we may never reach time to. Roundoff complicates the situation further. Strictly
speaking not only are we unable to say that what we see on the final L‘jammed”
picture is a rigid packing (not to mention its possible optimality), but evcm  that
the configuration presented really exists as a set of non-overlapping disks. Thinking
about the statement “the configuration shown on the diagram exists” one  realizes
the difficulties even in assigning a precise meaning to it.

In t,he present, paper we do not discuss these difficulties, as that would lead
us too far from the main goal of presenting the experimentally achieved packings.
Some methods of convincing oneself of the existence and rigidity of a shown packing
are briefly discussed in [GLNO].  As a practical matter, we stop an experiment
and consider the configuration as a complete packing when during, say, t,he last
10,000,OOO  collisions we det,ect  no visible change in the structure and the relative
disk diameter increase is less than, say, lo-“.

We use algorithm [L] for locating and processing the collisions. The algorithm’
is event  driven and seems  rather efficient. With this algorithm, all the packings de-
scribed below are computationally within the reach of a modern personal  computer.
For example, each  packing presented in the next section can be achieved within
several  hours of processing on a PC.

3. Random packings in a square with periodic boundaries

A number of packings have been produced by randomly varying initial con
figuration of points, their initial velocity, and the expansion speed E. Stepping
through the sequence of packing diagrams in Fig. 3.1 to Fig. 3.5 one notices the
increase of regularity of the packing a,s  expansion speed  changes from E = 100 to
E = 0.001. For large E the pat,tern  is a combination of hexagonally packed frag-
ments, “grains,” with each grain having generally different orientation. Irregularity
concent,rates  along the grain boundaries, as do the “rattlers,” t,he disks tha,t  a,re  not
rigidly fixed in their positions but trapped in the cages formed by their fixed rigid
neighbors or boundary walls if any.

The size of the grains increases (and their number for a fixed n dccrea,scs)  asp
the E decreases. For a sufficiently small E, a single hexagonal “crystal” emerges.
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Fig. 3.1. A packing of 2000 disks in a square with periodic boundary. The packing is
obt&rd  undm  iz  fast disk expansion, E = 100.  TIM  packing consists of wystallinr  grains
Wifh  many rattlers  represcm!d  a”? unshadad  clinks  Luncentrated  dong  the  gruli,,  boundacx
Monovacancies  occur within the  hexagonally packed  grains.
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Fig. 3.3. Another packing of 2000 disks in a square with periodic boundary.  The packing
is obtained under a moderate disk expansion, E = 1.  Besides  crystalline grains and rattlers
it also dis&ys  shear fractures.

Fig. 3.4. A packing of 2000 disks in a square  with periodic boundary. The  packing is
“htained under a slow disk expansion, E = 10e3.  The  cntirc  structure is oriented along
the same  axes, it includes shear fractures and two perfectly  packed triangles at the right.
A sin& monovacancy  is seen hut no rattlers.



The array of hexagonally packed disks contains interesting st,ructural devia-
aims and insertions. Sometimes the symmetry of the packing coupled with the high
value of aczhicved  density suggests  that perhaps we have achieved the optimum, as
might be the case  in Fig. 3.5.

Fig. 3.5. .Anothor  packing of 2000 disks in x squxrc  wit:11  pwindic hnrrda,ry  obtained
under a slow disk e.upansion,  E = W3. If tbo monovacancy  near tbr centrr  is filled  with
tbr 2001;sl  disk, the obtained packing seemingly  bcmmes  perfectly  syrnrnctric.  Might
that be the best packing of 2001 equal disks in a squara  with periodic boundary? 1i.s
cxperimcnt~ally  computed density (wtwn tbo 2001.th  disk is inserted) is 0.901635...

4. Frustrated packings

66  equal  &&a  stacked  hcxagondy  in 8 alternating  columns, 7 disks in  a column,
constitute the best packing in a reclangle with periodic boundary conditions if the ratio of

the height of the rectangle to its width is a = 1.01036...  We frustrate the packing
Ly increaning  the widih of ihe rectangle and malt&~  it equal  to the K&t.. In the mw
shape, previously jammed disks become loose (WC help to loosen the disks by reducing
them slightly). They can grow further to exploit the extra space. We provide the disks
with random initial velocities in the usual manner. As the disks grow, a new jamming is
achieved with a larger disk diameter.

We repeated this experiment several times, each time starting with a different  as-
signment of initial disk velocities. Many  runs  achieved  the highest density and they all
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Fig. 4.~  The best found packmg  of 36 chslts  in a squxc with periodic boundary conditions.
(The square perimeter is dashed).  Pairs of disks that are in contacts are indicat,ed  by line
segments  connecting their centers. Triangles formed  by such lines  an: shaded Tha shading
hclpa  to sac tha StnlCturC  of the p&<:killg:  the pihlic ia tikx1 Wil.,, 4 n 7 bl”d4h,  GiLi, ihck
leaving  pattern “‘Z,” shaded on it. The density of the packing is 0.898059501...

ended with  the final configurat~ion  that is shown in Fig. 4.1. Moreover, the best pack-
ings found, if we start with zero initial disk diamcrcrs,  arc also identical to the packing
presented in Fig. 4.1 which we hence  con,jectur~  to bc the optimum.

To better see the structure of the packing in Fig. 4.1, the centers of disks t,hat
contact each other are connected by straight lint scgmcnts. Computationally, two disks
ae declared as being in contact if the distance between their centers  does nnt exceed
rl(1  + lO-I’),  where d is the disk diameter. For comparison: the distance between the
centers of any pair of disks that are not in contact in this packing is larger than d(1+10K5).
Some  of the connecting  segment~s  form triangles and all such triangles are shaded. With
the shading one easily  sees the structure: the tlhng of the plane by center-symmetric 4 x 7
blocks, each block having pattern “‘2,” shaded on it.

Another example of a frustrated packing, also canjccturally optimal, is prcsentcd
in Fig. 4.2. To gcncratr this type of packing WC skiid  wilh Lwu puaitive integers Ic and p,

k = 7 ad  p = 4 in the example, and form a rcctanglr with width .$o  and  height;  kJ@  + I.
Assuming the top and bottom side of the rectangle are reflecting walls while left and right
side 31re  +d with  the ScIrnC  orientation, WC obtain, *a LhC buundary c”ndition, d strip
cut from a cylinder. We place plc(li  + l), here 224, unit diameter disks inside this strip
in a perfectly hexagonal order. The placement contains I;  + 1 alternating rows with pk
disks in each. This conjecturally optimal packing is frustrat,ed  hy iwrnasing t,he widt,h
of the rectangle. As before the structure of the frustration is “developed” by letting the
disks grow until they jam again. The best packing thus obtained is a set of 2p alternating
triangles with k disks on their sides, as seen in Fig. 4.2.
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Fig. 1.2. Tha  best found packing of 224  disks in a strip with top and bottom sides reflecting,
and left and right boundaries periodic. The  ratio of the height to tha width of the strip
is 0.2165063509461...  which corresponds to values k = 7, p = 4, u = ii/6 in formula (l),
where  a is the a,ngle at disk A in the triangle formed by centers of disks A, B,  C.

The magnitude of perturbation to the original strip can be quantified by angle cy  at
disk A in the triangle formed by centers of disks ‘4,  8, and C as labeled in Fig. 4.2. If
o<or-5, the hoi&t-to-width ratio of the rectangla is

(1)
(k-l)$+l+sina

(h+2cosu-l)p

For two extremes,  cy  = 0 or a = g, the configuration is a hexagonal packing. Specifically it
is the packing with k+l rows, pk disks in each, for a = f. We have started the experiment
with this packing which WC have frustrated by increasing the width of the strip. WC could
have started with the other extreme,  the packing with  k rows wjth  p(Jz  + 1) disks in each,
for LY  = 0, and increa..ed  the height, The  result would have been the same.

Several  sets  (k,p,  a) have heen  tried. ‘I’he  best found packmg  has always had the
pattern as described above. If somebody can present an instance of (k,p,  a) as described (k,
p positive integers, 0 < (Y < I) and pack plc(lc  + 1) disks in a strip with the height-to-width
ratio as in (1) better than the packing we describe, WC woulcl bc surprised.

In the following two examples of a frostration we increase  the size of a sin& disk.
Specifically we begin with a perfectly hexagonally packed configuration of disks of unit
din,mrter  ea,ch.  \Ve  uniformly decrewc  the size of all the disks but, one.  The diameter of
the latter is increased. Let the diameter of the smaller disks become d and that of the
larger  one (1 + X)d.  The d and X are chosen so that (2 + A)d < 2, which assures initia1
non-overlap of the disks. In the usual manner random initial velocities are assigned to the
disks and then the disks grow until they jam. At any time during the expansion the ratio
of the larger disk diameter to that of the smaller ones remains fixed  at 1 +X.  The value of
d < 1 must be sufficiently large  and the value of X > 0 sufficiently small so as to prevent
“melting” or “forgetting” fhe pattern in 01e process of the chaotic  disk ucgolialions. Tlrr
sot of such admissible (d, X)1s not empty, but it depends on the number of disks n and the
boundary shape.

We erpurirrrentod  with two regions: a rectangle with both periodir  honndarira
(torus), and a regular hexagon  where each of the three pairs of opposing sides are “glued”
without orientation change. The latter boundary condit,ions  arc illustrated in Fig. 4.4 in
the box at the right top comer,  where a fragment of the infinite plane tiled with hexagonal
cells is shown. Each cell is a periodic irnagc  of the same cell. In particular, all points
labeled a are the periodic images of each other; so are the points labeled b.

For the rectangle: the height-to-width ratio of a hexagonally packed configuration
with 112 alternating rows, 97 disks in a row, is G = .999946X579779...  so we
choose the rectangle with such ratio, as it closely approximates a square, and we place
hexagonally 10,864 = 112 x 97 disks in it, For the hexagon:  31c2  equal disks can be placed
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in a regular hcxagon  in the optimal arrangement (hexagonal packing) for the described
above periodic boundary conditions; we take k = 60 and use n = IO, 800 disks. When
d = 0.999 x &, for the chosen values of n, melting does not occur in our experiments for
X = 0.2 in the hexagon and A = il.1 m the rectangle.

Fig. 4.3. Displacement vectors of centers of 10864 disks packed in a rectangle with height-
to-width ratio close to 1 as described in the text. Boundary conditions are periodic. If
all disks were of the same  size (“pure” crystal), the packing would be perfectly  bexago~~~l
ML,, 112  IOWi, nud  97 diaka  in a IOW. DiS,,l”“““‘“‘Lh  li”lll Lhib p”‘kL “LLh ale ciluacd  bj
the central “impurity” disk being 10% larger than the others.  Displacement vector of the
contra1  disk is 0 by definition, each other displacement vector bcgins  at the perfect order
pnsitinn  2nd its Imp;th  is mag”:nifird 30 fold tn rnhance thr recotution

We have tried several methods of enhancing visually the structure of the frtistration
obtained. The best method seems to be displaymg disk dlsplacemcnt~s.  Bach disk has
the “ideal” position of its center po in the original non-frustrated packing and the final
position of the center pl in the frustrated packing. Vector p1 - ~0 is thr displacement.
Accumulntiorr  of the roundoff  error  may  CaUaC the entira configuration to shift during the
expansion. We “calibrate” the displacement vectors by subtracting from each of them the
displacement of thr larger disk. The latter displacement becomes zero by definition. Thus
calibrated displacement vectors are shown in Fir. 4.3 and Fig. 4.4 originating at point po
and magnified in length 30 fold in Fig. 4.3 and 20 fold in Fig. 4.4.

We havr performed saveral  experiments with the same parameter values  and bound-
ary conditions but diffrrcnt  initial velocities of the disks. The result,ing  samples of the
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Fig, 4.4. Displacement vectors of centers  of 10800 disks packed in a regular hexagon.
Boundary conditions are periodic as shown in tha right top cormz box where the same
letter, a or b, marks identical point,s. If all disks wore of the fame size (“pure” crystal), the
packing would be perfectly hexagonal. Displacements from this perfect order are caused
by the  central ‘%npurity”  disk being 20%  larger  than the 0th~~. Displacernenc  veclor  UI
the central disk is 0 b,y definition, each other displacement vector begins at the perfect
order position and its length is magnified 20 fold to enhance t,he resolution.

frustrated packing are different in small details (and, expectedly, some  differ in orientation
wit,h  respect to the boundary), but, on a large scale,  thay exhibit the same  “crack” near
the contra1  large disk and the SBIM!  iuraytys  of diaplacemenl  v~clors.  WC auspecl  Iha(. Lhe
optimal packings under those conditions would look roughly the same  when considering
them on a large scale. Not,r that disk expansion speed E is kept at the lowest tolerable
levci  E - lo-’  to lO+  in those experiments.  Substantial increase of E also substantially
changes  the  final packing pattern and substantially reduces  thr density of the packing, see
[SLSS].

5. Repeated patterns in packings in equilateral triangle,
scpare,  and circle with hard walls

It has been established [0] [FG] that the best packing of A(k) = li(k + 1)/Z equal
disks in an equilateral triangle  is the hexagonal  arrangement and that the optimality  holds
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for all Ic  = 1,2, Are the triangle numbers A(k) the only such lucky seqncnce?  We
conjecture the existence of an  infinite  numbcr  of such scquenccs.

Fig. 5.1. The conjectured densest packing of nP(li)  = 256 disks inside an equilateral
triangle,  where  p = 5 and k = 3, ad where rip(k) is d&led  by formula. (2). The dc,lsrsL
packings of n  disks for all checked values of the form n = n,(k),p = 1,2, . . . . Ic = 1,2, . . . .
have  this pattern consisting of one  triangle of side (rC + l)p - 1 and 2p  + 1 alternating
triam&s of side h wit,h  p - 1 rattlers  that are “falling  off” thr ln,rger  trin,n+

For each p = 0, 1,2, ,.. consider sequence

(2) rip(k) = A(@ + 1)~ - 1) + (2~ + l)A(/z),  k = l,Z,

For p = 0 sequence  (2) is identical with the sequence of triangle  numbers A(k) with known
optimal packings. For each p > 0, we  conjccturc  thr optimal packing of n,(k) disks as the
pattern  that consists of n - p + 1 solid disks and p - 1 rattlers; it includes one triangle of
side (rC + 1)p - 1 and 2p + 1 alternating  triangles of side Ic  each as shown in Fig. 5.1 for
the case p = 5 and Ic  = 3.

Suppose we rearrange the pattern in Fig. 5.1 by pushing the alternating triangles
A(k) into their proper place in t,hr would-bc perfect hexagonal order. We would align
0115  trian$r  hfkl  a‘ldlel  working, bay,  f‘~“l,l bR  t” right. Al l,,,a  eul of Ch,! pruccdure
extra  space would emerge at the bottom of the triangle,  on top of which we would have  a
triangle hexagonally filled with A((lc + l)(p + 1) - 2) disks, and k disks would be pushed
off out of thr right airk  hnnndary~  It followi  (and can he easily  verified independently  of
this rrarrangement  argument) that nP(le)  of the form (2) can also bc w&ten  as

(3) rip(k)  = A(@ + I)(P + 1) - 2)  + Ic
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t16a33.1
density  = “.718174807623

t16a33.2
densi~~=0.718174807623

Fig. 5.2. Two equivalent best found packings of 16 equal disks in an equilateral triangle.
Little black dots indicates contacts. Integer labels 1,...16 are assigned so that disks that
occup,y similar positions in both packings have the same label. The  only diffcrcnce  betwcw~
the packings are positions of disks 2, 3, 4, and 7.

Thus, the dense packing of n,(k)  disks can be considered as a frustration of a perfect
hexagonal crystal of a((!~  + l)(p + 1) - 2) disks packed in an equilateral triangle when
k disks are added to the packing. Our experiments reveal other patterns of frustration
when  we add extra disks to an otherwise perfect hexagonal packing of A(n) disks  in an
equilateral triangle. For example, supposc  we add just one extra disk to A(n) disks. For
even n = 2~ the generated packing is of the form just considered, since A(2p)  t 1 = rip(l).
For “dd n = zp + I, we ha”” a SOmcWbat differenl p”lLcin which cxiats  and iJ optimd for
all sufficiently large p (as far as WC have checked experimentally). The complications exist
on the initial segment  ofp. Fig. 5.2 presents two equivalent hcst  packings of 16 = A(5) +I
disks (p = 2). Similar disks are lahelod using the same  integer indiccs  to emphasize the
similarity and differences  in the patterns. Little black dots indicate contact points, and
each packing in Fig. 5.2 has 33 contacts. The  label provided with each packing is inherited
from [GL95] where such labeling is essential to distinguish among the many packings
presentad.

As far as we have checked, the same  two optimal equivalent modifications exist  for
p 2 5 (n = 67,92,121...).  Fig. 5.3 prcscnts  one of thcsc  two best packings for n = 67
(labeled t67a161.2 to conform with labeling in [GLSS];  it ha 161 contacts), the o~hsr ~(1
also exists and has the same quality. The  next beat packing (labeled t,67b) is also shown in
Fig. 5.3. It appears in our experiments that patterns as in t67a161.2 and in t67b  coexist for
p ;‘ 3 and together L11c.y occupy the places of the Lent and noxt~best  packings. However,
the pattern of t67a161,.2  is not always better than that of t67b.  For 1~ = 29 (p = 3)
and n = 46 (p = 4) the pattern as in t67b  wins over  the p&tern as in t67alG1.2  and its
equivaient  modhicatinr,

The shape of an equilateral triangle conforms to the task of dense  packing of equal
disks in that the optimal packing of a “natural,” i.e., a triangle number n of disks inside
this sha,pe is a fragment  of the optimal packing on thr infinit,c  plant. Our experiments
show that even for “non-natural” numbers of disks 7~ certain fragmented and frustrated
variants of the basic hexagonal packing apparently may exist for infinite sequences  of n,.

Given any k > 0 WC can place Ic2 disks in a squuare  in the k x Ic  orthogonal fashion.
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Fig. 5.3. A best and the next-best found packings of 67 equal disks in an equilateral
triangle. As in Fig. 5.2, littlr black dots indicat,c  cont,acts.  16 disks in the lower right,
corn‘x  in b”Lh  ,mkiirg” aLa hb” labeled with indices  I,... 16. The disks with the same
indices on both diagrams occupy similar positions and their position is also similar to the
that of disks in Fig. 5.2.

This is a “natural” square packing in the same  spirit as hexagonal disk arrangement yields a
natural packing in an crluilateral triangle. Unlike the triangular packings, square packings
become non-optmal for a suficicntly large k. The shape  of a square does not conform
to the task of best packing. The natural square  packing is not a fragment of the @ima
packing on the infinit,c  plane. What WC obscrvc  im the best found packings in the scpx~re,
csr,  bc dc;;cribcd  OS iLn intcrphy bctwccn  two patterna. ayuiLre ad henag”nal. Wr a
sufficicntl,y  large number of disks n the hexagonal pattern becomes dominant. With the
billiards simulation algorithm wo were able to examine details of this interplay for small
n.

The following sequcnccs  were recently idcnt,ified  as candidates for pattern repetitions
(see [NO] [GLSG]):  k2 - 3, k” - 2, k2 - 1.  These are “frustrations” of thr “natural? square
pattern. Se~wnccs  k(k  + 1) and k’ + Lk/2] were also idcnt,ificd;  they can be considered
as “frustrations” of a hexagonal pattern ad,justed  to the square boundaries.

Sc~ucnce  k2 - 3 yields optimal packings of the pattern exemplified in Fig. 5.4, top
row, by its two rnernbcrs  at k = 5 and Ic = 8. The pattern has both square and hexagonal
elements in it. For Ic  = 9, while the packing  of the pattern still exists, it is possible  to find
a better packing.

Sequence  k” -2 yields optimal packings of t,he  pattern exemplified in Fig. 5.4, middle
row; by two cquivdcnt packings at Ic  = 6. Different  equivalent pzkings, lulal UT hx for
k = 6, can  be obtained by differently inserting two hexagonally arranged rows and two
columns (lighter shaded)  among Ic - 2 rows and I;  2 columns arranged in the square
orthogonal fashion. Only one other mnmhrr of t,hr srq~~~nw,  for L = 5; is optimal when
having t,his pattern For k = 7 n better packing of a different pattern exists.

Sequence /x2 -1 yields optimal packings of the pattern exemplified in Fig. 5.4, bottom
row, by two equivalent packings at k = 6. Different equiwlcnt packings, total of three for
k = 6, can be obtained by differently inserting the shorter row and the shorter column
(lighter shaded) among k - 1 rows and Ic  - 1 cohlmns  armnged in the square  orthogonal
fashion. There  also three equivalent, packings of this pattern far k = 5, and one packing
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22 disks
density = 0.771680112098

34 disks (2,5;2,5)
density = “.776649M43??

61 disks
density : 0.801174124593

34 disks C3..5:2.4)

35 disks (3.3)
density =“.78,227212999

FiE. 5.4. Best found packings of equal disks in a square. Top TOW:  first (rC  = 5) and last
(rC  = 8) members of sequence  I;” -3. The packings consist, of a heavier shaded (k-3) x (k-3)
square  packing in the bottom left comer  and three lighter shaded alternating rows and
columns and one unshaded rattler. Middle row:  two out  of four existing best, packings of
34 disks, a member of sequence  Ic”  - 2 for li = 6. Each packing comists  of a (k - 2) x (rZ - 2)
heavier shaded square  pattern with two lighter sbadcd hexagonally arranged rows and two
columns. Two pairs of insertion indices identifies a pa<:king.  Bottom TOW: two out of three
cxia‘iup  bash ,mckiug  or 3:, di&, a ~ncubr~~  oT  auqueuce  ,+’  - 1 I”“,  t - IG. Cad~ pa&ing
consists of a (k- 1) x (k - 1) heavier shaded square pattern with me lighter shaded inserted
row and one column. A pair of insertion indices identifies a packing,
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10  disks
densky  = 0.679410175949

not the best packing

10 disks
density = 0.690035785264

18 disks
dcnsity=0.754653357876

56 disks
density = 0.8023S1729Sl3

52 disks
drnaity  - 0.822530842068

Fig. 5.5. Members  of sequences  Ic(rC  + 1) (56 disks) and k2 + [Ic/ZJ  (5 , 10, 18, and 52
disks). Optimal packing of 10 disks (middle row, left) does not follow the cornmom pattern
of the latter sequence.  The inferior  packing of 10 disks that follows the pattern is also
shown (top row, right)

for each of Ic  = 3 and k = 4. For k = 7 a better packing of a different pattern exists.
Sequence k(k  + 1) yields the pattern with k + 1 alternating columns of k disks in

each as an optimal packing for k 2 4. The pattern is an adjustment of the hexagonal one
for the square boundary. The pat,tern  becomes non-optimal for k = 8, if we compare its
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qualit,y  with the best packing of 72 disks obtained in our  experiments. In Fig. 5.4; bottom
row, right, appears the last member of this sequence,  which is still apparently optimal.

Fig. 5.6. Left: best found packings of 3k(k  + 1) + 1 equal disks in a circle for Ic  = 1, 2, 3,
4, and 5. Right; best found packings of 3k(k  + 3) + 1 equal disks in a circlr  for L = 2, 3,
and 4 and the highest obtained density configuration of 121 disks (k = 5).

Sequence kZ + LAz/Z]  demonstrates a different  way of adjusting a hexagonal arrange-
menl I,”  he aqueue  bou,,dary with h + 1 alternnting columns whose length sltornatea also.
The pattern begins as optimal at Ic  = 2, then for the value Ic = 3 its optimality is prcempt-
ed by a different, pattern and then is resumed a3 optimal for Ic  = 4 and continues as such
for k = 5, 6, and 7 The wl.&w gap brtwren consecutive disks in columns dccreascs  (for
exampla the gap between disks 1 and 3 in the packing of 5 disks, or between disks 1 and
7 in the packing of 18 disks) with the increase of Ic.  For Ic > 7 the gap becomes  negative,
i.e., disks in t,he configuration constructed according to the pattern overlap.



As in the cast  of a square, a circle boundary shape does not conform to the hexagonal
disk arrangement,.  Unlike the case of a square  or equilatsxal  triangle, no obviously “natural”
packirw  of equal disks has been proposed. Perhaps, the curved  hesagonnl  packings [LG95]
can br taken as such. Fig. 5.6 shows five curved hexagonal packings (left column) which are
also the best  packings found in the experiments. There is a well-defined synthetic method
to arrive at a curved hexagonal packing of 3k(k + 1) + 1 disks for any Ic  Z 0 as described
in [LGSS].  Exact positions of disks can be computed as well as disk dmmeter  and density.
(Ic  - 1)!/2 different equally good curved hexagonal packings are known for k >_ 4. Thus,
there are three different equal quality such packings for n = 61 disks and 12 packings for
n = 91 dlshs.  Fig. 8.0  pr~raenla  uuly  out  of these for each 11.  In our experimenta  we found
a packing for 127 disks (k = 6) that, is bettor than the corresponding curved hexagonal
packing.

The  right  cnhmn  in Fie  5 6 presmts best  found  pxkings for the sequence  3k(k +
3) + 1. Those demonstrat,e  a different  way of adjusting hexagonal packing to the circular-
wall boundary conditions: hexagonal “core” and some loose disks on the  periphery. For
the specific n = 31, 55, and 85 the  adjustment,  produces perfect six-fold symmetrical
patterns as the (conjectnrally)  best packings. The p&tern apparently  is trying to realize
itself for n = 121 (k = 5) but we have  not been able to generate  a clear-cut packing: the
resolution required is higher than the one offered by the double precision, i.c., with r&tive
error of the order  of 10 “. The algorithm stalls in this configuration  without advanring
further the time and the disk expansion,  and for several  pairs of disks we  do not know
whether or not they are in contact. Perhaps if t,he computations were  done with a hi&w
precision the best packing of 121 disks could bc obtained by a small additional growth of
disks st:arting from the presented configuration Packings of 31 and 55 disks car,  be easily
constructed looking at their diagrams, including contacts, and their parameters can bc
easily  calculated. (Such synthetic construction also prows their existence). The  density
computed in the simulat:ion  of the  pxkcking  of 85 disks is 0.82293502752... and that of the
presented configuration of 121 disks is larger  than 0.82305172.
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