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PATTERNS AND STRUCTURES IN DISK PACKINGS
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Abstract

Using a computational proeedure that imitates tightening of an assembly of
billiard balls, we have generated a number of packings of n equal and non-equal
disks in regions of various shapes. Our experiments are of three major types. In the
first type, the values of n are in thousands, the initial disk configuration is random
and a priori one expects the generated packings to be random. In fact, the packings
turn out to display non-random geometric patterns and regular features, including
polycrystalline textures with “rattlers” typically trapped along the grain boundaries.
An experiment of the second type begins with a known ©r conjectured Optimal disk
packing configuration, which is then “frustrated” by a small perturbation such as
variation of the boundary shape Of a relative increase of the size of a selected disk
with respect to the sizes of the other disks. We present such frustrated packings for
both large m (- 10,000) and small » (- 50 to 200). Motivated by applications in
material science and physics, the first and second type of experiments are performed
for boundary shapes rarely discussed in the literature on dense packings: torus, a
strip cut from a cylinder, a regular hexagon with periodic boundaries. Experiments.
of the third type involve the shapes popular among mathematicians: circles, squares,
and equilateral triangles the boundaries of which are hard reflecting walls. The
values of 78 1 these experiments vary from several tens to few hundreds. Here the
obtained configurations could be considered a8 candidates for the densest packings,
rather than random ON€8, Some of these conjecmrally optimal packings look regular
and the regularity often extends across diflereul values ol . Specifically, as n
takes on an increasing sequence of values, B = n(l), n(Z), . ..n(k), «y the packings
follow a well-defined pattern. This phenomenon is especially striking for packings
in equilateral triangles, where (as far as we can tell from our finite computational
experiments), not only are there an infinite number of different patterns, each with
its ownt different sequence n(l), n(2), . ..n(k)) . . . . but many of these sequences seem
to continue indefinitely. For other shapes, notably squares and circles, the patterns
either cease to be optimal OF even cease to exist {388 packings of non-overlapping
disks) above some threshold value n(kn) (depending on the pattern). In these cases,
we try to identify the values of 'ﬂ{ku)‘
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1. Introduction

Packings of non-overlapping disks or cylinders can be mechanically generated
by tightening the container boundary [R]. A variant of this procedure has been im-
plemented on a computer [L] as a discrete event “billiards” simulation algorithm.,
Rather than shrinking the container, in the billiards simulations we uniformly ex-
pand the disks. While growing, the disks negotiate the available area. They chaot-
ically push each other imitating the dynamics of elastic collisions. One expects to
arrive at a packed configuration when no further growth is possible.

The tool was developed and first, exercised in settings where a typical num-
ber n of disks involved was is the thousands [LS90]. The intent in [LS90] was to
sample random particle configurations in 2D} (disks) and 3D (spheres}. One would
expect the resulting packing to be random because the procedure in [L] involves
substantial randomness and irregularity and also because the relatively large num-
ber of particles presumably precludes establishing a global order. Randomly packed
spheres in 3D may be advanced as Trepresenting the short-range atomic order that
exists in amorphous solids, while the disks packed in 2D model the arrangements
of particles adsorbed on smooth surfaces and monolayer colloidal suspensions. Ac-
tually, the packings generated do not look random. They display, especially in 2D,
many regular features and patterns, including polyctystalline textures with loose
“rattler” particles which are trapped along the grain boundaries. The (visually
assessed) degree of regularity in such a packing depends on the speed of disk ex-
pansion. Sufficiently slow expansion often yields packings of a high regularity some
of which might be even conjectured as optimal, i.e., as having the largest possible
disk diameter, given the 7 and the boundary shape. This is a rcmarkable fact in
view of thousands of participating disks and local chaoticity of their motion while
producing the packing.

In the random packing experiments the initial disk configuration is random
and disk expansion begins with disks of zeto diameter. We also present a different
type of experiment where the expansion begins with an a priori regular and/or
optimal disk configuration, rather than a random one. A “frustration” is introduced
by varying cither the boundary conditions or disk sizes and arrangements are made
to let disks grow a little more. The expanding disks try to compensate for the
imperfection. As before the expansion stops at a “jammed” state with “cracks” and
dislocations caused by frustration. It turns out that when the expansion is slow, the
structure of the cracks and dislocations is (uite regular, and it depends very much on
the boundary conditions. We present such frustration experiments for squares and
rectangles with periodic boundaries (i.e., a torus), for a hexagonal boundary with
appropriate periodic boundary conditions, and for a rectangle, two opposite sides of
which are “glued” (this makes a strip cut from a cylindrical surface). The number
of disks in the frustration experiments vary from about 10,000 in the impurity-
perturbed crystal experiments where we increase the relative size of one disk [SLQS}
to under 100 in experiments where we perturb the boundary shape.

We also exercise the same billiards algorithm for small numbers of disks (n of
the order of tens to few hundreds) to see how the algorithm performs in the popular
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problems of finding best packings in circles, squares, and equilateral triangles. Be-
cause the intent here is to produce possibly more regular packings, hoping perhaps
to reach the density maximum, the disk expansion speed is set at the lowest possible
level at which the emergence of Ll packings is not intolerably slow computational-
ly. The packings obtained by the billiards algorithm compare very favorably with
those reported in the literature obtained using other methods, see [GMPW] [G]
[MFP] [NO] [IL] {571] [S79] [V]. The algurithin not only confirms almost all reported
packings but also produces many more packings, some with interesting patterns.

Sometimes the same pattern recurs as the number of disks 7 increases along
certain sequences, 1 — (1), n{2), ..n(k), ..., with different patterns corresponding to
different sequences. The case for packing n(k) = k* disks in a square is presented in’
[NO], where it is found that the obvious square pattern, while known or conjectured
to_be optimal for n = 1,4,9, 16,25, and 36 disks, becomes non optimal for 7 =
k’ug = 49 disks. A disk-packing of 49 disks is presented in [NO] with density higher
than that of the corresponding square packing. We repeat the same steps for the
other regular patterns of packings in a square identified in [NO] and [GL96] and also
for the patterns identified for packings in equilateral triangle [GL95] and in a circle
[GLNO]. In square and ¢ircle sequences of packings, the same pattern seems always
to terminate, eventually, 1., [ur each such sequence n(k) a threshold value 7(ky)
exists such that the packings of the pattern either are not optimal for n > n{kg),
or the pattern cannot exist as a packing of non-overlapping disks. However, for
packings in eguilateral Lriangles one regular pattern hexagonal packing of 7(k) =
k(k + 1}/2 disks is known (proven) to exist and be optimal for afl k. We have
conjecturally identified an infinity of such regular patterns since for none of them
were WC able Lo find tlie patleru-lerminaling threshold.

2. Using billiards simulation to generate random packings

Figure 2.1 illustrates the work of the billiards simulation algorithm while
packing 2000 equal disks in a square with periodit boundary (torus). The initial
stage at time t = {} is represented on the top square in the figure where 2000 points
are randomly scattered. To each point an initial velocity vector is randomly assigned
(not shown). Some points lie outside the square; they are periodic images of the
corresponding points inside. When ¢ > 0, the points grow into disks, and all disks
at cach time ¢{ have common diameter d = Et. The growth continues until the
configuration “jams,” at which time we expect to have a packing.

At t = (0 disks do not overlap because their sizes are zero. For t > 0 disks
moves along straight lines with given velocities; their motions may conflict, with each
other. At an instance of such a two-disk conflict,, we simulate an elastic collision
of these disks assuming their masses are equal. At a collision both disks change
their velocity vectors so as to exchange momenta and energies according to known

“The only exception is the packing of 21 disks in & square for which [MFP] provides
the disk diameter 0.27181675.
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time ¢
2000 disks of diameter = 0
random initial velocities

mean speed ~ 1

time 2.95
2x10% collisions processed
(20 coilisions / disk)

a collision

—

i

diameter = £+ hime

time 3.39
2x10” collisions processed
(200 collisions / disk}

Fig. 2.1. Successive stages in an iustance of disk packing by billiards algorithun

mechanical laws Note that the evolutinn of the disk configuration does not. change
if we proportionally change both the disk expansion speed and linear disk velocities.
We normalize the simulation input by assuming the unity mean initial disk velocity.

Increasing the size of disks introduces additinnal energy at collisions, which
may cause the system to “overheat” computationally, 1., to overflow, especially, if E
is large. Another drawback of the *heating” is that increase over time of the average
disk velocity is equivalent to the decrease of E. Such uncontrallahle reduction of E is
undesirable bhecause as the experiments show the resulting configuration is gensitive
to E during the entire expansion process and we would not be able to study the
dependence of the reeulting configuration on large E if moat of the events occur
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under effectively small E. Wc “drain” the excessive ‘“heat” by periodically stopping
the run and scaling down the velocities of all the disks.

The main processing load of the simulation algorithm is in locating and pro-
cessing disk collisions. It takes roughly the same computing time for processing the
same number of collisions independent of the packing phase. (When disks are very
small it takes somewhat longer to process a collision than when they are larger,
but this deviation from uniformity is insignificant because the initial phase is pro-
cessed very fast.) The collisions become more frequent as the disks grow. Thus,
it takes almost 10 times longer to reach the configuration at time ¢ = 3.39 (the
bottom square in Fig. 2.1) than that at time { = 2.95 (the middle square in Fig.
2.1). As the configuration is approaching a packed state in a finite simulated time #g
with final disk diameter dy = Kty the processing time diverges. Computationally,
we may never reach time to. Roundoff complicates the situation further. Strictly
speaking not only are we unable to say that what we see on the final “jammed?”
picture is a rigid packing (not to mention its possible optimality), but even that
the configuration presented really exists as a set of non-overlapping disks. Thinking
about the statement “the configuration shown on the diagram exists” one realizes
the difficulties even in assigning a precise meaning to it

In the present, paper we do not discuss these difficulties, as that would lead
us too far from the main goal of presenting the experimentally achieved packings.
Some methods of convincing oneself of the existence and rigidity of a shown packing
are briefly discussed in [GLNO]. As a practical matter, we stop an experiment
and consider the configuration as a complete packing when during, say, the last
10,000,000 collisions we detect no visible change in the structure and the relative
disk diameter increase is less than, say, 1077,

We use algorithm [L] for locating and processing the collisions. The algorithm’
is event driven and Seems rather efficient. With this algorithm, all the packings de-
scribed below are computationally within the reach of a modem personal computer.
For example, cach packing presented in the next section can be achieved within
several hours of processing on a PC.

3. Random packings in a square with periodic boundaries

A number of packings have been produced by randomly varying initial con-
figuration of points, their initial velocity, and the expansion speed E. Stepping
through the sequence of packing diagrams in Fig. 3.1 to Fig. 3.5 one notices the
increase of regularity of the packing as expansion speed changes from E = 100 to
E = 0.001. For large E the pattern is a combination of hexagonally packed frag-
ments, “grains,” with each grain having generally different orientation. Irregularity
concentyates along the grain boundaries, as do the “rattlers,” the disks that are not
rigidly fixed in their positions but trapped in the cages formed by their fixed rigid
neighbors or boundary walls if any.

The size of the grains increases (and their number for a fixed n decreases) as
the £ decreases. For a sufficiently small E, a single hexagonal “crystal” emerges.
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Fig. 3.1. A packing of 2000 disks in a square with periodic boundary. The packing is
obtained uider a fast disk expansion, E = 100. The packing consists of ¢rystalline grains
with many rattlers represented a”? unshaded disks concentrated along the grain boundarics.
Monovacancies oceur within the hexagonally packed grains.

Fig. 3.2. A packing of 2000 disks 1n a square with periodic boundary. The packing is
obtained under a moderately fast disk expansion, E = 3.2, and consists of grains that

are larger than those in Fig. 3.1. As in Fig. 3.1, the rattlers concentrate along the grain
bouudaries but their number and that of the monovacancies ig smaller than in Fig. 3.1,
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Fig. 3.3. Another packing of 2000 disks in a square with periodic boundary. The packing
is obtained under a moderate disk expansion, E = 1, Besides crystalline grains and rattlers

it also displavs shear fractures.

Fig. 3.4. A packing of 2000 disks in a 8quareé with periodic boundary. The packing is
nhtained under a slow disk expansion, £ == 1073, The entirc structurc is oriented along

the S8ame axes, it includes shear fractures and two perfectly packed triangles at the right.
A single monovacancy is seen hut no rattlers.
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The array of hexagonally packed disks contains interesting structural devia-
$100S and Insertions. Sometimes the symmetry of the packing coupled with the high

value of achieved anSjt}' suggests that perhaps we have achieved the optimum, as
might be the case in Fig. 3.5.

Fig. 3.5. Anocther packing of 2000 disks in a square with perindic howndary obtained
under a slow disk expansion, E = 1072, If the monovacancy near the center is filled with
the 2001-st disk, the obtained packing seemingly becomes perfectly symmetric. Might
that be the best packing of 2001 cgual disks in a square with periodic boundary? Iis
experimentally computed density (when the 2001-th disk is inserted) is 0.901633...

4. Frustrated packings

56 equal disks stacked hoxagonally in 8 alternating columns, 7 disks in a column,
constitute the best packing in a rectangle with periodic boundary conditions if the ratio of
the height of the rectangle to its width is /1 + 4—18- = 1.01036... We frustrate the packing
Ly increasing tho width of the rectangle and making it equal to the height. In the new
shape, previously jamuned disks become loose (WC help to loosen the disks by reducing
them  slightly). They can grow further to exploit the extra space. We provide the disks
with random initial velocities in the usual manner. As the disks grow, a new jamming is
achieved with a larger disk diameter.

We repeated this experiment several times, each time starting with a different as-
signment of initial disk velocities. Many runs achieved the highest density and they all
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Fig. 4.0 The best found packing of 5 disks in a square with periodic boundary conditions.
(The square perimeter is dashed}. Pairs of disks that are in contacts are indicated by line
segments connecting their centers. Triangles formed by such lines an: shaded. Tha shading
helps to sce the structure of the packing: the plane is tilec] with 4 x 7 blucks, cach block
having pattern "'Z,” shaded on it. The density of the packing is 0.898059591...

ended with the final configuration that is shown in Fig. 4.1. Moreover, the best pack-
ings found, if we start with zero initial disk diameters, arc also identical to the packing
presented in Fig. 4.1 which we hence conjecture to be the optimum.

To better see the structure of the packing in Fig. 4.1, the centers of disks that
contact each other are connected by straight ling scgments. Computationally, two disks
are declared as being in contact if the distance between their ceniers does not exceed
d(1 + 1072), where d is the disk diameter. For comparison: the distance between the
centers of any pair of disks that are not in contact in this packing is larger than d(1+10"5).
Some of the connecting segments form triangles and all such triangles are shaded. With
the shading one easily seeS the SUFUCLUTE: the EliNg of the plane by center-symmetric 4 X 7
blocks, each block having pattern “'Z,” shaded on it.

Another example of a frustrated packing, also conjecturally optimal, is presented
in Fig. 42. To generate this type of packing we slart with Lwo positive integers & and ¥,
kb =7and p =4 in the example, and form a rectangle with width kp and height k-\—gj + 1.
Assuming the top and bottom side of the rectangle are reflecting walls while left and right
side are glued with the same orientation, WC obtain, as the boundary condition, a strip
cut from a cylinder. We place pk(k + 1), here 224, unit diameter disks inside this strip
in a perfectly hexagonal order. The placement contains & + 1 alternating rows with pk
disks in each. This counjecturally optimal packing is frustrated hy increasing the width
of the rectangle. As before the structure of the frustration is “developed” by letting the
disks grow until they jam again. The best packing thus obtained is a set of 2p alternating

triangles with K disks on their sides, as seen in Fig. 4.2.
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Fig. 1.2. The best found packing of 324 disks in a strip with top and bottom sides reflecting,
and left and right boundaries periodic. The ratio of the height to tha width of the strip
is 0.2165063509461... which corresponds to values & = 7, p = 4, o = ®/6 in formula (1),
where o« is the angle at disk A in the triangle formed by centers of disks A, B, C.

The magnitude of perturbation to the original strip can be quantified by angle ¢« at

disk A in the triangle formed by centers of disks 4, #, and { as labeled in Fig. 42. If
0 < a<« %, the hoi&t-to-width ratio of the rectangle is

(k- 1)@ +1+sina
(1) (k+2coser — 1)p

For two extremes, ¢ = 0 or @ = g-, the configuration is a hexagonal packing. Specifically it
is the packing with k+1 rows, pk disks in each, for a = % We have started the experiment
with this packing which wcC have frustrated by increasing the width of the strip. Wc could
have started with the other extreme, the packing with & rows with p{k + 1) disks in each,
for @ = 0, and increased the height, The result would have been the same.

Several sets (k,p, @) have been tried. ‘I'he best found Packing has always had the
pattern as described above. If somebody can present an instance of (k,p, a) as described (k,
P positive integers, 0 < @& < %) and pack pk(k + 1) disks in a strip with the height-to-width
ratio as in (1) better than the packing we describe, WC would be surprised.

In the following two examples of a frustration we increase the size of a single disk.
Specifically we begin with a perfectly hexagonally packed configuration of disks of unit
diameter each. We uniformly decrease the size of all the disks but, one. The diameter of
the latter is increased. Let the diameter of the smaller disks become @ and that of the
larger one (1 + A)d. The d and A are chosen so that {2 + A)d < 2, which assures initial
non-overlap of the disks. In the usual manner random initial velocities are assigned to the
disks and then the disks grow until they jam. At any time during the expansion the ratio
of the larger disk diameter to that of the smaller ones remains fixed at 1 + A. The value of
d < 1 must be sufficiently large and the value of A > 0 sufficiently small so as to prevent
“melting” or “forgetting” the pattern in the process of the chaotic disk unegotiations. The
sot of such admissible (d, AYXS not empty, but it depends on the number of disks 7 and the
boundary shape.

We experimented with two regions: a rectangle with hoth periodic houndaries
(torus), and a regular hexagon where each of the three pairs of opposing sides are “glued”
without orientation change. The latter boundary conditions are illustrated in Fig. 4.4 in
the box at the right top COINE€r, where a fragment of the infinite plane tiled with hexagonal
cells is shown. Each cell is a periodic image of the same cell. In particular, all points
labeled a are the periodic images of each other; so are the points labeled b.

For the rectangle: the height-to-width ratio of a hexagonally packed configuration

with 112 alternating rows, 97 disks in a row, is v/} — gqlﬁq = .9999468579779... 80 we
choose the rectangle with such ratio, a$ it closely approximates a square, and we place
hexagonally 10,864 = 112 % 97 disks in it, For the hoxagon: 3K* equal disks can be placed
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in a regular hexagon in the optimal arrangement (hexagonal packing) for the described
above periodic boundary conditions; we take k = 60 and use % = 10, 800 disks. When
d = 0999 x %X’ for the chosen values of 7, melting does not occur in our experiments for
A = 0.2 in the hexagon and A = {l.] 1n the rectangle.

Fig. 4.3. Displacement vectors of centers of 10864 disks packed in a rectangle with height-
to-width ratio close to 1 as described in the text. Boundary conditions are periodic. If
all disks were of the Same size (“pure” crystal), the packing would be perfectly hexagonal
with 112 rows and 97 disks iz a 10w. Displacemenls from this perfect order are caused by
the central “impurity” disk being 10% larger than the others. Displa(:ement vector of the
coentral disk is 0 by definition, each other displacement vector begins at the perfect order
positinn and its length is magnified 30 fold to enhance the resolution

We have tried several methods of enhancing visually the structure of the frustration
obtained. The best method seems to be displaying disk displacements, Bach disk has
the “ideal” position of its center pp in the original non-frustrated packing and the final
position of the center py in the frustrated packing. Vector p; — pp is thr displacement.
Accumulation of the roundoff error may causc the entire configuration to shift during the
expansion. We “calibrate” the displacement vectors by subtracting from each of them the
displacement of thr larger disk. The latter displacement becomes zgr¢ by definition. Thus
calibrated displacement vectors are shown in Fig. 4.3 and Fig. 4.4 originating at point pp
and magnified in length 30 fold in Fig. 4.3 and 20 fold in Fig. 4.4.

We have performed several experiments with the same parameter values and bound-
ary conditions but different initial velocities of the disks. The resufting samples of the
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Fig, 4.4. Displacement vectors of centers of 10800 disks packed in a regular hexagon.
Boundary conditions are periodic as shown in tha right top Corner box where the same
letter, a or b, marks identical points. If all disks were of the sanie size (“pure” crystal), the

packing would be perfectly hexagonal. Displacements from this perfect order are caused
by the central “impurity” disk being 20% larger than the others. Displacement vecior of
the central disk is §) by definition, each other displacement vector begins at the perfect
order position and its length is magnified 20 fold to enhance the resolution.

frustrated packing are different in small details (and, expectedly, some differ in orientation
with respect to the boundary), but, on a large scale, they exhibit the same “crack” near
the central large disk and the same arrays of displacentent vecturs, We suspect (hat (he
optimal packings under those conditions would look roughly the same when considering
them on a large scale. Note that disk expansion speed E is kept at the lowest tolerable
level E = 1079 to 10~ in those experiments. Substantial increase of E also substantially
changes the final packing pattern and substantially reduces thr density of the packing, see
[S1.95].

5. Repeated patterns in packings in equilateral triangle,
scquare, and circle with hard walls

It has been established [0] [FG] that the best packing of A(k) = k{k + 1)/2 equal
disks in an equilateral triangle is the hexagonal arrangement and that the optlmahty holds



PATTERNS AND STRUCTURES IN DISK PACKINGS 135

for all & = 1,2, Are the triangle numbers A(k) the only such lucky sequence? We
conjecture the existence of an infinite number of such sequences.

Fig. 5.1. The conjectured densest packing of nip(k) = 256 disks inside an equilateral
triangle, where p = 5 and %k = 3, aud where np(k) is defined by formula (2). The densesl
packings of n disks for all checked values of the formn=np{k),p=1,2,... . k=1,2,....

have this pattern consisting of one triangle of side (k +1)p = 1 and 2p + 1 alternating
triangles of side k with p ~ 1 rattlers that are “falling off” the larger triangle

For each $ = 0, 1,2, ... consider sequence
(2) nplk) = Ak + 1p — 1) + (2p + DA(k), k = 1,2,

For = 0 sequence (2) is identical with the sequence of triangle numbers A(k) with known
optimal packings. For each # > 0, we conjecture thr optimal packing of n,(k) disks as the
pattern that consists of 1~ + 1 solid disks and p — 1 rattlers; it includes one triangle of
side (k + 1)p—1 and 2p + 1 alternating triangles of side k each as shown in Fig. 5.1 for
the case p=5 and k= 3.

Suppose we rearrange the pattern in Fig. 5.1 by pushing the alternating triangles
A(k) into their proper place in the would-bc perfect hexagonal order. We would align
one triangle aller another working, say, from left to right. At the end of the procedure
extra space would emerge at the bottom of the triangle, on top of which we would have a
triangle hexagonally filled with A{(k + 1)(p + 1) — 2) disks, and & disks would be pushed
off out of the right side houndary It fallows (and can be easily verified independently of
this rearrangement argument) that 'ﬂp(k) of the form (2) can also bc Written as

3 np(k) = A((k + D(p + 1) =2)+ &
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t16a33.1 t16a33.2
density = 0.718174807623 density = 0.71R174807623

Fig. 52. Two equivalent best found packings of 16 equal disks in an equilateral triangle.
Little black dots indicates contacts. Imteger labels 1,...16 are assigned so that disks that
OCCUPY similar positions in both packings have the same label. The only difference between
the packings are positions of disks 2, 3, 4, and 7.

Thus, the dense packing of mp(k) disks can be considered as a frustration of a perfect
hexagonal crystal of A((k + l)(p + 1) — 2) disks packed in an equilateral triangle when
k disks are added to the packing. Our experiments reveal other patterns of frustration
when we add extra disks to an otherwise perfect hexagonal packing of A(n) disks in an
equilateral triangle. For example, suppose we add just one extra disk to A(n) disks. For
even 1 = 2p the generated packing is of the form just considered, since A(zp) + 1= ﬂ'p(l)~
For odd n = 2p + I, we have a somewhat different pallern which exists and is optimal for
all sufficiently large P (as far as we¢ have checked experimentally). The complications exist
on the initial segiment of g Fig. 5.2 presents two equivalent hest packings of 16 = A(5) +1
disks (p = 2). Similar disks are labeled using the same integer indices to emphasize the
similarity and differencos in the patterns. Little black dots indicate contact points, and
each packing in Fig. 5.2 has 33 contacts. The label provided with each packing is inherited
from [GLY5] where such labeling is essential to distinguish among the many packings
presented.

As far as we have checked, the Salne two optimal equivalent modifications €XISt for
p > 5 (n = 67,92,121...). Fig. 5.3 presents one of these two best packings for m = 67
(labeled t67a161.2 to conform with labeling in [(zLY%]; it has 161 contacts), the obher ouw
also exists and has the same quality. The next beat packing (labeled t67k) is also shown in
Fig. 5.3. It appears in our experiments that patterns as in t67al61.2 and in tB7h coexist for
p 2 3 and together tliey occupy the places of the best and next-best packings. However,
the pattern of t67al61.2 is not always better than that of t67h. For n =29 (p = 3)
and m = 46 (p = 4) the pattern as in t67h wins over the patiern as in t67al61.2 and its
equivalent modification

The shape of an equilateral triangle conforms to the task of dense packing of equal
disks in that the optimal packing of & “natural,” ie., a triangle number n of disks inside
this shape is a fragment of the optimal packing on thr infinite planc. Our experiments
show that even for “non-natural” numbers of disks 7 certain fragmented and frustrated
variants of the basic hexagonal packing apparently may exist for infinite Sequences of n.

Given any k > 0 wcC can place k2 disks in a square in the & X k orthogonal fashion.
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t67a161.2 t67h
density = 0.81 1959863130 density = .811951836945

Fig. 5.3. A best and the next-best found packings of 67 equal disks in an equilateral
triangle. As in Fig. 5.2, little black dots indicate contacts. 16 disks in the lower right,
corner in both packiugs are alsu labeled with indices I,...16. The disks with the same
indices on both diagrams occupy similar positions and their position is also similar to the
that of disks in Fig. .2

This is a “natural” square packing in the Same spirit as hexagonal disk arrangement yields a
natural packing in an cquilateral triangle. Unlike the triangular packings, square packings
become mnon-aptimal for o sufficiently large k. The shape of a square does not conform
to the task of best packing. The natural square packing is not a fragment of the optimal
packing on the infinite plane. What wc observe in the best found packings in the sguare,
can be described 83 an interplay between two patterns. syuare agud hexagonal. For a
sufficiently large number of disks 7 the hexagonal pattern becomes dominant. With the
billiards simulation algorithm we were able to examine details of this interplay for small
n.

The following Sequences were recently tdentified as candidates for pattern repetitions
(see [NO] [GL96]): B2 — 3, k%2 — 2, k% — 1. These are “frustrations” of thr “natural? square
pattern. Sequences k{k + 1) and B+ |k/2] were also identified; they can be considered
as “frustrations” of a hexagonal pattern adjusted to the square boundaries.

Sequence B w3 yields optimal packings of the pattern exemplified in Fig. 5.4, top
TOW, by its two members at & = 5 and & = 8. The pattern has both square and hexagonal
elements in it. For & = 9, while the packing of the pattern still exists, it is possible to find
a better packing.

Sequence o2 yields optimal packings of the pattern exemplified in Fig. 5.4, middle
row, by two cquivalent packings at k& = 6. Different equivalent packings, tulal of [our for
k = 6, can be obtained by differently inserting two hexagonally arranged rows and two
columns (lighter shadcd) among k — 2 TOWS and k£ 2 columns arranged in the SQuAare
orthogonal fashion. Only one other memhber of the sequence, for k = 5, is optimal when
having this pattern For k¥ = 7 a better packing of a different pattern exists.

Sequence k2 -1 yields optimal packings of the pattern exemplified in Fig. 5.4, bottom
row, by two equivalent packings at k& = 6. Different equivalent packings, total of three for
k = 6, can be obtained by differently inserting the shorter ¥Qw and the shorter column
(lighter shaded) among k& = 1 rows and k& — 1 columns arranged in the square orthogonal
fashion. There also three equivalent, packings of this pattern far k = 5, atid one packing
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22 disks ' 61 disks
density = 0.771680112098 anSlty = 0.801174124593

34 disks {2,5;2,5) 34 disks (? 5:2.4)
density = 0.776649064332 density = 0. 776649064332

35 disks (2.3) 35 disks (3.3}
density = 0.781227212999 density =(.781227212099

Fig. 5.4. Best found packings of equal disks in a square. Top row: first (k = 5) and last
(k = 8) members of sequence k? -3. The packings consist, of a heavier shaded (k—3) (k -3)
square packing in the bottom left corner and three lighter shaded alternating rows and
columns and One unshaded rattler. Middle tow.: two out of four existing best, packings of
34 disks, 2 member of sequence k% — 2 for k = 6. Each packing consists of a (k — 2) X (k — 2)
heavier shaded square pattern with two lighter sbadcd hexagonally arranged rows and two
columns. Two pairs of insertion indices identifies a packing, Bottom TOwW: tw0 out of three
vadsting bost packing of 35 disks, a mowber of sequence &% = 1 for & — 16. Each packing
consists of a (k- 1) X (k — 1) heavier shaded square pattern with one lighter shaded inserted
TOW and one column. A pair of insertion indices identifies a packing,
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5 disks

10 disks
density = 0.673765105566 density = 0.679410175949
not the best packing

10 disks 18 disks
density = 0.690035785264 density = 0.754653357876

_ 52 disks 56 disks
density -~ 0822530842068 density = 0.802351720503

Fig. 5.5. Members of sequences k(k + 1) (56 disks) and K+ lk/2] (5 , 10, 18, and 52
disks). Optimal packing of 10 disks (middle row, left) does not follow the COMIMON pattern
of the latter Sequence. The inferior packing of 10 disks that follows the pattern is also

shown (top row, right)

for each of ¥ = 3 and & = 4. For ¥ = 7 a better packing of a different pattern exists.
Sequence k(k + 1) yields the pattern with k + 1 alternating columns of k disks in

each as an optimal packing for k& = 4. The pattern is an adjustment of the hexagonal one

for the square boundary. The pattern becomes non-optimal for k == 8, if we compare its
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quality with the best packing of 72 disks obtained in our experiments. In Fig. 5.4; bottom
IOW, right, appears the last member of this S€qUence, which is still apparently optimal.

31 disks

55 disks

835 disks

121 disks ‘&

Fig. 5.6. Left: best found packings of 3k{(k + 1) + 1 equal disks in a circle for k = 1, 2, 3,
4, and 5. Right; best found packings of 3k{k + 3) + 1 equal disks in a circle for k = 2, 3,
and 4 and the highest obtained density configuration of 121 disks {(k = 5).

Sequence K+ UE/QJ demonstrates a different way of adjusting a hexagonal arrange-
meni 1o the sqyuare boundary with & + 1 alternating columns whose length alternates also.
The pattern begins as optimal at & = 2, then for the value k = 3 its optimality is preempt-
ed by a different, pattern and then is resumed as optimal for & = 4 and continues as such
for k = 5, 6, and 7 The relative gap hetween consecutive disks in columns decreases (for
example the gap between disks 1 and 3 in the packing of 5 disks, or between disks 1 and
7 in the packing of 18 disks) with the increase of k. For & > 7 the gap becomes negative,
ie, disks in the configuration constructed according to the pattern overlap.
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As in the case of a square, a circle boundary shape does not conform to the hexagonal
disk arrangement. Unlike the case of a square or equilateral triangle, no obviously “natural”
packings of equal disks has been proposed. Perhaps, the curved hezagonal packings [LG93]
can be taken as such. Fig. 5.6 shows five curved hexagonal packings (left column) which are
also the best packings found in the experiments. There is a well-defined synthetic method
to arrive at a curved hexagonal packing of 3k(k + 1) + 1 disks for any % > () as described
in [LG95]. Exact positions of disks can be computed as well as disk diameter and density.
(k - 1}1/2 different equally good curved hexagonal packings are known for k > 4. Thus,
there are three different equal quality such packings for n = 61 disks and 12 packings for
n = 91 disks, Fig. 5.6 presents vuly oue of these for each n. In our experiments we found
a packing for 127 disks (k = 6) that, is bettor than the corresponding curved hexagonal
packing.

The right columorm in Fig 5 & presents heat fonnd packings for the sequence 3k(k +
3) + 1. Those demonstrate a different way of adjusting hexagonal packing to the circular-
wall boundary conditions: hexagonal “core” and some loose disks on the periphery. For
the specific n == 31, 55, and 85 the adjustment produces perfect six-fold symmetrical
patterns as the {(conjecturally) best packings. The pattern apparently is trying to realize
itself for 1 = 121 {k = 5) but we have not been able to gencrate a clear-cut packing: the
resolution required is higher than the one offered by the double precision, ic., with relative
error of the order of 10", The algorithm stalls in this configuration without adviancing
further the time and the disk expansion, and for several pairs of disks we do not know
whether oI not they are in contact. Perhaps if the computations weie done with a highex
precision the best packing of 121 disks could be obtained by a small additional growth of
disks starting from the presented configuration Packings of 31 and 55 disks can be easily
constructed looking at their diagrams, including contacts, and their parameters can bc
easily calculated. (Such synthetic construction also prows their existence). The density
computed in the simulation of the packing of 85 disks is $.82293502752... and that of the
presented configuration of 121 disks is larger than 0.82305172.
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