
Chapter 10 

Shear Viscosity and Diffusion in Supercooled Liquids 

Frank H. Stillinger 

Bell Laboratories, Lucent Technologies, Inc., 600 Mountain Avenue, 
Room 1D-359, Murray Hill, NJ 07974 

Under normal liquid conditions (at equilibrium or when moderately super­
cooled), molecular rotational and translational diffusion adhere closely to the sim­
ple Stokes-Einstein-Debye hydrodynamic model. Deeply supercooled "fragile" 
liquids present a striking exception, with translational diffusion alone occurring up 
to 102 — 103 times "too fast". This anomaly rests upon the statistics of fluctuating 
local viscosity in the fragile glass-forming medium. The simplest version of this 
picture identifies large fluidized domains that spontaneously appear and disappear 
in a dynamically inert matrix. Plausible and self-consistent values characterizing 
these fluctuations are cited for orthoterphenyl (OTP) at its glass transition. 

Liquids that supercool easily and form glasses have presented many conceptual puz­
zles, whose resolution has led to deeper understanding of these substances at the molec­
ular level. This paper focusses on one of those puzzles that mainly concerns the so-
called 'fragile" glass formers, identified by the markedly non-Arrhenius temperature de­
pendences of their shear viscosity rj(T) and various mean relaxation times r(T) ( i , 2). 
Specifically, die need to reconcile separate measurements of translational and of rota­
tional diffusion rates in fragile liquids just above their glass transition temperature Tg 

leads inevitably to a molecular picture of the medium that is strongly inhomogeneous 
in both space and time. 

Translational and rotational diffusion constants, Ann* and D r o t , measure rates of 
increase with time of the mean-square positional and angular displacements for tagged 
molecules: 

((6r)2)*£6DtTMm6t, 
< ( £ 0 ) 2 } ^ 4 I W > t . K l ) 

It has been traditional to assess measured values of these diffusion constants by means 
of the elementary Stokes-Einstein-Debye (SED) hydrodynamic model of a Brownian 
sphere with radius R embedded in a homogeneous, incompressible, viscous medium 
(3)-(6). Assuming that "sticking" boundary conditions apply in this model, one has 

Dtmsm = kBT/§<Kr){T)R, 
A * = kBT/87TTj(T)R\ w 
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132 SUPERCOOLED LIQUIDS 

where ks is Boltzmann's constant. These expressions apply both to the case of a pure 
liquid (where the "sphere" represents the same chemical species as that composing the 
surrounding viscous medium), as well as to the cases of selected "probe" molecules of 
various sizes dissolved in the viscous liquid of interest. 

The SED expressions 2 enjoy surprising success at representing measured diffusion 
rates for a wide variety of substances in their equilibrium liquid ranges, and under mod­
est amounts of supercooling. The temperature variations of Arans and D T O T track that 
of Tj7/(T), and the implied hydrodynamic radii R from equation 2 have reasonable val­
ues for the molecules examined. Furthermore, the SED model retains its validity under 
elevated pressure conditions (7). 

Recent experiments on deeply supercooled fragile liquids have revealed strong vio­
lations of the simple SED model that produces equation 2 (8)-{ll). The second of equa­
tion 2 continues to describe rotational diffusion down to Tg (at which point rj may be 
approximately 15 orders of magnitude larger than its melting temperature value); how­
ever measured translational diffusion rates below about 1.2 Tg display positive devia­
tions from the first of SED expressions 2 that can grow to an enhancement factor of 102 

or more (8H11). 
Even though the selective breakdown of the SED description at first sight seems 

paradoxical, the large magnitude of the phenomenon at Tg suggests that an explanation 
need only be straightforward, not subtle. Indeed, such an explanation is available (72, 
13). The following Section II lays the groundwork for resolving the puzzle by present­
ing some general remarks about the "rugged potential energy landscape" that describes 
intermolecular interactions in fragile liquids. This leads naturally into Section HI, a 
mesoscopic description of the fragile glass-forming medium in terms of a fluctuating 
local viscosity field. Section IV then shows how certain combinations of length and 
time scale parameters characterizing this field create a selective bottlenecking scenario 
that decouples the rotational and translation diffusion processes, just as experiment de­
mands. Section V concludes the presentation with a discussion of several issues, includ­
ing stretched-exponential (KWW) relaxation, and connections between the SED model 
violations and the Adam-Gibbs theory of relaxation processes in glass formers (14). 

I Potential Energy Landscape 

Molecular interactions in a glass-forming substance, and consequently its thermal and 
dynamical behaviors, are determined by a potential energy function $ ( r i • •. *N)- Here 
the Ti represent coordinates of the individual molecules, N in number, and generally will 
include internal degrees of freedom (orientation, conformation) as well as center posi­
tion. The total number of variables for a macroscopic material sample may be some 
multiple of Avogadso's number, and the geometry of the $ hypersurface in this huge 
multidimensional configuration space is incredibly complicated. Yet some simple fea­
tures of the "$-scape" and their implications for the SED puzzle can be extracted from 
basic measurements. 

Orthoterphenyl (OTP) has become one of the most widely studied fragile glass for­
mers. Plazek, Bero, and Chay (75) have tabulated its shear viscosity rj(T) over a wide 
temperature range, from well above its melting point (T m = 329K) to the vicinity of its 
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10. STILLINGER Shear Viscosity & Diffusion in Supercooled Liquids 133 

glass transition (Tg 240K). One can represent this data in the following manner: 

where 770 is temperature independent, and F* is an activation free energy for viscous 
flow. Formal activation energy E* and activation entropy 5* then follow: 

One finds that E* is approximately 4.3 kcal/mole in the hot OTP liquid regime (T = 
500K), but increases dramatically to approximately 86 kcal/mole at Tg. Over the same 
range S*/kB increases by about 140. Similar results would be found for other fragile 
liquids. 

The large increases in E* and S* as T declines stem from the strongly non-Arrhenius 
character of rj(T) for OTP, and indicate a change in kinetic mechanism for molecular 
rearrangements. In view of the fact that the heat of fusion of OTP is 4.103 kcal/mole 
(16), the above numbers suggest that while molecular motions in high-temperature shear 
flow can be resolved into shifts of single molecules or small groups of molecules, the 
corresponding motions near Tg entail concerted rearrangements of much larger groups. 

Figure 1 translates mis notion into a schematic view of the multidimensional 
scape. The topography shown in 1(a) represents a portion of the multidimensional con­
figuration space inhabited by the system at high temperature; the texture is uniformly 
rough with modest barriers separating neighboring minima. By contrast, 1(b) illustrates 
a nonuniform topography that applies to the region inhabited at low temperature; mod­
est barriers still exist between neighboring minima, but over a larger distance scale a 
substantial degree of "cratering" appears. The low-temperature preference is to reside 
near the low-potential-energy crater bottoms, but in order for the system to relax struc­
turally to even lower energy, it is necessary to exit the initial crater and search for an even 
deeper one. The activation energy E* in this low-temperature scenario involves the net 
rise required to move between craters, substantially larger than the mean barrier height 
separating neighboring single minima. The low-temperature activation entropy mea­
sures the extent of configuration space explored between successively inhabited craters, 
evidently quite large in magnitude. 

II Local Mobility Variations 

The structural relaxation process indicated in Figure 1 (b) for cold fragile liquids requires 
unbundling a large local region in the medium, and repacking the loosened molecules 
in an alternative pattern to yield an equally low or lower potential energy. The kinetic 
sequence that accomplishes this process temporarily transforms an initially nearly rigid 
region into a more mobile, or fluid, state and then back to a rigid condition. In a macro­
scopic system, many locales of varying size and lifetime can simultaneously experience 
this scenario. Consequently one could describe the state of the glass-forming material 
in conventional 3-space by means of a position and time dependent mobility field. An 
equivalent description for the present analysis utilizes a space and time dependent local 
viscosity ^ ( r , £). Autocorrelation functions of this scalar field identify characteristic 
mean lengths and lifetimes for the spontaneous structural fluctuations. 

r,(T) = Voex?[F*(T)/kBT] (3) 

E*(T) = d[F*(T)/T]/d(l/T), 
S*(T) = -dF'(T)/dT. (4) 
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134 SUPERCOOLED LIQUIDS 

Full characterization of the statistical properties of the fluctuating field rj\oc is unnec­
essary for present purposes. Instead, it suffices just to distinguish regions of high and of 
low molecular mobility, and to assign mean values of rf\oc to these regions: 

r/ioc (r, t) = 7}Q (high mobility region), 
= rjoo (low mobility region). 

A similar binary view of the local kinetics, stated in terms of translational diffusion rates 
and their fluctuations, appears in a Zwanzig study (77). If the cutoff criterion between 
"high mobility" and "low mobility" is biased in favor of the latter, regions of the former 
type will be rare and disconnected, as schematically illustrated in Figure 2. 

Ill Selective Bottlenecking 

We are now in a position to explain the gross violation of the SED expression for D t T & n s , 

while that for DTOt remains approximately valid, in the case of fragile liquids near Tg. 

As mentioned earlier, only a simple picture should be required to rationalize this strong 
qualitative effect, and so we use the simplifying assumption that 77̂  is substantially in­
finite compared to rjQ, and to the macroscopic measurable viscosity 77 for the material. 
Therefore we need only to be concerned with four parameters that represent mean-value 
properties of the individual fluidized domains that spontaneously appear and disappear 
in the glass-forming medium. These are (a) the domain internal viscosity 770, (b) domain 
mean volume v0, (c) domain appearance rate per unit volume of the medium 7*0, and (d) 
the mean domain lifetime t 0. One must keep in mind that these parameters are all tem­
perature dependent, presumably increasing toward well-defined limits as T declines to 
Tg. 

The macroscopic rate of shear relaxation in a viscoelastic medium is determined by 
the Maxwell relaxation time (18) 

rs = i j ( T ) / G o o , (6) 

where is the (essentially) temperature-independent high-frequency shear modulus. 
Imagine that near Tg the system were in a uniform state of shear stress. The dominat­
ing inert and rigid matrix is incapable of relaxing that stress. However, a fluctuation 
that suddenly converts a portion of that inert matrix into a fluidized domain permits its 
unbundled molecules to rearrange within its volume = v0 so as to relieve the imposed 
stress there. Other locales must await the stochastic appearance of their own fluidiz-
ing fluctuations to experience similar stress reduction. Consequently, appearance rate 
r 0 and volume v0 control overall stress relaxation. This is equivalent to recognizing that 
the Maxwell time r s (T) , and hence rj(T) itself, will be proportional to the combination 

T.(T)MT)<x(r0vo)-1, (7) 

and so the temperature dependence of this combination becomes that of rs and 77. As 
Tg is approached from above, rs increases to the maximum time normally available for 
experiments, approximately 103 — 104s. 

With the four nominally independent parameters combined in different ways, several 
characteristic times can be identified. In fact it is a separation of these time scales that 
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10. STILLINGER Shear Viscosity & Diffusion in Supercooled Liquids 135 

1 

Coordinates 

(a) HotLiquJd 

Structural Relaxation 

Coordinates 

(b) Strongly Supercooled 
Fragile Liquid 

Figure 1. Schematic views of the rugged potential energy landscape for a fragile glass-
forming liquid. Part (a) represents the uniformly rough topography in the region of the 
coordinate space occupied by the system when it is a hot liquid above its thermodynamic 
melting point. Part (b) indicates the deeply cratered topography in the region visited by 
the strongly supercooled fragile liquid. 

Currently 
Inert 

Matrix 

Figure 2. Binary classification of an amorphous glass-forming medium into high-mobility 
fluidized domains, and a relatively inert, low-mobility matrix. The criterion for distinc­
tion between the two has been selected so that the former are rare and disconnected. 
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136 SUPERCOOLED LIQUIDS 

provides a mechanism for violating the SED results 2. Specifically, consider the case 
where t0 substantially exceeds die rotational relaxation time within a fluidized domain, 
while the mean domain volume v0 is sufficiendy large so that intradomain translational 
diffusion can span only a small fraction of the domain diameter in t 0. Assuming that the 
SED expressions 2 with rjo hold within fluidized domains, these statements convert into 
the following strong inequalities (12): 

" ^ r " < < t o < < n ^ r ~ - ( 8 ) 

The physical significance of this time-scale ordering is that once a domain appears its 
interior molecules rotationally relax during an early small portion of its lifetime, so that 
the dominant remainder of t 0 has no further effect, and thus is "dead time." By contrast, 
the entire t0 contributes to overall translational diffusion. 

The picture just advocated requires both rotational and translational Brownian mo­
tion to rely on spontaneous appearance and later disappearance of fluidized domains, but 
this stochastic process exerts quite distinct bottlenecking influences on the two. When 
translated into expressions for the respective diffusion constants, this picture of selective 
bottlenecking leads to the following (72): 

Aot(T) a r 0t/o/2, ( 9 ) 

Arans(T) S k BTroVo^ / 6*^11. V ' 

The earlier equation 7 implies that A©t should have the same temperature dependence 
(non-Arrhenius) as if" 1 , in agreement with die second of equation 2. However, Dtram 

exhibits the additional factor to/r^, which provides the mean to enhance Arans by the 
required two or more orders of magnitude near Tg. 

Insufficient experimental data is currently available for any fragile substance to as­
sign rjo, t̂ o, r 0 , and t0 at all relevant temperatures. However it is possible to find reason­
able estimates that are consistent with experimental measurements and with the time-
scale separation 8. Table I, taken from reference (73), displays such a set of estimates 
for OTP at its Tg\ this set produce an enhancement factor of 102 for translational diffu­
sion compared to the SED value, and exhibits the time-scale separation demanded by 
equation 8. 

IV Discussion 

Legitimate concerns might well be raised about the use of four mean value parameters 
(Vo, ro, *o) to describe fluctuating, distributed, attributes of fluidized regions. For ex­
ample, the right members of equation 7 and of the first of equation 9 respectively contain 
the combinations (rQvQ)"1 and r 0 v 0 . If r 0 and v0 were fluctuating variables, then gen­
erally the average ((roVo)"1) would differ from (roVo)"1. However in the present con­
text we expect anticorrelated fluctuations, with small domains spontaneously appearing 
more frequently than larger ones. Mathematically it is easy to demonstrate that if two 
random variables fluctuate with perfect anticorrelation such that their product is a con­
stant, then indeed 

((xy)-l) = (xy)-1. (10) 
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10. STILLINGER Shear Viscosity & Diffusion in Supercooled Liquids 137 

Table I: Fluidized domain parameters and related quantities for OTP at Tg

 a>1 

%(P) 
v0(A3) 

6.10 x 106 %(P) 
v0(A3) 1.70 x 105 

ro(cm~z8~l) 2.11 x 10 1 5 

to(s) 0.426 
n 0

c 500 
0o d 1.53 x 1(T 4 

R(A) 3.5 
9.92 x 10"-2 

wmvl/ZR/kBTg(8) 6.21 

aValues taken from ref. 13. 
hT9 = 240K, rj(Tg) = 4 x 10 1 2P. 
c n 0 = mean number of molecules in VQ. 
d<l>o = volume traction of fluidized domains. 

While it is too much to expect fluidized domain characteristics to follow this behavior 
precisely, it may be appropriate to suggest that rough conformity obtains, sufficient to 
justify die simple level of description utilized here. 

Deeply supercooled glass-forming liquids seem universally to exhibit stretched-
exponential relaxation functions (2,19): 

<t>{t) S exp{-f t / r (T)f} , 0 < 0 < 1. (11) 

Strong experimental evidence now exists not only that glassy media are dynamically 
heterogeneous, but that such heterogeneity underlies stretched exponential relaxation 
(20)-(22). The fluctuating field rj(r, t) is the means for describing this situation in the 
present context, and its inverse controls the local (in space and time) rate of decay of 
structure. Consequently, near the glass transition we must have the mathematical con­
nection: 

(exp [K j f fo(r, f = « p { - [ t / T ( T ) ] > } , (12) 

where K is a positive constant dependent on the property whose relaxation is examined, 
and where (...) indicates a spatial average over all r in die system volume. Experimen­
tal determinations of (5 and r thus provide partial information about r;(r, t). 

Translational diffusion rates for probe molecules of various sizes have been studied 
experimentally as a means to determine the average size of dynamical heterogeneities 
— fluidized domains in the present analysis (11,23). Certainly a spherical probe whose 
volume far exceeds t;0 would be expected to conform to the SED norm, though probes 
utilized so far are likely not in this size range. Although this large-probe strategy has 
merit, considerable caution needs to be exercised in its interpretation. Uncertainties ex­
ist about how foreign probes in a glass-forming medium might locally perturb the dy­
namics, and the larger the probe the larger such a perturbation would tend to be. Nev­
ertheless, the resulting estimates of the mean linear dimension of inhomogeneities is in 

D
ow

nl
oa

de
d 

by
 P

R
IN

C
E

T
O

N
 U

N
IV

 o
n 

D
ec

em
be

r 
2,

 2
01

0 
| h

ttp
://

pu
bs

.a
cs

.o
rg

 
 P

ub
lic

at
io

n 
D

at
e:

 S
ep

te
m

be
r 

30
, 1

99
7 

| d
oi

: 1
0.

10
21

/b
k-

19
97

-0
67

6.
ch

01
0

In Supercooled Liquids; Fourkas, J., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1997. 



138 SUPERCOOLED LIQUIDS 

the range of several nanometers for OTP at Tg (20), which is in rough agreement with 
Table I. 

The Adam-Gibbs theory of cooperative relaxation in glass-forming liquids has main­
tained prominence in the field over the more than thirty years since its inception (14). 
That approach connects the temperature-dependent mean relaxation time to calorimet-
ric entropy, using the concept of "cooperatively rearranging regions." It is tempting, 
though probably not correct, to identify these Adam-Gibbs regions with the fluidized 
domains of the present paper. By themselves, the four parameters used here to charac­
terize the fluidized domains do not suffice to determine configurational entropy, so at 
least one further postulate would be required to connect to the Adam-Gibbs viewpoint. 
One class of theoretical models suggests in fact that the Adam-Gibbs theory cannot be 
generally valid (24); whether it properly describes a restricted class of theoretical mod­
els and real substances remains an open issue. 

For additional perspectives on the phenomena discussed in this paper, the reader may 
wish to consult the presentations (25) and (26). 
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