
ELSEVIER Physica A 244 (1997) 358-369 

PHYSICA 

Negative thermal expansion in the Gaussian 
core model 

Frank H. Stillinger*, Dorothea K. Stillinger 
Bell Laboratories, Lucent Technologies Inc., Murray Hill, NJ 07974, USA 

Abstract 

The pressure equation of state of the classical many-body system with Gaussian pair interac- 
tions has been examined over a wide density range. Both analytical and simulational methods 
have been involved. A simply-connected region of negative thermal expansion has emerged from 
the study. It includes portions of the BCC crystal and fluid sections of the equilibrium phase 
diagram. 

1. Introduction 

The occurrence of negative thermal expansion in the liquid phase, 

------ (din V/~3T)p<O, (1.1) 

is an infrequent, but not unique, phenomenon. The case of  ordinary water (and its 
isotopic variants) just above the melting point of ice supplies the best-known example 
[1]. The example of liquid He 4 just below its 2 point [2] demonstrates that the pure 
elements are not exempt from this behavior. The binary compound In2Te3 shrinks upon 
melting, and continues to shrink during further heating for a substantial temperature 
range above that melting point [3]. Liquid silica (SiO2) is easily supercooled, and in 
that metastable liquid state enters a regime with ~ < 0 [4]. 

Because these examples are so diverse, it is obvious that several distinct mechanisms 
can operate to produce negative thermal expansion. Comprehensive understanding of the 
phenomenon requires examining all such mechanisms. The present paper is devoted to 
conceptually one of the simplest, arising in the Gaussian core model (GCM) in classical 
statistical mechanics [5,6]. The appearance of ~t <0  in the GCM has been pointed out 
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before [7], but not documented in great detail; providing some of that extra detail and 

analysis formed the primary motivation for this work. 
Section 2 outlines several remarkable mathematical properties possessed by the GCM. 

These properties strongly influence the equation of state, and produce an unusual phase 
diagram. Section 3 discusses that phase diagram as it is now understood, based on a 
combination of analytical and simulational information. Section 4 describes our molec- 
ular dynamics investigation of the GCM at five well-separated densities, and identifies 
the implied ~ < 0 region in the temperature-density plane. Finally, Section 5 contains a 
discussion of results, including their possible application to selected polymer solutions 

and suspensions of non-ionic surfactant micelles. 

2. Basic mathematical properties 

The GCM is defined by its interaction potential 4~. By choosing natural energy and 
length units, this function adopts the following form for the case of N particles: 

N I N 

*(r, ...rN Z Z e 
i - I  j - i+l  

No direct attractive forces between pairs of particles are present, so no vapor-liquid 
phase transition is possible. However, the GCM exhibits crystallization in both two 
[8,9] and three dimensions [7]. 

The special character of the Gaussian pair interactions produces several useful mathe- 
matical properties. One of these is the possibility to develop high-temperature series for 
thermodynamic quantities and for particle distribution functions, the individual terms of" 
which are explicit simple functions of density p and spatial dimension D [ 10]. Although 
these series are formally divergent, they are Borel-summable [11]. 

Three other basic mathematical properties deserve mention in the present context. 

2.1. Hard-sphere limit 

This arises from the low-temperature behavior of the pair-interaction Boltzmann 

factor, 

B(r, fl ) = exp [-/3 exp( -  r 2 )], (2.2) 

where [3 = (kBT) 1 For any fi >0,  B is a monotonically increasing function of r, and 
for small T (large fl) it is useful to locate r*([3), the separation at which B is 5"1' 

r*(fi) = [ln(fl/ln 2)] 1/2 . (2.3) 

At this point, one has 

3 [(B/~r]r=r* = (ln 2)r*(/3). (2.4) 
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As /3 ~ + e~, so too does r* and this last derivative. Consequently, B rises very 
rapidly from essentially zero inside r* to essentially unity outside r*, and so r* plays 
the role of an effective hard-sphere collision diameter for the GCM. Of course for this 
hard-sphere connection to apply, it is necessary for the GCM particles to be sufficiently 
dilute to avoid effective hard sphere close packing: 

p =N/V <21/2[r*(/3)]-3. (2.5) 

The well-known properties of the hard-sphere model (both equilibrium and kinetic) 
hence apply to the low-density, low-temperature limit of the GCM. These include virial 
coefficients [12], and the coexistence densities of fluid and solid phases [13]. The latter 
lead to asymptotic estimates, for the GCM at fixed density p, of the [3 values at which 
the fluid begins to freeze: 

/3n(P) ~ (In 2) exp(0.962p -2/3) (2.6) 

and the FCC crystal begins to melt: 

/3cr(P) ~ (In 2) exp(1.027p -2/3 ). (2.7) 

Analogous results can be formulated for the two-dimensional hard-disk and GCM sys- 
tems. 

2.2. Convolution property 

Define L(2) to be a linear Gaussian-smoothing operator in the DN-dimensional con- 
figuration space: 

L(2) * f = (gI /22)-DN / exp[-(R - R')2/22]f(R ') dDNR. (2.8) 

Here 2 is the characteristic smoothing length. In particular, we can calculate the 
smoothed version of the GCM interaction potential: 

N--1  N 

L()o) * • = (1 ÷ 222) -D/2 Z Z exp[-r2/(1 + 222)]' (2.9) 
i=1  j-i+l 

The effect is to increase the range of the Gaussian pair interactions, while diminishing 
their strength. The common range increase has the same effect as a uniform compression 
of the N-particle configuration. Put another way, compressing the GCM uniformly from 
density p to (1 + e)Dp has the following influence on the potential: 

q~[R/(1 + e)] = (1 + e)DL[(½J + e)1/2], ~(R) .  (2.10) 

Gaussian smoothing L(2) has the effect of diminishing, or even eliminating, features 
in the function to which it is applied that have length scales smaller than 2. In particular, 
it can reduce the number of maxima and minima, and can lower the saddle-point- 
containing barriers between neighboring minima that survive the smoothing. On account 
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of result (2.10), we can therefore expect that compression will have the effect of 
washing out the "landscape ruggedness" presented by q~. 

2.3. Duality relations 

Owing to the fact that the Gaussian interaction passes into a scaled version of itself 
under Fourier transformation, it is possible to relate the interaction potential for a 
Bravais lattice to that of its reciprocal lattice at a dual density {14]. In particular, this 
permits a many-neighbor lattice sum at high density to be replaced by an equivalent 
sum at low density where only near-neighbor pairs need to be considered. 

Let bl,b2, and b3 be the basis vectors for the Bravais lattice [15]. The particle 
number density in this lattice is 

p =  ]bl • (b2 x b3)] -I  . (2.11) 

Basis vectors defining the reciprocal lattice will be denoted by K~, K2, and K3: they 
are defined by the equations [16]: 

Ki.b/=2n~i/ (1~<i, j~<3).  (2.12) 

Set I equal to twice the potential energy per particle for one of these lattices, plus one, 

in the infinite system limit: 

I -  1 + lim (2q~/N). (2.13) 
N ~ c  

Then the duality relation states the following identity: 

P t,Z/(bl,b2,b3)= , -1 ' 2  I I 1 ( p )  I(~K1, ~K2, ~K3). (2.14) 

Here the relevant dual lattice is not the reciprocal lattice itself, but the version shrunk 
in each dimension to half its spacing. This shrinkage arises from the length scaling of" 
the Gaussian function under Fourier transformation. The density of this relevant dual 

lattice is given by the analog of Eq. (2.11): 

1 1 p' =l_~Ki × , (2.15) • (~K2 ½K3)I-' 

and along with p satisfies the simple relation 

pp'=n 3. (2.16) 

Numerical studies [5] reveal that at low density the Gaussian core model has its min- 
imum potential energy in the face-centered cubic lattice arrangement, while at high 
density the body-centered cubic lattice minimizes potential energy. These constitute a 
dual lattice pair. Eqs. (2.14) and (2.16) establish that they possess exactly the same 
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lattice potential energy at the self-dual density 

p =  D t~ /~ -3 /2  . (2.17) 

3. Phase diagram 

Fig. 1 presents an approximate phase diagram for the single-component, classical 
Gaussian core model in the T, p plane. It is based on a combination of analytical in- 
formation, and past [7,17,18] and present computer simulation studies. Three stable 
phases appear, face-centered and body-centered cubic crystals, and isotropic fluid, ap- 
parently separated by conventional first-order phase transitions. Note that here and in 
the following temperature is measured in units of 1/kB. 

The close-packed FCC crystal is the structure obtained by freezing the hard-sphere 
system [13], which Section 2.1 above asserts to be the correct low-density limit for the 
Gaussian core model. Eqs. (2.6) and (2.7) determine the way that the phase boundary 
curves approach the origin in the T, p plane. 

The marked decline with increasing density of the melting temperature for the BCC 
solid is an unusual characteristic of the Gaussian core model. It can be explained 
in part by the convolution property, Section 2.2 above, which implies a compression 
smoothing of the potential energy surface in the 3N-dimensional configuration space. 
Duality relations, Section 2.3, can be used to estimate the amplitude of variation across 
the potential energy hypersurface in the high-density limit, from which it follows that 
the limiting behavior of the melting temperature should be [14] 

Tin(p) ~ Co e x p ( - C l p 2 / 3 ) ,  (3.1) 

where Co and CI are positive constants. 
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Fig. 1. Approximate phase diagram for the classical Gaussian core model (GCM). The melting-temperature 
maximum for the BCC crystal is a simple first-order phase change. 
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With melting temperatures converging to zero in both the low- and high-density 

limits, at least one melting maximum must exist between those limits. Simulational 
evidence indicates that it is a single maximum as shown in Fig. l, at approximate 
density 0.25, atop the BCC solid region. At this point, coexisting fluid and solid phases 
have identical densities, but the transition is still first order with a positive latent heat 
and entropy increase. 

The polymorphic transition between FCC and BCC crystals at low temperature spans 
the self-dual density x-3/2. No direct information is currently available about the den- 
sities at which this transition occurs at high temperatures. However, there is a known 
tendency for inverse-power-potential models to prefer BCC to FCC at elevated tem- 
perature [19]. Therefore, we have somewhat arbitrarily biased the transition to slightly 
lower density for elevated temperature in the approximate phase diagram in Fig. 1. 

4. Molecular dynamics simulations 

The following five densities, all above the self-dual density rc -3/2 =0.179587 . . . .  
have been selected for constant-volume molecular dynamics study of the Gaussian 

core model: 

p = 0.2, 0.4, 0.7, 1.0, 1.3. (4.1) 

The calculations for the highest density ( p =  1.3) involved 686 particles, while the 

lower four densities each involved 432 particles. Cubic primitive cells with periodic 
boundary conditions were used in all cases. Under these conditions the system can 
attain a perfect BCC structure if the temperature is sufficiently low. Prior molecular 
dynamics simulations for the Gaussian core model [7,17,18] considered densities 0.2, 

0.4, and 1.0; the present work confirms and extends those studies. 
In addition to the natural energy and length units that permit 4' to have the simple 

form Eq. (2.1), we are also free to set particle mass equal to unity. A sixth-order 
Gear algorithm [20] has been used to integrate the correspondingly reduced form of 
the Newtonian equations of motion. Reduced time increment At  = 0.05 served for all 
numerical integrations, and for each thermodynamic state examined, a 2000-step equi- 
libration run was followed by a 10000-step run over which averages were evaluated. 
In several cases, both heating and cooling state sequences were generated to verify 
reproducibility of results within expected statistical uncertainty. 

By definition, the thermal expansion :~, Eq. (1.1), involves a volume (density) change 
at constant pressure. Our constant-volume simulations detect the sign of c~, thanks to 

the thermodynamic identity 

 T=-I (4.2) 
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Fig. 2. Virial pressures at p = 0.7 from the molecular dynamics simulation. The upper branch refers to the 
BCC crystal, the lower branch to the fluid. Superheated BCC and supercooled fluid extensions are included. 

or, equivalently, 

~ = / £ T  ~ V ' 

where tcr is the isothermal compressibility that is always positive in a one-phase region. 

Therefore, the sign of ~ is the same as that of (Op/OT)v,  a quantity that emerges directly 

from the simulations. 

By way of illustration, Figs. 2 and 3 present virial pressures versus temperature 

evaluated for the p = 0.7 case. The first of these shows the low-temperature regime, 

encompassing both the BCC solid as well as the fluid just above the melting point, 
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Fig. 3. Fluid-phase viria] pressures for the GCM at p = 0.7 over an extended temperature range, showing a 
minimum. 

demonstrating that both phases have negative ct. Fig. 3 involves a considerably wider 

temperature range, with a pressure minimum and subsequent rise that herald a sign 
change in ~. Similar behaviors (initial pressure decline over BCC and fluid phases 

followed by a minimum) have been observed for densities 0.4, 1.0, and 1.3; by contrast 
the system at density 0.2 is "normal" ( e > 0 )  at all temperatures, as indicated earlier 

in Fig. 1. 

Table 1 shows the e = 0 temperatures Tmi n that we have determined from the virial 
pressures, along with several other properties discussed below. It should be recalled 

that, just as in the case of water and the other substances cited in the Introduction, 
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Table 1 
Selected properties of  the Gaussian core model at five densities 

p 0.2 0.4 0.7 1.0 1.3 

T m i  n - -  0.0111 0.0183 0.0170 0.0130 
Tmp 0.00812 0.00636 0.00197 0.000524 0.000129 
p(0) 0.0758 0.4235 1.3592 2.7832 4.7050 
p(Tmin) - -  0.4200 1.3469 2.7700 4.6926 
~BCC 0.152606 0.629311 1.450207 2.284295 3.119429 
( ~ s )  0.156883 0.632625 1.451163 2.284523 3.119483 

these are temperatures at which the system displays a density maximum when it is 
examined at fixed pressure. Evidently, densities less than or equal to 0.2 cannot exhibit 

such density maxima in the Gaussian core model. 
Table 1 includes estimates of the melting temperatures Trap for each of the five 

densities. These were obtained through the Lindemann criterion that identifies melting 

with attainment of  a critical value of the ratio of  root-mean-square particle displacement 
to the nearest-neighbor distance {. For the Gaussian core model this ratio for the BCC 

crystal has been determined to be [18] 

( ( A r i ) 2 ) / {  -~. 0 . 1 6 .  (4.4) 

Young and Alder [22] have established that this ratio has the slightly smaller value 

0.14 for melting of the FCC hard-sphere crystal, the low-density limiting case of the 

Gaussian core model discussed in Section 2.1. 
Several further quantities are also listed in Table 1 for completeness. These include 

the pressure in the BCC crystal at absolute zero, p(0), and in the fluid at the minimum, 

p(Tmin). Values of  ~bBcc, the T = 0 crystal potential per particle also appear there. Fi- 
nally, we have included (~bns), mean values of the potential energy per particle for 

inherent structures (potential energy minima) that are obtained from equilibrium fluid 
configurations by steepest decent mapping [23-25]; this quantity is substantially inde- 
pendent of  the pre-mapping fluid temperature. The convergence to zero with increasing 

density of the difference 

(q~ns) - qSBcc (4.5) 

that is evident from the Table 1 entries clearly illustrates the 4~ hypersurface smoothing 
phenomenon discussed earlier in Section 2.2. 

Fig. 4 presents our estimate of  the location of the ~ < 0  region in the p, T plane. 
It is based on the data shown in Table 1. Both the Trap(p) and Tmin(P) c u r v e s  display 
maxima, but displaced from one another; the former occurs at p ~ 0.25 while the latter 
occurs at p ==-0.75. We presume that beyond their respective maxima these curves 
decrease monotonically, approaching zero only as p diverges to infinity. Information at 
present is insufficient to detect a possible discontinuity or other singularity in Tmin(P) 
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Fig, 4. Estimated region of negative thermal expansion (:~ <0)  tbr the classical GCM 

as it crosses the BCC-fluid phase boundary, so we have assumed that it is smooth for 

the purposes of graphical presentation. 

5. Discussion 

With the exception of liquid He 4, for which strong quantum effects are operative, 

the liquids with negative :~ that were mentioned in the Introduction owe their anoma- 
lous behavior to the presence of directional bonding interactions. These interactions 

either directly or indirectly produce open, low-density structures that predominate at 
low temperature. Thermal motions at elevated temperature cause a partial breakdown 
and collapse of  those open structures, and thus an increase in density at least for a 

limited temperature range. Similar observations also apply to the case of cubic crys- 
talline ZrW208 that recently has been shown to possess an isotropic negative thermal 

expansion over a wide temperature range [26,27]. 
The Gaussian core model possesses only spherically symmetric pair interactions, 

Eq. (2.1), so that its region of negative ~ must stem from a fundamentally differ- 
ent source. The explanation seems to reside in the 4~-hypersurface smoothing induced 

by compression. Virtually all inherent structures (q~ minima) and their surrounding 
"basins" converge to a common depth in the asymptotic high-density limit, illustrated 
specifically by the difference shown earlier in Eq. (4.5). But this requires the higher- 
lying basins and their boundary-defining barriers to flatten out faster with density in- 
crease than do the lower-lying portions of the q) hypersurface. On average, this means 
that configurations occurring at higher temperature do not increase in potential energy 
as rapidly on compression as do the lower temperature configurations. Consequently, 

the former produce lower pressure than the latter, i.e. z~ <0.  
It has been pointed out before [5] that some polymer solutions, under osmotic solu- 

tion conditions, might approximate the properties of  the Gaussian core model: a similar 
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remark also apply to solutions of  nonionic surfactant solutions. This possible connec- 
tion arises from the entropic repulsion that can occur between two random polymer 
coils whose centroids are close enough to permit entanglement, or analogously as am- 
phiphile chains from neighboring micelles interfere. This suggests that negative thermal 
expansion effects in such systems, observed through temperature and concentration de- 
pendence of  osmotic pressure, might be attained in real systems as an illustration of  
this alternative ~ < 0  cause (central forces only). 

As a final matter, it should be stressed that the Gaussian core case cannot be unique 
among central force models in producing a region of  negative thermal expansion. The 
phenomenon is sufficiently strong in the present case that it must survive the addition 
of  at least weak perturbations to the Gaussian pair potentials. In particular, we mention 
the addition of  a weak but long-ranged Kac-Uhlenbeck-Hemmer potential [28], 

~,3 v( Tr ij ) , ( 5 . 1 )  

for each particle pair. In the limit o f  vanishing 7 this adds a van der Waals term Ap 2 

to the pressure, where A may have either sign depending on v, but is independent of  
T and p. Such a term cannot affect the quantity (Op/OT)p that has been used in the 
present study to identify the occurrence of  negative ~, although it might cause a shift 
in phase boundaries. 
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