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Starting with the previously derived vacuum-state expectation representation of the Ising partition
function, an integral transform is applied to part of the Bose 6eld operator arising from pair interactions,
generating thereby the e8ect of random external fields. The remaining pair interaction is treated as a per-
turbation, whose e8ect is small in both the high- and the low-temperature extremes. The transformed part
of the potential is selected 6rst to generate a Marko8 process, and the perturbation equations may then be
regarded as conditions that the perturbation have no eGect on either the partition function or the long-range
order below the transition. In two dimensions, it is shown how the characteristic integral equation of the
Markoff process reduces to the matrix eigenvalue problem solved by Onsager, in the limit of just nearest-
neighbor interactions,

I. INTRODUCTION

HE first article' in this series was devoted to
investigating some of the implications of a novel

representation for the Ising-model partition function Z,
viz. , a vacuum-state expectation value of Bose field
operators. Although expansion of Z and the spin dis-
tribution functions in Feynman diagrams proves useful
in recovering the spherical model, and in developing a
systematic correction procedure for this approximation,
there invariably remains the ever-present many-body-
problem embarassment of having to sum graphs of
high connectivity for which no general analytical pro-
cedure is currently available.

For certain special pair interactions, it is known' that
the problem of evaluation of Z is equivalent to finding
the largest eigenvalue of an integral equation associated
with a special Markoff process. One therefore possesses
for this class of potentials effectively a means of sum-

ming all Feynman diagrams generated in the refor-
mulation of Paper I, at any rate if the characteristic
integral equation can be solved.

By now the properties of the integral equation for
one-dimensional lattices are well known. We shall show
below (Sec. III) the way in which a special case of the
class of two-dimensional lattice Markoff processes yields
an integral equation that may be precisely reduced. to
Onsager's eigenvalue problem. '

The major objective of this article is to utilize the
structure of the reduction to Markoff processes as a
starting point in a perturbation theory. Thus, if the
original Ising model of interest possessed a spin-pair
interaction

v(r, ,)p,p;,

for spins JM,;, p;= ~1 located respectively at sites at r;
and r;, we write

where ~I lead, s to the MarkoG process, and e2= v —ei is
the perturbation. Because there is still considerable
arbitrariness in the choice of eI, however, we adopt the
point of view (Sec. IV) that the perturbation equations
may be used as criteria for selection of an optimum vl.
In particular, it will simultaneously be demanded that
e» alone yield the same partition function as v, and that
the zero-wave-vector susceptibilities for el alone and
for e be identical. Below a ferromagnetic transition
temperature, this latter condition is equivalent to the
demand that e2 not affect the degree of long-range order.

The reasons for wanting to develop such a "per-
turbation" theory are twofold. First, we shall see that
both at very high and at very low temperatures the
theory carried only to 6nite order in e2 is asymptotically
exact. Secondly, the general feeling has developed4
among students of cooperative phenomena that the
analytic character of the extremely interesting critical
singularities in various thermodynamic and structural
quantities is independent of the finer details of the
potential e for a lattice of given dimensionality. Thus,
the usual stumbling block in most approximate order-
disorder theories is neatly removed by the vl Markoff
process, and the efTect of ~2 on any selected model
property is probably a minor elaboration at all
temperatures.

Certainly not all Markoff processes generated by the
random-external-Geld interpretation can be solved at
present. It seems, however, that since the full range of
critical singularities may already be contained in the
partition function and spin distribution functions for
Marks eI's, there is strong additional inducement for
extending the list of soluble cases, with a view toward.
understanding classical phase transitions. By estab-
lishing a link to the Feynman-diagram technique de-
veloped at length in I, we hope to provide an additional.

~(r) =»(r)+»(r), M. K. Fisher, in The Classical Equilibrium Theory of Fluids,
edited by H. L. Frisch and J. L. Lebowitz (W. A. Benjamin

F. H. Stillinger, Jr., Phys. Rev. 135, A1646 (1964); as is Company, New York, 1964). This suspicion is reinforced by the
customary we shall refer to this paper simply as I. fact that the behavior of certain two-dimensional lattices is rigor-

'M. Kac and E. Helfand, J. Math. Phys. 4, 1078 (1963); this ously known to undergo no substantial change upon addition of
paper contains references to pertinent related work. some second-neighbor interactions to the nearest-neighbor case;

3L. Onsager, Phys. Rev. 65, 117 (1944); B. Kaufman, ibid. 76, see: H. S. Green and C. A. Hurst, Order-Disorder Phenomena
1232 (1949);B. Kaufman and L. Onsager, ibid. 76, 1244 (1949). (Interscience Publishers, Inc. , New York, 1964), Chap. 7.
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weapon useful in the broad theoretical attack on phase
transition problems in general, as well as on special
MarkoG processes in particular.

M=-,' g V(k)[b" (k)bt( —k)+2bt(k)b(k)

V(k)=g r, (r) exp(ik r),

+b(k)b( —k)+1j, (3)

(4)

II. OPERATOR TRANSFORMATION

The partition function Z was expressed in Paper I
in the following form'.

z(p) =(olm (—pM) em(D') lo),
(2)

P= 1/kT,

for any Ising model on a regular lattice with periodic
boundary conditions, regardless of dimensionality or of
range of the spin pair interaction potential v. The
operators M (Hermitian) and Dt(non-Hermitian) are
constructed from the boson creation (bt) and annihi-
lation (b) operators for running excitation waves in the
lattice':

An XXXmatrix (8);;may now be introduced, whose
inverse is the cyclic matrix

We assume that —Pr &(0) is suSciently large that 8 '
will be positive d.efinite. Then since the set of numbers
T(k) = —PV~(k) for k in 7 are precisely the X eigen-
values of B—', the eigenvalues of the necessarily cyclic
matrix 8 are 1/T(k). Accordingly, one may write the
multiple Gaussian integral

exp( —pM&) = d+I'(+) exp( —pMo), (10)

lation functions have similar, but more complicated,
matrix-element representations.

An integral transform may now be applied to the
operator exp( —PM), which appears in both the Z and

f expressions, (2) and (7). First write M=M~+M2, in
accord with the potential split-up of Eq. (1), where M~
and M2 have the same form as shown in Eq. (3) for M,
but with the transforms V~ and. V2 of v~ and e2 replacing
V. Since M& and M2 commute,

exp( —pM) = exp( —pM2) exp( —pM~) .

Dt=g x~-.D P' b~(k, ) "bt(k,.) 2'(c) = (2 )-""l~i'"
n=2 k1 ~ k2n

Xexp( ——' P [T(k)j %q*Cq}, (11)
( 1)n 122' —m y2n —ldy

D =
w'"(2m)! 0 sinhy

(6)
Mo=r, [(C */P)b'(k)+(C'. /P)b(k)3, (12)

The k's are the reciprocal lattice vectors inside the first
Brillouin zone 7. The primed summation in (5) is
further restricted, by momentum conservation:

k,+ +k,„=o.
The spin-pair correlation function, which plays a

central role in the statistical thermodynamics of co-
operative phenomena, may similarly be expressed in
terms of matrix elements of boson operators. For a
translationally invariant system one has

(~*»)=4 (r'~)
(&)

=8,,+(XZ) 'P exp(ik r,,)

X(k, —klexp( —PM) exp(Dt) lo), (7)

where 5,; is the Kronecker delta. The states (k, —kl in
Eq. (7) involve single excitations in states k and —k,
but none in any of the others. The higher order corre-

'For. notational simplicity we disregard real external fields,
though their inclusion would cause no fundamental problem.' Unlike the case in I, we will allow the spin-pair potential e(r)
to be possibly nonvanishing at the origin. This requires retention
of unity in the bracket of Eq. (3},which did not appear in the
corresponding Eq. (20} of I.

Ck C'—k ~

The integrals J'd4 in Eq. (10) are over the 7 inde-
pendent real and imaginary parts of the complex
parameters C k.

The new operator Mo is linear in the 6eld operators,
rather than bilinear as is M&, and it has exactly the same
form as an M operator for an Ising model with inde-
pendent spins interacting only with an external field. '
The value of the external field corresponding to the set
of C ~ which acts on the site at r, is the real number q,/P,
where

(~)

p, =X 'I' P Cq exp( —ik r,),
(13)

Cg ——.V—"' P p, exp(ik r,),

so that aside from a factor P the C ~ may be interpreted
as the Fourier coe%cients of an inhomogeneous external
field acting on the set of spins. If we let the brackets
(. ) denote averaging over the Cq's with the normal-
ized weight function P(+), Eq. (10) reads

exp( —pMq) = (exp( —pMO)),
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FIG. i. Typical contribution to the partition function Z, which
is expressed in the random-external-Geld notation of Eq (14.'),
for the case of vanishing M2.

and partition function expression (2) becomes

z{p)=((ol. (—pM,).~(—pM,). (D) lo)). {14)

The external field averaging operation ( ) may
equally well be carried out in terms of p& ~ &&.~ Sub-
stituting the second of Eqs. {13)into Eq. (11) yields

&(+)=P(4) = (2x) ""IBI"'

&«xpf sZ—(&)/tv J~t); (15)

upon rccogIQzlng tlM expression foI thc cyclic InatIlx
8 in terms of its eigenvalues and eigenfunctions, '

(8) t ——Q l $T(k)]—'expfilc (rt —r )]. (16)

Thc RdvantRgc of using thc variables + is of couI'sc thc
diagonal character of P(e').

%C shall initially proceed to examine the character
of the Feynman diagrams generated by the operators
in Eq. (14), in the special circumstance of vanishing res

and Ms (which case will be denoted by subscript "one"),

Zt(P) = ((0 l exp( —PMs) exp(Dt)
l 0)). (14')

In the anal section we take up again the more general
case of nonzcro M2. As was demonstrated in I, appli-
cation of Kick's theorem to "time-ordered" field

operators in a representation such as (14') permits one

to draw Feynman diagrams on a pair of parallel strips
of width unity Dor exp(Dt)] and of width P /for
exp (—pMs)].

Figure j. illustrates a typical contribution to Z~ for
the case in hand. ' One notices that the graph may
consist of several disconnected parts (as determined by
the manner in which the application of Kick's theory

7 The transformation Jacobian for +~ y is unity.
P. O. Lo*wdin, R. Pauncz, and J. de Heer, J. Math. Phys. 1,

461 (1960);J.-L. Calais and K.. Appel, ibid. 5, I001 (1964).
9 It should be borne in mind here that the outer bracket (( ~ ~ ))

averaging operation is to be carried out after summation over
diagrams has been performed; we temporarily suppose therefore
that the Cg are a fixed set of quantities.

has contracted pairs of operators) which are either of
two types: {1)"bursts" of four or a larger even number
of excitations originating in the lower strip Lsee Eq. (5)
for Dt], or (2) disconnected line segments confined

wholly to the upper strip. The crosses in the upper
strip will be called "external field vertices" since each
arises from either a destruction (upper graph-line
terminus) or creation (lower graph-line terminus)
operator from Ms ln Eq. (12), and therefore carries
with it a C I, or 4 i,

* factor. The low'er strip bursts carry
factors D„.

One can now proceed to sum up the contributions of
all graphs of Zr(P). Besides the upper strip factors
already mentioned for each graph, it is necessary to
include:

(1) (—P)2™/(2m)!from expansion of exp( —PMs),
where 2' is the (necessarily even) number of M,
operators;

{2) Q;=s" (X' 'D )"~/ts ! from a term in expansion
of exp(D') involving es bursts of 2X2 excitations,
~ . . e-burstof 2~ .--.

JN

(3) (2m)!/(2g jn)!(2m—2+ jts)! ways of di-
viding Ms's between contractions with themselves and
with Dt' s;

(4) (2m 2P—

jest;)

t/(2l}~ x/"~(ns —P jets;) t ways of
contracting 2m —2g je; Ms's among themselves to
give the simple line segments in the upper region;

(5) (2 g jts;)!/g; s"
l (2j)!]"~' ways of partitioning

2 g je; Ms's among bursts for contractions;
(6) g; s"

l (2j)!]"~ways of actually contracting the
Me's within already-assigned bursts. The result is found

straightforwardly to be

(&) CO

X P' Cs, Cr„.}). (17')

This may easily be converted to a more familiar ex-

pression in Gaussian random variable theory by elimi-

nating the C's with the second Eq. (13):

Zr(P) = (g cosh yt}.

To obtain this result, it is necessary to utilize an
identity satisfied by the coefFicients D; ":

Q D,x&= ——',x+in cosh'.
2=2

Precisely the same type of diagram summation may
be carried out for the nondiagonal matrix element

appearing in the pair correlation function of Eq. {/)
after application of the same integral transform to M~,

@ See Eq. (A4) of Paper I and the text immediately following.
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again assullling Ms= 0)

(&)

fi(re) =8g+X Q—exp(ik rg)
k

((k, —k(exp( —PMs) exp(Dt) ~0))x (20)
((0~ exp( —PMe) exp(Dt)

~
0))

Figures 2(a) and 2(b) show that the two remaining
excitations in (k, —k ~, the state above the upper strip,
may be ind. icated. by bringing two hnes upward out of
the upper strip. As exhibited in I'ig. 2, the two "ex-
ternal" vertices terminating this pair of special lines
either may or may not be internally connected to one
another.

The graphs generated by the numerator of Eq. (20)
therefore consist of the same parts as encountered
already in evaluation of Zi, plus the new parts connected
to the upper vertices. Graph summation will thus yield
(inside the averaging brackets for the numerator) a
product of two factors; the first appears in Kq. (17) or
(18), and the second is the sum over parts connected
to the two external vertices. We shall not repeat the
lengthy but uninstructive algebra here; one finds

FIG. 2. Diagrams arising in evaluation of the M2 ——0 pair-
correlation-function numerator, Eq. (19). The lines terminating
in vertices above the upper strip, and labeled h and —k, are the
two excitations in the final state (lr, —lr). Cases (a) and (h)
exhibit, respectively, the possibilities that these external vertices
may either be disconnected or connected.

X{tanh q (r;+s) tanh q (r~+ s)

—5" tanh'q (r +s)}). (21)

Owing to the translational invariance of the lattice
system, each of the X terms in the s sum in Kq. (21)
will be equal. Therefore„when the sites i and, j are
distinct~

in which the function g depend. s only on the two external
6elds acting on adjacent sites. In the case of a two-
dimensional lattice (we choose the rectangular lattice
for de6niteness) we again assume that p consists of
factors corresponding to the nearest-neighbor links
(1K=its):

gati(r, ;)=Zi ((II coshqi} tanhq;tanhq, ). (22)

This result is a standard, form in the extant theory of
random external fields. "In a similar way, one could sum
Feynman diagrams for higher ord, er spin-correlation
functions ()i,p,; p&} for larger numbers of discrete
sites, with the resulting insertion of the requisite larger
number of tanh factors in an expression of type (22).

+gw(q'i&i q'i, H-i)

Q(qi, qi+i)=II v*'"(q i' q»+i, i)vs(q». i q», i+i)

The interactions ei(r) of interest here are those
inducing an especially simple product representation
for p(q), which will depend upon the lattice under
consideration. Thus, for the linear lattice, p will be
supposed to split into factors for each nearest-neighbor
bond'

p(q)=(2~) ""I~I"'V(qi; qs)q(qs; qs)".
g(px i ' qw)g(qz; q'i) (2—3)

"SeeZq. (5.1) of Ref. 2.

The last form shown for p in (24) has been written as
the same linear sequence of factors as in (23), but now
the variables q i and q i+i in each factor Q are a pair of
sets of e external fields in vertical columns next to one
another, columns l and 1+1.In exactly the same way,
p for a three-dimensional lattice would be taken as a
linear sequence of Q's whose variables were the spins in
successive 4yers of the lattice.

In the case of the planar rectangular lattice to which
Eq. (24) apphes, one sees from Eq. (15) that 8 will have
nonvanishing matrix elements only for nearest neigh-
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bors,

4, / not neighbors or the same site;
k, l horizontal neighbors;

k, I vertical neighbors;
k=1. (25)

—pvi(ri —r;)=
(2 $)r' a

2b.
1— cosk,—

2by
cosky

8

If b, and b„are much smaller than a in Eq. (27), the
two denominator cosine terms represent small vari-
ations, and so one has

Given these matrix elements it is easy to obtain the
eigenvalues X(k) of the cyclic matrix 8 ':

X(k) =a+2b, cosk,+2b„cosk„. (26)

Here k, and k„are the x and y components of the vectors
k inside r.

It has already been remarked that X(k)=1/T(k),
and we invert Eq. (16) to find

(.i expt —ik (ri—r;)j= ($$$e)-'
~ a+2b cosh, +2b„cosh„

X exp( i—k ri~)dk, (31)

—Pvi(0) = 1/a,
—Pii(u, )= b./a', —
—Pi'i (u„)= b„/a';—

(32)

(u, and u„here stand for the primitive lattice vectors).
If we therefore write in the general case

where we recall that r is a 2+X2x square in k space.
The integral in Eq. (31) vanishes unless ri~ is either
zero or equal to a nearest-neighbor distance.

expt ik —(ri—r,)]
dk.

, a+2b, cosk, +2b„cosk„
(27)

a(y)=exp( —y)/pJ 'I'J 'I'

b.(7)= —exp (—2y)/P J„,
b„(y) = exp ( —2p)/P—J.,

(33)

The lastexpression is thepermissible integral limit for the
Brillouin zone sum, and the resulting set of admissible
»'s following from the assumed form (24) for p(q) are
proportional to the Green's function for the finite
difference version of the Laplacian operator in two
dimensions. Similarly, the linear and simple cubic
lattices would permit ~~'s proportional to their own
Green's functions, which would involve one and three
cosine functions, respectively, in their integral denomi-
nators, instead of the two in Eq. (27)."

The reason for desiring a p($$$) which is a linear
sequence of factors is that Zi in Eq. (14') becomes an
m-fold iterated kernel, and so

lnZi in/(2$r) ~"$'~8('I'li, ~j, (28)

where ), is the largest eigenvalue of the integral
equation,

then allowing 7 to become very large yields in the limit
an interaction which vanishes beyond nearest neighbors,
and for them

Ui (u,)=—J.,

wi(u„) = —J„.
Therefore (aside from the trivial shift in energy due to
spin self-interactions w, (0)$, we have recovered the
nearest-neighbor Ising model in two dimensions. For
arbitrary values of y the interaction e~ will tend to
spread out beyond the nearest neighbors, but will

always decay to zero with increasing distance. "
Written out explicitly, the kernel E in Eq. (30) is

seen to have the following form:

Xcosll 12(lp$ ). (35)

Equation (29) may be regarded as the characteristic
integral equation of a Markoff process. The process is
one-dimensional for the linear lattices, but is e-dimen-
sional for the rectangular lattice which we shall con-
tinue to examine at some length for the remainder of
this section.

~ The Green's functions for the linear lattice may be integrated
by elementary means, and those for the simple cubic lattice have
been tabulated in: A. A. Maradudin, E.W. Montroll, G. H. gneiss,
R. Herman, and H. W. Milnes, Royal Belgian Academy 14, Part
7, 15 (1960).

Having just noticed that nearest-neighbor Ising mode1s
correspond to b's very much smaller than a, we examine
the kernel Eo resulting from neglect of the b's in Eq.
(35)

&o(9»p') =ll cosh'"(&) expL —-'Lab')3
j=l

X (p, +p,")7cosh'"(q, '), (36)

» We must always have u&2b +2b„ to have insured the posi-
tive-de6niteness of 8 ', and hence the convergence of integral
(27).
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and its associated integral equation,

l f.(~)= dq'Zo(q, q')fo(q')

fo(q ~ q'„) =C II cosh' '(q;) exp( —(~a) q'P),
j=l

A nodeless eigenfunction belongs to the maximum
eigenvalue according to Perron's theorem, " and one
easily veriles that the corresponding fo and Xo are Therefore we introduce new variables,

g, =Conj, gj =Conj, (42)

so that in terms of the new variables, the maxima occur
very close to (&1, &1, ~ ~ ~, &1).Let

very much smaller than a, that b, and b„are neverthe-
less still the source of the pair interactions. Their role
may be clarified as follows. It may first be recognized
that for very large y, and hence small a(y), that
fo(q ~ q ) has sharp maxima near the 2" points

q~ ——+1/a, q2 ——+1/u q =a1/a. (41)

Q Pi ~ ~ ~ dq'-' II cosh(q~')
j=1

Xexp( —(ka) q )

~(q) =em( —q'/4~);

then one has indeed that

fo(gx '' q' ) 'fo(ps' ' ' q' )

(43)

=L(2s/a)"' exp(1/2a)7"; (39)

C is a suitable normalizing constant. %hen it is recog-
nized that ~B~ =a " for this case of negligible b's,
substitution of Xo into the partition-function expression
(28) yields

'n

II ~Lq~—(—1)'"+""7 (44)
pl ' ' 'pn —&1

with C' a normalizing constant), to within terms of
negligible order. By making the same variable change
(42) in the integral Eq. (36) one obtains

lnZO mn/2a= —
2 mePv&(0) . (40)

This is the correct result for the me spins subject only
to their self-interaction.

One therefore concludes, even in the y —+ ~ limit of
nearest-neighbor interactions, where the b's become

l ofo(q) = ~7'Zo(q, q')fo(q') (43)

in which the transformed kernel Ko may be written with
sufFicient accuracy as

n

Zo(q, q') = Lexp(1/2a)/2a]" II $h(q;+1)+h(q, —1)][A(y,'+1)+A(q,' —1)7
j~l

=
Lexp (1/2a)/2a]"

n

II &L~,—(-1)'"+"']&L~,'—(—1)'&'+""]
pi'''pn=+1 pl '''pa =+1 9~1

(46)

In the nearest-neighbor limit, then, both fo and Zo are characterized by extremely sharp and narrow maxima.
How do b, and b„m oifdy this simple picture P We shall now write integral Eq. (29) as

V(v)= dq 'Z(q, q')f(q'),

with
n

Z(q, q ') =Z, (q, q') II exp — "
(q»q, +,+q~'q;+, ') ——q, q,

'
282 g2

I

(48)

Since b,/a and b„/a are of order unity in the y-+ ~ limit, the factors multiplying Zo on the right-hand side of
Eq. (48) act essentially as constants over the narrow width of each of the peaks of Kp. Hence Z has the same
behavior as Xo, except the newly inserted factors change the magnitudes of its maxima; unlike Xo they are now
not all the same height. Therefore

Z(q, q ') =
Lexp (1/2a)/2u]"

pl ''pe=+1 all '''pe ~+1

n

I (s,s') II ~Le»—(—1)""""]~[q'—(—1)""""],
j~1 (49)

~(~,I ') = expLk(&~. ) (u I +i+I"'I,+i')+0~*1,I,']
'4 R. Bellman, Imtroductiorl, to Motrix Anutysis (McGraw-Hill Book Company, Inc. , New York, 1960), p. 278.
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On account of the differing peak heights exhibited
by E, one expects similar behavior for the eigenfunc-
tions f(q) N.oting that

The matrix eigenvalue problem (52) is precisely the
one solved originally for the rectangular Ising model by
Onsager. ' In view of Eqs. (28) and (53),

(me) ' lnZq —ln2 ——,'Pvq(0)+e ' in'», (54)
d„-'~2L„- ( 1)sj (2,)u2

one Ands by substitution of

f(q')= P C(p p )

(50)

(55)limZg(P) = 1,
p~o

since
limX, =2".
p~o

the —ln2 is required by the high-temperature normali-
zation of Zl..

IV. PERTURBATION THEORY

Although the criteria for selection of the optimum
Markoff process potential vl may readily be carried out
by means of Feynman diagram summations, we choose
here to work in the more conventional and direct space
of the spins themselves. One has

and kernel (49) into integral Eq. (47) that a solution
will be obtained, provided that the set of 2" constants
C(pr p„) satisfy the matrix equation

XC= LC. (52)

e p{—Z ~a' pZ —& (r')~'~ })(57)

for the partition function, excluding the v2 part of the
(53) spin self-energies. This expression may be rewrittenX= (2a/~) "I' exp( —e/2a)X.

Here the function 1.(p,p') is represented by a 2"&&2"
exp/XPv2 (0)/2 jZ(P)

matrix, and the set of constants C(p) by a 2"-corn- =(
ponent column vector. In Eq. (52) the X is simply
related to X by

N N

expLEPv2(0)/2jZ&(P) .( P exp{—P y,p,—P P v2(r, ,)p,p, })/Z&(P)
p ] ~ ~ ~ Jg~

=exp| 1VPe2(0)/2jZr(P)LZ~(P)j-'( P exp{—P q;p;}{I—P P r2(rv)gp+ })
p] ~ ~ opg

= expLSPvm(0)/2]Zx(P) {1—P P w2(rg)gx(r;, )+ }, (58)

where the exponential has been expanded under the assumption that successive terms are negligibly small, and
Z& and P& are the previously introduced partition function and pair-correlation function for v& alone.

Assuming that only the term linear in v2 in Eq. (58) need be retained, the invariance of exp/SPv, (0)/2]Z to
the presence of v2 obviously demands

Z»(r)A(r) =o.
r&0

(59)

Thus the pair-correlation function in the unperturbed system may be considered a weight function such that the
correspondingly weighted sum of v2 over all positive pair distances is to vanish. This is our first criterion. It could
straightforwardly be extended to higher orders in v2 if desired, involving higher order distribution functions in the
vl system.

The pair-correlation function in the perturbed system may be written in the following form t equivalent to Eq.
(22)j:

N N

(~'v~ exp{—2 v.~. (P/2) 2 —~2(r.i)I .~i})
k=j. k/l =l

(60)
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The first criterion, Eq. (59), ensures invariance of the with the resulting second criterion
denominator, so e~ may be dropped from it. If the
numerator then is expanded through terms linear in e2

one obtains formally (r;;)0)
0=2 {2

k, l=l
(kgl; k, l &i, j)

v2(kl) Lg i(ijkl)

4 (ij)=A(ij)—W2)
k, l =1

(kgb; k, i&i, j)

vm(kl)gi(ijkt)

—4i(ij)4i(@)j+2 Z»(ii)A(V)
l=i

(&i.a)

+»(ij)D—20P(ij)3 (63)

2P—Z»(it)A(ji) —P»(ij) (61)

gi(ijkl) is the mean value of the product p;p;Iiiyi in the
unperturbed, system; it is given by an expression of
type (60), with this quadruplet product in the numer-
ator summand, replacing the pair product. Our second
criterion will d.emand that the sum

Z 4(r)
t'&0

be invariant to the perturbing potential e2. This requires
that the last three terms on the right side of Eq. (61),
when summed over all r;;&0, give zero,

rs j&0 k, /=1
(km&; k, rgi, ~)

»(kl) gi(i jkl)

+2 p im(il)fi(j/)+2»(ij)}. (62)

kfi(ij) Z»(@)A(ki),

At temperatures sufFiciently high that the unper-
tul bed lattlcc of splQS cxhlblts Qo long-raQgc ordcl

&

gi(ijkl) vanishes if the four spins indicated are separated
from one another by more than a few lattice spacings.
Below a ferromagnetic transition temperature T„
though, gi approaches the fourth pow'er of the degree
of long-range order for mutually separated con6gu-
rations. To eliminate the apparent T&T, divergence of
the first sum in Eq. (62), we may use the first criterion,
Eq. (59), to subtract the vanishing quantity

Below T„ the unperturbed pair-correlation function
Pi(r) likewise fails to approach zero as r-+ ~. Con-
sequently, the rniddle term in Eq. (63) also will diverge.
But no use of the 6rst criterion can eliminate this
d,ivergence. As a result, one is forced, to the conclusion
that for 2'& T, the second criterion, Eq. (63), reduces
to

r&0

to within ord, er X ', since this is the only way that the
more complicated expression (63) could vanish. Since
fi(r) continuously develops a long-range tail as T is
lowered through T„one sees that the simple form (64)
for the more complex condition (63) is attained in a
smooth, continuous fashion.

Equations (59) and (63) are implicit relations
(through fi and gi) for the optimum vi choice, which are
valid through first order in the perturbing potential e2.
Clearly our criteria could be extended to higher order
in v2, but at the expense of involving correlation func-
tions for more than four spins in the unperturbed
system. At very high temperature, the first-order results
always suKce, since ~2 appears divided by kT. Also, at
the low-temperature extreme the perturbing CGect of
e2 is small due to the "stiffness" of the nearly complete
long-range order. In this latter regime fi(r) is, for all
practical purposes, the constant unity, so Eqs. (59) and
(64) become identical to one another and to the result
of the mean field theory (asymptotically exact at low
temperature) under the invariant long-range order
condition.

As a final comment, we note that when our two basic
criteria are applied, to some initial interaction w(r) the
optimum Marks potential vi wi11 not be the same at
all temperatures. Rather, Zi(P) and the unperturbed
correlation functions of various orders will be deter-
mined by a potential vi(r, P) containing an implicit
temperature variation. In taking derivatives of Zi to
obtain the mean energy and, specific heat, one must
remember to account for these implicit variations.


