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Abstract 

A representation in terms of inherent structures (potential minima) and their basins of attraction provides a convenient means 
for analyzing condensed-phase equilibrium and irreversible processes. In particular this approach is natural for investigating 
implications of the potential energy "rugged landscape" for glass formation, and its general features lead to formulation 
of a hypercube model for the collection of inherent structures and their dynamical transitions. A specific realization of 
this hypercube model exhibits a first-order melting/freezing transition as well as supercooled and superheated metastable 
states; it also illustrates how artificial Kauzmann temperatures (ideal glass transitions) can seem to arise from limited-range 
thermodynamic properties. Lists of open mathematical and chemical problems generated by the inherent structure approach 
terminate the presentation. 
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1. Introduction 

The particles that form condensed phases experi- 

ence strong and unremitting interactions with their 
neighbors. The many-particle potential energy func- 

tion • that comprises all of these interactions con- 

trols crystal structure, determines thermodynamic 
properties and phase transitions, and underlies all 

kinetic properties. Materials vary widely in each of 

these attributes owing primarily to chemical dis- 
tinctions that influence the respective q~ functions. 

The present paper examines several aspects of the 

way that the multidimensional "rugged landscape" 
presented by qb connects to measurable properties, 
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particularly those observed for supercooled liquids 

and glasses. 

Section 2 reviews general features of realistic q3's, 

and discusses the • hypersurface in the multidimen- 
sional configuration space of all particle coordinates; 

in particular the steepest-descent map generates a 

natural division of the space into "basins of attrac- 

tion." Section 3 extends the geometric characteri- 
zation of the rugged • landscape by invoking the 

"inherent structure" representation [1-3]. In order to 

simplify the extremely challenging geometric prob- 
lem that is generally involved, Sections 4 and 5 

present a hypercube model for q~ basins and their 

kinetic interconnections. This model facilitates dis- 
cussion and understanding of liquid supercooling and 
glass transitions, and is particularly useful for ana- 
lyzing the striking phenomena displayed by fragile 
glass formers [4,5]. Finally, Section 6 is devoted to 
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a listing of open problems generated by the inherent 
structure viewpoint, and by its hypercube-model 
embodiment. 

2. Potentials and their basins 

Suppose that a large number N of molecules 
forming a condensed phase of interest reside within 

volume V. Each molecule i possesses a center po- 
sition, orientation, and conformation (if any) that 

are specified by vector ri(1 < i < N). The in- 
teraction potential for this collection of molecules, 
q'(rl -. • rN), represents the Born-Oppenheimer 
ground-electronic-state energy for the system, with 
origin chosen so that • vanishes for widely separated 
molecules. 

The function ~, contains chemical information 
about the molecules involved including size, shape, 
flexibility, multipole moments, and polarizability. It 

includes dispersion attractions, and for many impor- 
tant glass-forming liquids the capacity to engage in 
hydrogen bonding. Selected cases may also involve 
breakage and reformation of covalent chemical bonds. 
But leaving chemical distinctions aside, c/, generally 
will exhibit the following mathematical properties: 
(i) invariance under permutation of identical particles; 
(ii) continuity and differentiability away from nuclear 
confluences; and (iii) thermodynamic stability arising 
from a lower bound of the form 

> - B N ,  (2.1) 

where B is positive and N-independent. 
Assuming that each molecule possesses v internal 

degrees of freedom, the configuration space spanned 
by rl • .. rN will have dimension (v + 3)N~ This space 
contains an enormous array of local c/, minima, each 
representing a mechanically stable arrangement of the 
molecules in 3-space, an "inherent structure". General 
considerations [1] establish that in the large system 
limit the number of local q~ minima I2 grows asymp- 
totically as follows: 

I2 --- Nt exp (aN), ot > 0. (2.2) 

Each minimum belongs to an equivalence class of N ? 
that differ only by particle permutations, while the 
number of essentially distinguishable minima rises ex- 
ponentially with N (at fixed N~ V). 

The full multidimensional configuration space can 
be naturally and exhaustively divided into "basins", 
one surrounding each c/, local minimum. These are 

defined to be the loci of configuration space points all 
of which connect to the same minimum by means of 

steepest descent on the • hypersurface [ 1,2,6]. Transi- 
tion states (simple saddle points) reside at the bound- 
ary shared by a pair of contiguous basins, and it is 
through the neighborhood of these transition states 
that interbasin dynamical transitions can be expected 
to  occur .  

In addition to the asymptotic enumeration property, 
Eq. (2.2), the basins and the local qo minima that 
they surround present the following general character- 
istics [2]. 
(A) Elementary transitions between contiguous 

basins involve localized particle rearrangements 
and are seldom purely permutational. The cor- 
responding potential energy change measured 
by the respective qo minima is just O(1) as a 
consequence. 

(B) The span of q0 minima (difference between the 

absolute minimum and the highest-lying relative 
minimum) is O(N). Owing to (A) above, these 
extremes must be widely separated in the config- 
uration space. 

(C) The boundary of each basin contains O(N) tran- 
sition states. As a result, the positive temperature 
transition rate also is O(N), i.e. the mean resi- 
dence time in a basin is O(N-I ) .  

(D) Transition state barriers can be arbitrarily low in 
the dominant portion of configuration space that 
is characterized by amorphous ~ minima. These 
low barriers create the quantized two-level de- 
grees of freedom that appear to be a universal 
property of low-temperature glasses [7,8]. 

The description just given is appropriate for con- 
stant volume conditions. In the event that, instead, con- 
stant pressure conditions apply, pV should be added 
to the intermolecular interactions, and V treated as an 
additional coordinate [3,9]. 
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3. Inherent structure representation 

Let ~p stand for basin depth on a per-particle ba- 
sis i.e. the value of q~/N at the embedded inherent 
structure minimum. This intensive order parameter 
offers a natural way to distinguish and to classify 
the huge collection of basins presented by a macro- 
scopic condensed-phase system. Under this classifica- 
tion scheme, the density in cp of inherent structures has 
a form asymptotically consistent with Eq. (2.2) above, 

N] exp [a(q~)N], a(q~) > O. (3.1) 

For the subset of basins with depth parameter 4~, 
the intrabasin vibrational free energy per particle may 

be denoted by fv(/5, ~b). Here/~ is (kBT)  -1 , and the 
formal definition of fv includes intrabasin anharmonic 
effects to all orders [1,3,9]. 

The definitions of a and fv lead to a simple varia- 
tional expression for F, the free energy of the N-body 
system, that is an exact identity in the large-N limit 

[1,2,6]: 

the supercooled liquid down to the glass transition 

range [9]. 
Beyond consideration of the free energy, sepa- 

ration of the inherent structure (a) and vibration 
(fv) aspects yields other nontrivial consequences. 
In the case of simple, Lennard-Jones-like systems 
computer simulation demonstrates that at constant 
volume the temperature dependence of short-range 
order resides almost exclusively in the amplitude of 
vibrational motion. After invoking steepest-descent 
mapping to remove all vestiges of vibrational de- 
formation, the resulting collection of inherent struc- 
tures exhibits strongly enhanced short-range order 
that is virtually temperature-independent. This is 
clear from the ~bm(/5), from the pair correlation 
function [2,10], and from the distribution of void 
sizes [11]. The separation has also led to formu- 
lation of an inverse Lindemann criterion for the 
freezing of liquids, keyed to the rms vibrational 
displacements within amorphous-structure basins 
[6,12]. 

f F ( f ) / N  = min{/Sq~ - a(4)) +/Sfv(f ,  ~)} 
(¢) 

+K(,B) (3.2) 

K(f l )  is an additive contribution determined only by 
the properties of a single molecule, and has no rele- 
vance for the remainder of this paper. The variational 
minimum indicated in Eq. (3.2) will be attained at a 
temperature-dependent depth ¢m(/5) which identifies 
the subset of basins that are preferentially occupied at 
the given temperature. 

Free energy expression, Eq. (3.2), encompasses the 
full range of equilibrium phase transitions, including 
the melting/freezing transition, and crystal polymor- 
phic transitions, if any. However the expression is also 
useful for studying extensions into metastable phase 
regimes. If attention centers on the supercooled liquid 
down to the glass transition range, one requires that 
basins whose inherent structures show any substantial 
regions of crystalline order be projected out of consid- 
eration. Thus a and fv appearing in Eq. (3.2) would 
refer only to the amorphous subset of inherent struc- 
tures and their basins. The variationally determined 
order parameter ~bm (fl) then describes the normal and 

4. Hypercube model 

The general properties listed in Section 2 for basin 
equivalence classes and their transition-state inter- 
connections present a topology that qualitatively 
resembles that for the vertices and edges of a high- 
dimensional hypercube. The similarity has been no- 

ticed before [13]. This section presents a variant of 
the hypercube model that will be useful for discussing 
kinetic properties in Section 5. 

In order that the hypercube have as many vertices 
as the condensed phase has distinguishable inherent 
structures [exp(c~N)], the dimension D of the hyper- 
cube must be 

D = c~N/In 2. (4.1) 

Without any significant loss of generality, it will be as- 
sumed that D is an even integer. Hypercube geometry 
implies that D is also the number of connections (pos- 
sible transitions) from any vertex (basin equivalence 
class) to neighboring vertices (contiguous equivalence 
classes), thus showing the correct order in N. 
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For simplicity suppose that the 2 ° hypercube ver- 

tices are located at the unit vector positions 

"r =- D - U 2 ( + I ,  +1 . . . . .  4-1). (4.2) 

Edges connect pairs of vertices whose locations differ 

only by sign change of a single ~" component. Next, 

two of the r ' s  are chosen to define a plane into which 

all r ' s  will be projected. The two are: 

"rx = D- l /2 (1 ,  1 . . . . .  1), 

"t'y = D - U 2 ( 1 ,  1 . . . . .  1, 
(4.3) 

- 1 , - 1  . . . . .  - 1 ) ,  

T x • T y  ~ O, 

where the first has all positive components, the second 

has D / 2  positive components followed by D / 2  neg- 

ative components. The x, y position of any projected 
vertex, 

x = "r • "rx, y ~ 7= • 7"y, 

falls within the square defined by 

Ix + Yl < 1, I x -  y[ < 1. (4.5) 

Many vertices can project onto the same location in 

the x, y plane; in the large D (i.e. large N) limit, their 

density in the square (4.5) is given by e x p [ D w ( x ,  y)], 

where [13] 

w ( x ,  y) = In 2 - (1/4)[(1 + x + y) 

x ln(1  + x + y) 

+ ( 1  + x  - y )  ln(1 + x  - y )  

+ ( l  - x  + y) ln(1 - x  + y )  

+ (1 - x - y) ln(1 - x - y)]. (4.6) 

Experimental heat capacity measurements for var- 

ious substances in both their crystalline and amor- 
phous solid forms (glass states below Tg) suggest that 
vibrational degrees of freedom contribute roughly 
state-independent amounts to thermodynamic proper- 

ties [14-17]. For this reason we can suppose that fv 
is sufficiently close to constant across basin equiv- 
alence classes to disregard in the hypercube model. 
Specifically, changes of  state are assumed to be driven 
principally by the interplay between structural entropy 
and structural interaction energy. 

EH. Stillinger/Physica D 107 (1997) 383-391 

The potential energy values '/)is at the inherent struc- 
tures represented by the hypercube vertices can be ex- 

pressed as follows: 

(~:}is(T) = D o ( r )  + ( ( r ) .  (4.7) 

This separates (Pis into an O(N)  portion assumed to 
vary smoothly over the hypercube (~), from an O(1) 
portion that may vary in an irregular way from one 

vertex to its neighbors. In fact it will be assumed that 

0 depends only on the distinguished coordinates x and 
y, which can be identified qualitatively as measuring 

the amount and the type of structural disorder present 

in the inherent structures. 

Although ~'('r) plays an important role in kinetic 

properties (see Section 5), it does not influence ther- 

modynamics. The hypercube model 's  Cm (fl) that iden- 
tifies the preferred basin depth at temperature T = 

(kBfl) - j  is determined by the following analog to 
(4.4) Eq. (3.2) above: 

f l F h c ( f l ) / D  = min{flr/(x, y) - w ( x ,  y)}, 
(x.y) 

q)m (fl) = ( D /  N)~7[Xm (fl), Ym (fl)]. (4.8) 

The indicated minimization is to be carried out over 

square (4.5), of  course. 

In order to be at all realistic, the "smooth" inter- 

action function should lead to distinct "crystal" and 
"liquid" phases, and the latter should be amenable to 

metastable extension into the supercooled regime as 

explained in Section 3. The following simple choice 
fulfills these requirements: 

q(x, y) = x  + y -- (x -- y + 0.2) 2 

+ A ( x  - y + 0.2) 3, (4.9) 

A = 0.4464285714, 

and is convenient for numerical examination. The ab- 

solute minimum of this function in the square occurs 
at the vertex ( - l ,  0): 

r / ( -  1, 0) = - 1.868571429, (4.10) 

and this should be identified as a "perfect crystal". 
A relative minimum occurs at another square vertex, 
(0, - 1 ) ,  

q(0, - 1 )  = r / ( -  1, 0) + 0.2, (4.11) 
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Fig. 1. Temperature variations of Om ~ NCm/D for crystal and 
liquid phases in the hypercube model. 

and may be identified as a "fully structurally relaxed 

glass". 
Numerical analysis reveals that 4)m(/~) has two 

branches. They connect at absolute zero, respec- 
tively, to the absolute and relative minima indicated 
in Eqs. (4.10) and (4.11); consequently they can be 
identified as "crystal" and "liquid" branches. Fig. 1 

indicates the temperature variation of Ore(/3) = 
(N/D)qbm(fl) for the two branches, and also shows 
the melting point 

Tmp = (kBflmp) -1 = 1.8311 (4.12) 

at which the two phases attain equal free energies. No- 

tice that the crystal branch has a metastable extension 
beyond this melting temperature that finally terminates 
at a critical instability temperature 

Tc = (kB/3c) - l  --~ 3.09. (4.13) 

At this point the marginally metastable crystal must be 
viewed as highly defective, and its inherent structure 
potential energy has approached that of the liquid. 

Fig. 2 indicates the paths traced out in the x, y plane 
by xm (~),ym (fl) for the two branches generated by the 
variational criterion, Eq. (4.8). Notice that these paths 
are well separated. Therefore the projection operation 
alluded to in Section 3 to avoid phase transitions and 
to enforce metastability is particularly simple for the 
present hypercube model. One needs only to cut the 
x, y square shown in Fig. 2 into two portions, one 

1.0 
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-0.5 

-1.0 

I [ I I t 

I I t J I 

-1.0 -0.5 0.0 0.5 1.0 

x 

Fig. 2. Paths traced out in the fundamental (x, y)-plane square 
by the variationally determined Xm (/3), Ym (/3). Arrows indicate 
directions of increasing temperature, and open circles locate the 
melting/freezing transition. 

containing the crystal path, the other the liquid path. 
The respective subsets of hypercube vertices (inherent 
structures and their basins) then serve as the projected 
sets required for superheated crystal or supercooled 
liquid. 

Configurational entropies of the crystal and liquid 
phases are equal to 

Sc/NkB = (D/N)w(Xm, Ym). (4.14) 

The numerical calculations reveal that the supercooled 
liquid entropy lies above that of the crystal for all 
positive temperatures, This violates the concept of a 
positive "Kauzmann temperature" TK at which equal- 
ity is often presumed to obtain [9,18]. However the 
heat capacity of the supercooled liquid in the hyper- 
cube model significantly exceeds that of the crystal for 
a substantial temperature range below Tmp, and con- 
sequently the usual thermodynamic extrapolation to 
identify a irk > 0 can be misleading. Fig. 3 shows 

Aw = w(liq) -- w(crys), (4.15) 

proportional to the entropy difference, from the equi- 
librium freezing point down to T = 0.60, an hy- 
pothetical "glass transition temperature". Naive, but 
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Fig. 3. Temperature variation of Aw = w(liq) - w(crys) from 
the melting point down to a "glass transition" at T = 0.60. 
Naive extrapolation (dotted curve) suggests the presence of an 
artifactual Kauzmann point at TK "" 0.30. 

seemingly reasonable, extrapolation to yet lower tem- 

perature suggests the presence of  a Kauzmann point at 

TR ~ 0.30. (4.16) 

In fact the correct curve bends smoothly back to en- 

counter the horizontal axis only at absolute zero. 

At the thermodynamic melting/freezing transition, 

Aw(Tmp) = 0.21122. (4.17) 

For reference purposes it may be useful to make this 

correspond to the fusion entropy of  a familiar real 

glass former. Chang and Bestul [15] have reported for 

ortho-terphenyl that 

AS = 52.196 4- 0.02 JK - I  mol - I  (4.18) 

(m.p. _~ 330 K). Consistency between Eqs. (4.17) and 

(4.18) can be attained if 

D / N  ~_ 29.67, (4.19) 

or equivalently 

c~ _~ 20.57. (4.20) 

Considering the asymmetry and internal-rotation flex- 
ibility of  each ortho-terphenyl molecule, these esti- 
mates may not be unrealistically large. 

5. Hypercube kinetics 

Fig. 4 schematically illustrates a portion of  the x, y 

plane onto which hypercube vertices have been pro- 

jected. Those projected positions formally present a 

square lattice with possible dynamical transitions oc- 

curring only between nearest neighbors; these allowed 

transitions are indicated by solid lines in Fig. 4. In any 

transition, both x and y change by the small amount 

+ A ,  

A = 2 / D  = 2 In 2/otN. (5.1) 

One must remember that many inherent structure 

equivalence classes, numbering e x p [ D w ( x , y ) ] ,  

project onto the same site in the x, y plane, but no 

pair of these are connected by a direct transition. 

Similarly, each solid line in Fig. 4 represents many 

\ / 
I x, y+2" I 

Ix-A,y+AI Ix+A,y+A I 

I x,y I 

I x-A,y-al  Ix+A,y-AI 

I x,y-2  I 
/ \ 

Fig. 4. Dynamical connections for the hypercube model as 
projected into the x, y plane. Boxed pairs indicate relative 
x, y values for the inherent structure equivalence classes, with 
,4 = 2/D. Diagonal solid lines connecting neighbors represent 
allowed transitions. 
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transitions between pairs of inherent structure equiv- 
alence classes, but not all pairs that have projected 
onto neighboring sites can interconvert dynamically. 

The extent of ruggedness of the potential energy 
landscape is at least partially conveyed by the func- 
tion (('r) in Eq. (4.7). Experimental observations of 
kinetic rates displayed by real glass formers strongly 
indicates that its average amplitude and texture of 
ruggedness must vary with position as projected in 
the x, y plane. This is particularly evident in the 
starkly non-Arrhenius behavior of shear viscosity and 
of various other measures of structural relaxation for 
the so-called fragile glass formers [4,5]. It is also 
evident from the existence of stretched exponential 
(Kohlrausch-Williams-Watts) relaxation functions 
with temperature-dependent stretching exponents 
[19,20]. The weight of evidence requires (('r) to 
exhibit greater and greater amplitude of ruggedness 
upon approaching the low-temperature-glass region 
of the x, y plane, and to show a tendency toward 
organization into locally low-potential "craters" [6]. 
Low-temperature supercooled-liquid primary relax- 
ation, the "a"  process, is dominated by the need for 
the system to escape one of these craters by a coher- 
ent sequence of interbasin transitions ("fl" processes), 
and to search a wide range in the configuration space 
to find an equally deep, or deeper, crater. 

If ff were simply a smooth function of x and y 
as postulated for 0, then the time-dependent system 
probability in the x, y plane, Q(x, y, t), can be shown 
to satisfy a Fokker-Planck equation: 

OQ/Ot =-v - [ ( /~ .  F)Q] 
+ f l - l v  • (/~. VQ). (5.2) 

Here V is the two-dimensional gradient in the x, y 
space,/~ a symmetric mobility tensor, and F is a ther- 
modynamic mean force vector (the reader is referred 
to Ref. [13] for details). Now, with explicit inclusion 
of potential landscape ruggedness through incorpora- 
tion of ~ spatial variations, Eq. (5.2) requires exten- 
sion. The natural generalization that encompasses the 
temporal dispersion generated by potential ruggedness 
is a Fokker-Planck integrodifferential equation with 
nonlocality in time: 

389 

t 
/ I  

OQ/Ot = / { - V .  [(/~(t - f ) .  F) Q(t') 

+ f l - l V .  [/~(t - t ') .  VQ(t')]}dt'. 

(5.3) 

A basic challenge is to relate the time-retarded mo- 
bility in this formulation to details of if, and specif- 
ically to show connections to temperature-dependent 
stretched exponential relaxation. 

It should be mentioned in passing that Campbell 
et al. [21] have also investigated relaxation kinetics 
on hypercubes. Their specific model was simpler than 
that considered here, involving no explicit potential 
energy or temperature, but only random vertex dilution 
and uniform transition rates between surviving pairs of 
neighboring vertices. Stretched exponential relaxation 
was observed with stretching exponent that depended 
on the percolation probability for dilution. 

One of the long-standing propositions concern- 
ing supercooled liquids was advanced by Adam and 
Gibbs [22], connecting mean structural relaxation 
times ~'av to configurational entropy Sc. Specifically, 
the Adam-Gibbs concept of independent "coopera- 
tively rearranging regions" in the cold liquid leads to 
the relation: 

"rav(T) c~ exp[C/TSc(T)], (5.4) 

where C is a positive constant. If a positive Kauzmann 
temperature TK were to exist for the fully relaxed liq- 
uid, then Eq. (5.4) predicts that ray would strongly 
diverge at that point. The Adam-Gibbs relation seems 
to have had an unclear role in explaining experimen- 
tal and simulational data, with reports both of success 
[23,24] and failure [25-27]. 

Quite apart from the fact that the present hypercube 
model does not support the existence of a TK > 0, 
it also questions the universality of the Adam-Gibbs 
relation (5.4) on other grounds. Thermodynamic prop- 
erties such as So(T) depend only on the smooth back- 
ground potential function 17; kinetic transition rates and 
structural relaxation phenomena require specification 
of landscape ruggedness function ~ and the interbasin 
transition rates (dependent on transition state barrier 
heights, etc.). Consequently, the two sides of Eq. (5.4) 
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are logically disconnected at the level of mathemati- 
cal modelling. If the Adam-Gibbs relation is to be put 
on a firm deductive basis for some class of materials, 
the underlying argument will have to establish that 
the special nature of the interactions involved force a 

linkage between 17 and (. 

(7) 

(c) approach to hard spheres, and (d) large space 
dimension (>> 3)? 

Open problems possessing a more chemical 
orientation form a second list. 
Are thermally driven chemical equilibria in liq- 
uids, such as 

6. Discussion 

The "rugged landscape" view of interactions in con- 
densed phases, and its representation in terms of basins 
and inherent structures, provide helpful insights into a 
wide range of phenomena. But at the same time this 
approach generates many new questions, some of these 
may be simple to answer, while others are no doubt 
extremely challenging. This section atttempts to list 
some of the more significant open problems presented 
currently by the inherent structure representation. 

From a mathematical viewpoint, the following is- 
sues require attention: 

(1) Under constant volume or pressure conditions, is 
it possible to establish upper and lower bounds 
on a, the enumeration parameter for distinct 4~ 
minima (Eq. (2.2))? 

(2) In the asymptotic enumeration of q~ minima in 
free space, is Eq. (2.2) to be replaced by 

~ N!exp(const. x N P p > 1, (6.1) 

H20 ~_ H + + OH-,  

shifted by steepest descent mapping (SDM)? 
(8) How does the number of basins vary along ho- 

mologous series (e.g. normal alkanes)? 

(9) How do inherent structures compare between 
pure optical isomers and their racemic mixtures? 

(10) Does SDM always increase liquid-crystal order 
(nematic, cholesteric)? 

(11) How do biopolymer solution inherent structures 
depend on primary squence, and on solvent com- 

position? 
(12) Are there materials or realistic models which 

demonstrably possess a true "ideal glass transi- 
tion" at a positive Kauzmann temperature TK? 

(13) Does SDM preserve local neutrality and "second 
moment" conditions on electrolyte pair correla- 
tion functions [28]? 

(14) How does SDM affect the diffuseness of liquid- 
liquid and liquid-vapor interfaces? 

(15) How are interbasin transition states distributed 
(in height, etc.) for chemical reactions? 

a form suggested by simple fractal aggregation 
arguments? 

(3) What are the occurrence probabilities for multi- 
ply connected basins with internal saddle points, 
and for transition states between permutationally 
equivalent basin pairs? 

(4) What are the preferred geometries of inherent 
structures underlying critical fluids and dilute va- 
pors? 

(5) What is the high-temperature limiting behavior 
of the Lindemann ratio [6,12] for the constant- 
density fluid? 

(6) What is the behavior of inherent structures in 
the mathematical limits of (a) short-range at- 
tractions, (b) smooth long-range interactions, 
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