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The widely investigated organic substanceo-terphenyl (OTP) displays thermal and kinetic behavior prototypical
for “fragile” glass formers. The special relationship between its heat capacity in supercooled liquid, amorphous
glass, and crystalline solid states provides simple access to the enumerating distribution function for its
amorphous inherent structures (potential energy minima) by depth. The thermodynamic calculations required
at 1 atm yield a broad and somewhat asymmetric distribution. This distribution implies that supercooling
OTP from its melting point (329.35 K) to its glass transition (240 K) succeeds only in reducing inherent
structure enthalpy by 66% of the amount that would be required to attain the most stable amorphous inherent
structure.

I. Introduction

Experimental data on glass-forming substances are vast and
diverse. To help organize all of this empirical information,
Angell has suggested that these substances be placed along a
scale between “strong” and “fragile” extremes.1-3 The former
displays Arrhenius temperature dependence for its liquid-phase
shear viscosity and no sharp changes in thermodynamic proper-
ties through the glass transition region. By contrast, the latter
possesses strong deviations from Arrhenius behavior of its shear
viscosity and exhibits sudden and vivid changes in thermody-
namic behavior across a sharply defined glass transition. In
particular, the heat capacity of a supercooled liquid near the
fragile extreme undergoes a nearly discontinuous drop as the
temperature declines throughTg, the glass transition temperature.
o-Terphenyl (OTP) has become one of the most intensively

and frequently examined of the fragile glass formers and is often
cited as the archetypal illustration of the fragile extreme. Its
behavior doubtless stems, at least in part, from nonrigidity of
the individual molecules and from the relatively nondirectional
forces acting between neighboring molecules. A sampling of
its experimental literature reveals determinations of crystal
structure,4,5 heat capacity,6 viscosity,7,8 thermal conductivity,9

light scattering,10 and translational and rotational diffusion
rates.11

The existence of glass transitions for deeply supercooled
liquids is generally conceded to be a phenomenon of kinetic
arrest.3,12,13 As temperature declines, the collection of configu-
rational coordinates describing the molecules in such a liquid
move into, and become increasingly trapped within, regions of
the multidimensional configuration space characterized by deep
potential energy minima and high intervening barriers. Theory
has the obligation to infer geometric details of this “rugged
potential energy landscape” and to show how those details vary
from substance to substance.
The present study focuses primarily on one aspect of rugged

potential energy hypersurfaces. Specifically, this entails enu-
meration (for OTP) of local minima (mechanically stable
molecular packings), to be called “inherent structures” in the
following. It will be shown that the available heat capacity

data for OTP6 allows extraction of the asymptotic (large-system
limit) distribution of inherent structures by depth.
Section II briefly reprises for completeness the essential

elements of inherent structure theory, specifically for isobaric
(constant pressure) conditions that apply to most experiments.
Section III provides a critical appraisal of the best available
heat capacity data for OTP6 and argues that its form strongly
suggests a simple route to the asymptotic enumerating distribu-
tion. Section IV presents details of the elementary calculations
required to produce that distribution and shows their results.
Finally, section V discusses the extension of the present analysis
to other glass formers, examines its relation to the so-called
Kauzmann paradox14,15 and comments on other aspects of the
rugged potential energy hypersurface probed by a wide variety
of kinetic measurements.

II. Inherent Structure Formalism

Consider for the moment an arbitrary condensed matter
system comprisingN particles (atoms, ions, or molecules).
Vector r i will represent the configurational coordinates for the
ith particle, and depending on the case of interest, it will specify
position, orientation, and internal configurational state. The
volume V available to this system is determined by the
container’s wall forces.
Let Φ (r1, ..., rN, V) stand for the potential energy function.

It will include intramolecular conformational energy, interpar-
ticle interactions (which may not be pairwise additive), and
interactions with the confining walls. Isochoric (constantV)
inherent structures for the system are the mechanically stable
arrangements of theN particles in the fixed container, corre-
sponding to local minimization ofΦ with respect to the
configurational coordinatesr1, ...,rN. Both generic arguments16-18

as well as model-specific exact results19,20 indicate that the
number of distinct isochoric inherent structures rises exponen-
tially with system sizeN, at constant density.
The majority of experiments that investigate glass-forming

materials occur under isobaric (constant pressure,p), rather than
isochoric, conditions. In this circumstance the volumeV itself
becomes a configurational variable. It is then natural to append
pV to Φ, to form the “potential enthalphy” function:
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Isobaric inherent structures at pressurep are local minima of
Ψ over r1, ..., rN and V. The number of such minima that are
distinct is again expected to rise exponentially with respect to
system sizeN.
Equilibrium statistical mechanics under isobaric conditions

begins with the dimensionless partition function∆(N,T,p) for
the isothermal-isobaric ensemble.

Hereâ ) (kBT)-1, G is the Gibbs free energy, andR indexes
the separate particle species that are present.K is a normalizing
constant whoseV-independent value has no bearing on the
following, but it should be noted in passing that it contains the
inverse of a thermal deBroglie wavelength for theV-varying
“piston” degree of freedom.
Arbitrary points in theR ≡ (r1, ..., rN, V) configuration space

can be mapped onto the isobaric inherent structures by means
of a weighted gradient descent equation:

wheres g 0 is a progress variable for the descent, andw is a
matrix of nonnegative weights. In the simple case that only
one structureless particle species is present (i.e.,N identical
spherical particles),w can be replaced by the unit matrix. The
mapping generated by eq 2.3 tiles the multidimensionalR space
with basins, one for each of the localΨ minima (isobaric
inherent structures). Specifically, the basin Ba surrounding
minimum a is the collection of all points inR that map toa.
Although variations in the elements of weight matrixw can
influence the shapes of basins, their number is invariant to those
variations.
The basin tiling of the space spanned by the partition function

integrals, eq 2.2, leads to a simple formal transformation of∆
to an integral over a single variable, the depth of the basin
minima on a per particle basis,ψ. In the asymptotic large-
system limit, one finds the following result for the Gibbs free
energy per particle in the case of a single species:

In this expressionf(â,ψ) is the mean intrabasin vibrational free
energy per particle, for those basins with depthψ; the density
of inherent structures by depth is expressed by

andψm is the value of the intensive “order” parameterψ that
minimizes expression 2.4 under the prevailing temperature and
pressure conditions.
In applying this representation to glass-forming substances

that easily supercool and avoid transition to the crystal phase,
a minor modification of eqs 2.4 and 2.5 is required. These
systems (at least above the glass transition temperature) exhibit
a restricted form of equilibrium, avoiding those basins whose
inherent structures include some perceptible extent of crystalline
order. After projecting these latter basins out of consideration,
the corresponding version of Gibbs free energy eq 2.4 may be
written with asterisks on the key quantities to indicate relevance
to the liquid phase, both above and below the equilibrium

melting temperature:

Application to OTP requires identifying the relevant molec-
ular degrees of freedom that should be included in eachr i. It
seems unnecessary to consider all intramolecular degrees of
freedom, particularly the high-frequency vibrational motions.
However, two angles that measure twist of the pendant benzene
rings out of the plane of the central benzene ring are certainly
relevant. Also, it can be argued that a symmetrical attachment-
bond bend angle for displacement of those pendant rings relative
to the central ring should be included. These must be joined
by three Euler angles (or their equivalent) for overall molecular
orientation in space and by three coordinates specifying
translational position. Consequently, eachr i must contain a
minimum of nine components.

III. Experimental Data

Figure 1, adapted and redrawn from Chang and Bestul,6 shows
the measured isobaric heat capacityCp(T) for OTP at 1 atm.
Notable features are the following: (A) the crystal curve rises
smoothly from 0 K to themelting point atTm ) 329.35 K,
indicating no solid-state phase transitions; (B) the heat of fusion
∆Hm atTm is 17 191 J mol-1; (C) the liquid-phase heat capacity
extrapolates smoothly throughTm into the supercooled regime,
where it lies well above that for the crystal; (D) the supercooled
liquid branch terminates abruptly at glass transition temperature
Tg = 240 K; (E)Cp for the glass over 0< T < Tg lies only
very slightly above that of the crystal.
These observations lead to conclusions that simplify the

interpretation of the data. In particular, (E) indicates that the
vibrational free energies of the crystal and the amorphous glass
are very nearly equal; as a working assumption, we shall suppose
that the difference is negligible. Note that quantum effects are
substantial for vibrational degrees of freedom (particularly those
of high frequency), but are equally present in crystal, glass, and
liquid, so we can assume that their net effect on the quantities
to be evaluated is negligible. Consequently, the heat capacity
increment

Ψ (r1, ..., rN, V)) Φ(r1, ..., rN, V)+ pV (2.1)

∆ ) exp(-âG)

) [K/∏
R
NR!] ∫dr1...∫drN∫0∞dV (exp-âΨ) (2.2)

w‚(∂R/∂s)) -∇Ψ(R) (2.3)

âG/N∼ (ln K)/N+ âψm + âf(â, ψm) - σ(ψm) (2.4)

exp[Nσ(ψ)] (2.5)

Figure 1. Constant-pressure heat capacity for OTP at 1 atm, redrawn
from Chang and Bestul, ref 6, Figure 1.

âG*/N ∼ (ln K)/N+ âψ*m + âf*(â, ψ*m) + σ*(ψ*m) (2.6)

∆Cp(T)) Cp
(liq) (T)- Cp

(crys) (T) (3.1)
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over the rangeTg < T e Tm must be a direct measure of the
temperature rate of change ofψ*m(T) over the same range,
since the crystal always inhabits the same basin, namely that
for the absoluteΨ minimum (neglecting thermally induced point
defects).
The experimental data in ref 6 giving∆Cp(T) can be fitted

accurately with the following simple formula:

with deviations that appear to be comparable to the random
measurement errors(0.01 J K-1 mol-1). The optimized
coefficients have values

This fitting formula 3.2 can be used to infer∆Cp values in
experimentally inaccessible temperature ranges both aboveTm
and belowTg.

IV. Density of Inherent Structures

The favorable circumstances presented by the OTP heat
capacity invite an attempt to extract its isobaric enumeration
function σ*. For this purpose, it is necessary to convert∆Cp

to specification ofψm(T) and to the configurational (i.e., inherent
structure) entropy as a function of temperature. Standard
thermodynamics supplies these quantities subject to the conclu-
sions presented in section II.
By assumption, the change inψ due to melting is entirely

equivalent to the heat of fusion. Consequentlyψ*m at any other
temperature, relative to its value for the crystal inherent structure,
ψ(cr), can be expressed in terms of∆Hm and an integral ofCp

over the temperature interval fromTm:

where the latter form, expressed in terms of J mol-1, results
from inserting the experimental∆H and the fitting formula 3.2.
A similar procedure yields the inherent structure entropy as

a function of temperature, which is equivalent to specifyingσ*.
First, note that atTm this is given by the melting entropy. At
other temperatures the difference appears as a familiar thermo-
dynamic integral:

Units for the latter form are J K-1 mol-1.

In principle, absolute temperatureT could be eliminated
between eqs 4.1 and 4.2. In practice, this can be accomplished
numerically by simply evaluating both formulas over a wide
range of temperatures and pairing theψ*m and σ* results.
Figure 2 shows the outcome, whereσ* is plotted againstψ -
ψ(cr). Several general points need to be stressed in connection
with the curve shown.
(1) According to its definition,σ* cannot be negative;

consequently only that portion of the results from eqs 4.1 and
4.2 conforming to this constraint is shown in Figure 2.
(2) The left portion of theσ* curve (displaying positive slope)

corresponds to positiveT, and its maximum corresponds toT
f + ∞. The right portion (negative slope) was traced out by
usingT< 0. This latter point entails the mathematically unique
process of analytic continuation in the variable 1/T, for the
quantities 4.1 and 4.2, from the positive to the negative real
axis.
(3) Theσ* curve is somewhat asymmetric, extending farther

to the high-ψside of its maximum than to the low-ψside. This
asymmetry may relate to the expectation that poorly packed,
high-enthalpy inherent structures are likely to possess anoma-
lously low density.
(4) The curvature ofσ*(ψ) is negative over its range of

definition. Given observation (E) in section II,ψ*m(T) can be
located by the unique point of tangency betweenσ* and a
straight line with slopeâ ) (kBT)-1.
In connection with this last point, Figure 2 explicitly indicates

the tangency points accessed at the OTP thermodynamic melting
temperatureTm ) 329.35 K, boiling temperatureTb ) 605.2
K, and the glass transition temperatureTg ) 240 K. Table 1
indicates the numerical values ofψ - ψ(cr) and σ* at these
distinguished points, as well as for infinite temperature, and
for the two temperatures at whichσ* vanishes, the apparent
Kauzmann temperatureTK and its negative-temperature image
TAK (“anti-Kauzmann” temperature).

V. Discussion

Entries in Table 1 indicate that as liquid OTP is supercooled
from Tm to Tg, the mean depth of inhabited amorphous basins
declines substantially. However, kinetic arrest at the glass
transition prevents the material from finding the deepest
amorphous minima, predicted by the analysis to lie about 3800
J mol-1 above the crystalline absolute minimum. Supercooling

∆Cp(T)= A2T
-2 + A3T

-3 + A4T
-4 (3.2)

A2 ) 2.023 151 951× 107 J K mol-1

A3 ) -4.617 224 704× 109 J K2 mol-1

A4 ) 3.234 583 582× 1011 J K3 mol-1 (3.3)

ψ*m(T)- ψ(cr) ) ∆Hm/N-∫TTm∆Cp(T′) dT′

= 17 191- A2(T
-1 - Tm

-1) - 1
2
A3(T

-2 - Tm
-2) -

1
3
A4(T

-3 - Tm
-3) (4.1)

∆S(T)/NkB ≡ σ*[ψ*m(T)]

) ∆Hm/NkBTm -∫TTm[∆Cp(T′)/T′] dT′

) 52.20- 1
2
A2(T

-2 - Tm
-2) - 1

3
A3(T

-3 - Tm
-3) -

1
4
A4(T

-4 - Tm
-4) (4.2)

Figure 2. Isobaric enumeration function for OTP noncrystalline
inherent structures. The pressure is 1 atm.
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experimentally succeeds in moving the system only about 66%
toward that “ideal glass state”.21

The last column of Table 1, exp (σ*), expresses the density
of isobaric inherent structures as an equivalent degeneracy factor
per molecule. That this single-molecule factor should rise to
approximately 5× 105 at the σ* maximum might seem
surprising at first sight. However it should be recalled that each
OTP molecule has at least nine degrees of freedom that are
relevant to the creation of mechanically stable packings, the
inherent structures. Furthermore the packings that are typical
for the neighborhood of theσ* maximum (T f ∞) will have
low density, presumably permitting substantially more packing
options than at high density.
The detailed behavior of theσ* curve shown in Figure 2 near

its low-ψ terminus may not be qualitatively correct. An
argument has been advanced15 suggesting that, as a result of
possible localized rearrangements in the lowest-ψ amorphous
structure,σ* should have an infinite slope at this point. If such
an alternative were true, the concept of an ideal glass transition
at a precisely defined positive temperatureTK would not hold
up to absolutely rigorous analysis. Nevertheless, the Kauzmann
temperature remains a useful empirical concept (particularly for
fragile glass formers such as OTP) that helps to summarize
behavior in the deeply supercooled regime of the liquid state.
Given σ*(ψ) for inherent structures that are subject to a

noncrystallinity restriction, it is trivial to reconstituteσ(ψ) for
the full and unrestricted set of inherent structures. All that is
required is a “single tangent construction”, roughly analogous
to the Maxwell double tangent construction of equilibrium phase
transition thermodynamics.22 A straight line segment passing
through the origin in Figure 2 (ψ ) ψ(cr)) will be tangent toσ*
atψ*m(Tm), the melting point location indicated.σ is given by
this straight line segment, andσ* for larger ψ.
A tentative conclusion can be advanced about the relative

shape expected forσ*(ψ) in the case of a glass former such as

SiO2 that is at the opposite “strong” extreme.1-3 In order that
the liquid heat capacity be much closer to that of the crystal
(one of the characteristics of the “strong” category), rolling of
the tangent line of slopeâ ) (kBT)-1 on theσ* curve must
entail relatively littleψ change. The only way this can arise is
for the distribution represented byσ* to be much narrower in
ψ than it is for the fragile extreme.
Finally, it must be emphasized that knowledge ofσ* alone

does not directly lead to predictions of transport and relaxational
properties, such as shear viscosity and inelastic light scattering.
These attributes depend on the way that inherent structures and
their associated basins are arranged in the multidimensional
configuration space and upon the height distribution of interven-
ing barriers.13,23 An additional physical assumption must be
appended in order to penetrate the domain of time-dependent
glass properties; the Adam-Gibbs theory of relaxation and flow
provides a well-known example.24
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TABLE 1: Numerical Values for Distinguished Points along
the σ* Curve of Figure 2

T, K ψ - ψ(cr), J mol-1 σ* exp(σ*)

202.79 (TK) 3797.5 0 1
240 (Tg) 8337.2 2.4762 11.896
329.35 (Tm) 17 191.0 6.2779 532.67
605.2 (Tb) 32 741.7 10.5805 39 360
∞ 60 354.5 13.1397 508 744
-369.05 (TAK) 134 269.5 0 1
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