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Mixed quantum-classical methods are applied to an increasingly challenging series of model
problems, and their accuracy is examined. The models involve one light and one heavy degree of
freedom, and exhibit substantial nonadiabatic behavior. In all of the models the coupling between
the light and heavy particles is linear~harmonic!. In addition, different external potentials are
applied to the heavy particle only. The energies of the light particle quantum states, as a function of
the position of the heavy particle, define a sequence of ground and excited Born–Oppenheimer
potential energy curves. Because the light particle experiences a purely harmonic potential, the
potential energy curves are parallel and equally spaced for all of the models. In addition, the
nonadiabatic couplings among potential energy curves persist for all times due to the nonvanishing
linear coupling between light and heavy particles. The model problems were used to test two
strategies for carrying out mixed quantum-classical dynamics in systems involving nonadiabatic
transitions: mean field and surface hopping. The model calculations reported here suggest that, in
cases where linear couplings dominate, the mean field mixed quantum-classical method displays
useful accuracy and is robust to the introduction of anharmonic heavy-particle interactions. The
model calculations also reveal special situations in which the surface hopping approximation is
inappropriate. ©1998 American Institute of Physics.@S0021-9606~98!52436-1#
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I. INTRODUCTION

Many dynamical phenomena in physics and chemis
involve coupled motions of particles with widely differin
masses. Electronic and nuclear degrees of freedom, res
tively, in single atoms and molecules, provide a vivid illu
tration, which the Born–Oppenheimer separation sche1

exploits to a good advantage. The transfer of light proto
along hydrogen bonds between pairs of heavy electron
tive atoms~e.g., N, O, F, Cl! constitutes another class o
examples.2 The interaction of liquid3He or 4He with high-
atomic-weight solids, both crystalline and amorphous, p
sents further illustrations.3

The presence of extreme mass ratios invites the use
mixed quantum and classical description.4 This is particu-
larly appropriate for describing the~virtually classical!mo-
tions of electron-bearing heavy atoms or molecules that fo
nonreactive insulating media. That is precisely the basis
the molecular dynamics simulation method, for which t
Born–Oppenheimer ground-electronic-state energy sur
provides the potential energy function for numerical integ
tion of Newton’s equations.5,6 Assuming that electronic ex
citation remains absent, methods are available when requ
to generate quantum corrections to the strict classical
namical description of the heavier particles.7–10 On the other

a!Current address: Department of Chemistry, University of California, I
ine, Irvine, California 92697.
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hand, there are methods that can accurately treat the ele
dynamics even if electronic excitations occur but provid
that their impact on the motion of the heavier atoms
negligible.11–14

Difficulties begin to arise in those cases where electro
~or other light particle! excitations out of the ground stat
become significant and these, in turn, influence the beha
of the heavier particles. One encounters this situation,
example, in photochemical reactions involving nonradiat
transitions, and in oxidation-reduction or proton transfer
actions in liquid solutions. Accurate description of structu
and dynamics in liquid metals and reactions at metal surfa
are also problematic, since a continuum of excited cond
tion electrons must be involved.

The intrinsic power of molecular dynamics comput
simulations to illuminate physical and chemical phenome
has lent considerable weight to extending its traditional cl
sical version as described above, to cover cases with e
tronic excitation. Indeed several approximation schemes
realizing this goal treating the quantum and classical deg
of freedom self-consistently have been proposed~for re-
views, see Refs. 15 and 16!. These include both mea
field17–33 and surface hopping34–42 approaches. But in spite
of an extended effort no universally acceptable approxim
tion strategy has yet emerged. The present paper report
sults of a modest study intended to contribute some furt
understanding to this active research area. In particular,

-

3 © 1998 American Institute of Physics
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efforts could be regarded as an attempt to understand to
degree the use of some of these methods is appropriate w
the evolution of a heavy plus light particle system is stud
using the particle coordinates directly~rather than some col
lective coordinates!. For simple model problems it would
more appropriate to base a quantum-classical separatio
normal mode coordinates in order to minimize the effect
the quantum coordinates on the classical ones, and
versa. In realistic many particle simulations a normal mo
separation is not practical, however, and the bare par
must generally be used. This introduces coupling betw
classical and quantum coordinates, even in harmonic
tems, and this coupling can be problematical for mix
quantum-classical dynamics. The simplest model poten
that represent this situation are those of linearly coupled
monic and anharmonic oscillators. In this context nonad
batic transitions may occur between the adiabatic~Born–
Oppenheimer!light-mass states simply because the b
particle coordinates do not correspond to the ‘‘norm
modes’’ of the system. The following section argues in fav
of studying simple tractable models of nonadiabatic effe
and introduces three such models, each involving a cou
pair of particles moving in one dimension under the infl
ence of an external potential. Section III provides compu
tional details about the respective dynamical investigati
for each of these three models. Section IV presents our
merical results for the three. The final Sec. V discusses
implications of our results for future theoretical and simu
tional activity.

II. SIMPLE MODELS

Each of the three cases to be examined involves a pa
spinless particles confined to move in one dimension o
The lighter particle of the pair~massm, positionx, momen-
tum p! interacts with the heavier particle~massM, position
X, momentumP! via potentialv(x,X). At the same time the
heavier particle experiences an external potentialV(X). The
two-particle Hamiltonian consequently has the form

H5
p2

2m
1

P2

2M
1v~x,X!1V~X!. ~1!

The three cases to be analyzed are distinguished by the
responding assignments ofv andV, to be specified below.

Reliance on one-dimensional models to illuminate thr
dimensional phenomena obviously must be viewed with c
tion. Nevertheless this strategy offers some advantages
particular, some one-dimensional models can be solved
lytically in closed form~see model I below!, while others
that are not fully solvable may still permit a more thorou
analysis than do their more complicated three-dimensi
counterparts. Furthermore, various contributing effects
one dimension can usually be easily isolated from mode
model, thereby simplifying the task of interpretation. W
view the study of nonadiabatic effects in the on
dimensional context as a helpful precursor to the deve
ment of theoretical techniques that are broadly applicabl
three-dimensional systems.
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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Let cn(x,X) and En be the exact eigenfunctions an
eigenvalues for the time-independent wave equation co
sponding to the HamiltonianH in operator form,

Hcn~x,X!5Encn~x,X! ~2!

subject to given boundary conditions. The general tim
dependent solution to this quantum-mechanical problem
the form

C~x,X,t !5(
n

An expF2
i

\
Ent Gcn~x,X! ~3!

with constantAn selected to satisfy initial conditions. On
must keep in mind that this last equation must be modified
include an appropriate integral over continuum states w
they exist for a case under consideration.

The Born–Oppenheimer~BO! approximation replaces
the full quantum problem Eq.~2! by a sequential pair of
single-particle problems. The first examines the light parti
motion in the presence of a stationary heavy particle~i.e.,
fixed at positionX!,

H ~0!~xuX!f j~xuX!5e j
~0!~X!f j~xuX!, ~4!

whereH (0)(xuX) simply containsX as a parameter,

H ~0!~xuX!5
p2

2m
1v~x,X!. ~5!

The second utilizese j
(0)(X) as a supplement toV(X) for

motion of the heavy particle,

H j
~1!~X!w l , j~X!5e l , j

~1!w l , j~X!, ~6!

where now

H j
~1!~X!5

P2

2M
1V~X!1e j

~0!~X!. ~7!

The outcomes of this sequential approximation are estim
for the exact eigenfunctions

cn~x,X!'f j~xuX!w l , j~X! ~8!

and for the exact eigenvalues

En'e l , j
~1! ~9!

for the full two-particle HamiltonianH. In principle these
estimates could be inserted into Eq.~3! to approximate time
dependence of the two-particle dynamics.

For all three models to be examined, the interact
v(x,X) was assumed to depend only on relative separa
x–X, and in particular was chosen to be harmonic,

v~x,X!5 1
2k~x–X!2. ~10!

Consequently the light and heavy particles are bound
gether, forming a kind of ‘‘harmonic hydrogen atom.’’ As
result of this extra simplification, the first stage of the B
sequential approximation, Eqs.~4!–~5!, leads to the explicit
results43

f j~xuX!5Nj exp@2 1
2s

2#H j~s!, ~11!

e j
~0!5~ j 1 1

2!\v~0!, ~12!
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 This a
whereH j is the Hermite polynomial,Nj is the normalization
constant,

s5~mk/\2!1/4~x2X!, ~13!

andv (0) is the harmonic frequency for the light particle o
cillating about the fixed heavy particle,v (0)5(k/m)1/2. Note
that m is larger than the reduced mass for the pair of p
ticles, m5mM/(m1M ); consequentlyv (0) is smaller than
v5(k/m)1/2, the natural oscillation frequency for the pair
free space.

Our three models are now distinguished by the followi
V(X) choices:

V~X!5 1
2KX2, model I,

V~X!5e@exp~22aX!22 exp~2aX!#, model II,
~14!

V~X!5AX41BX2, model III.

The first is fully harmonic, and therefore fully solvab
by separation into independent normal modes. The sec
involves a Morse oscillator potential for the heavy partic
and can be viewed as a one-dimensional analog of an a
substrate binding potential of the type often encountered
surface physics and chemistry.44 The third introduces quartic
anharmonicity, and ifA.0, B,0 it can represent bistabl
motion.

Because thee (0), Eq. ~12!, are equally spaced and ind
pendent ofX for the harmonicv choice, Eq.~10!, the adia-
batic potential surfaces for motion of the heavy particle
parallel and equally spaced for all three models. Note t
sets of parallel potentials also originate when the system
chosen such that in the diabatic representation it is a tr
agonal Hamiltonian matrix where all the diagonal terms
identical functions of the classical coordinates and the
diagonal couplings are properly chosen constants, all in
pendent of the classical subsystem coordinate.

III. SOLUTION PROCEDURE

Our objective for each of the three models is to det
mine the precise quantum evolution of an initial wave pac
state, and to compare these results with predictions of
specific approximation schemes~Ehrenfest mean field17–33

and fewest switches surface hopping35!.
The initial state is selected to conform to the BO ‘‘pi

ture’’ reflecting the intention to use the heavy and light p
ticle coordinates as the relevant coordinates. For the m
potentials that are explored below the use of approxima
separable linear combinations of the bare coordinates m
simplify our efforts. But despite this possibility this altern
tive was rejected in order to retain generality, given that
the complexity of the system increases it becomes more
ficult to identify such combinations. In particular, the lig
particle is placed in one of theH (0) eigenstates,f j , and the
heavy particle in a translating Gaussian wave packet. Co
quently, we set
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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C~x,X,t50!5Nf j~xuX!expF2
i

\
k0X2

~X2X0!2

s2 G .
~15!

Here N is a normalizing constant,X0 the initial mean posi-
tion of the heavy particle,2\k0 is the initial momentum,
and the width parameters is assigned values typically
around 20 times the inverse of the initial momentum, unl
otherwise noted. The BO functionsf jw l , j form a complete
set for all three models, and could be used for propagatio
time. Indeed one of our objectives is to monitor time depe
dence of the light particle quantum-state probabilities

ai~ t !5(
j

cj ,i* ~ t !cj ,i~ t !, ~16!

where

cj ,i~ t !5E dXw j , i* ~X!E dxf i* ~xuX!C~x,X,t! ~17!

that indicate transitions between the adiabatic potential
faces. In addition to following theai(t) we have found it
useful to examine the time dependence of the heavy par
mean position and momentum,

^X&~ t !5E E dx dX C* ~ t !XC~ t !, ~18!

^P&~ t !5E E dx dX C* ~ t !PC~ t !. ~19!

We present these results below as phase space diagrams
as curves in theX, P plane.

Model I has the advantage that the fully quantum pro
lem is solvable in terms of independent normal modes~see
Appendix!. This is used when examining the system ti
evolution. First, the trivial time evolution in the norma
modes basis set is calculated and then transformed into
BO basis set to obtain theai mentioned above. Note tha
these normal mode quantum states differ from the BO st
by an amount dependent on the mass ratiom/M ; as the ratio
goes to zero the two representations converge to one ano
However when the ratio is nonzero the chosen initial st
@Eq. ~15!# cannot be a proper normal mode eigenstate, so
the subsequent evolution inevitably involves transitions
tween the BO surfaces. Therefore this model is a very sim
case to study the extent to which the mixed quantu
classical approximation schemes under consideration
suitable to represent the system evolution using the par
coordinates explicitly.

To calculate the full quantum evolution for models
and III fast Fourier transform techniques are used. The p
cedure used to solve the two-dimensional time depend
Schrödinger equation is that of Kosloff and Kosloff45 gener-
alized to n light particle states~the n accessible adiabatic
states!. To do so C(x,X,t) is expanded in thef j (xuX) basis;
it becomes
ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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C~x,X,t !→S Q0~X,t !
Q1~X,t !
Q2~X,t !

...
Qn~X,t!

D , ~20!

where

Q i~X,t !5E dxf i* ~xuX!C~x,X,t! ~21!

is a wave function evolving onVi(X)5V(X)1e i
(0)(X), and

the Hamiltonian becomes a nondiagonal matrix,

H i , j~X!5E dxf i* ~xuX!H~x,X!f j~xuX!. ~22!

Thus the two-dimensional time evolution problem has be
transformed inton-coupled one-dimensional time depende
Schrödinger equation. Note that the coupling occurs beca
the BO basis functions,f j (xuX), are not eigenvectors of th
P operator included inH @see Eq.~1!#. As them/M ratio
goes to zero the coupling vanishes, and as in the cas
model I transitions cease to occur.

The precise full quantum results will be compared w
results generated by the two approximate methods mentio
above, Ehrenfest mean field and the fewest switches sur
hopping. These are two well-established approximat
schemes that are designed to take advantage of the simp
of classical dynamics for the heavier particle, while presu
ing to account for nonadiabatic quantum effects of the ligh
particle in a self-consistent manner. These methods are
scribed below.

The Ehrenfest mean field approximation postulates c
sical dynamics for the heavier particle, subjected to an ef
tive forceFeff defined as

Feff52
]

]X HV1E dxF* H ~0!FJ , ~23!

where F(xuX@ t#), the light particle wave function in the
presence of the classically moving heavy particle, evol
according to the following time dependent Schro¨dinger equa-
tion,

i\
]

]t
F~xuX@ t# !5H ~0!~x,X@ t# !F~xuX@ t# !. ~24!

These equations define the method and can be used dire
Alternatively the time-dependent solution for the motion
the light particle can formally be expressed

F~xuX@ t# !5(
j

cj~ t !f j~xuX!, ~25!

using the previously introduced light particle BO basis fun
tions, f j (xuX). Thesecj ’s are the coefficients that will be
use to compute the light particle quantum-state probabili
that will be compared with the results of the fully quantu
calculations. Clearly, the equations for thecj ’s time evolu-
tion can be obtained using Eq.~24!,

i\ ċ j5e j
~0!cj2 i\Ẋ(

k
dj ,kck , ~26!
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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where the dot represents a time derivative and

dj ,i5E dxf j

]f i

]X
. ~27!

It can be shown, based on conservation of energy ar
ments, that the effective force is then given by the followi
expression:

Feff52
]V

]X
2(

j
ucj u2

]e j
~0!

]X
2

e j
~0!

Ẋ
(

j

]ucj u2

]t
~28!

52
]V

]X
2(

j
ucj u2

]e j
~0!

]X

1 (
j , l, j

@cj* cl1cl* cj #@e j
~0!2e l

~0!#dj ,l . ~29!

The first term on the right-hand side in this last equation
the force due to the external potential acting directly on
heavy particle, the second is an adiabatic contribution
Feff , while the third term comprises nonadiabatic effec
~light particle quantum number changes!. Observe that the
effective force interpolates among the forces defined se
rately on each of the accessible states.

Fewest switches surface hopping is an intrinsically s
chastic method in which the heavier particle executes fin
time-interval classical motion on distinct surfaces. Equat
~26!, the time dependent Schro¨dinger equation for the light
particle F(xuX@ t#) in terms of the light particle adiabati
basis set, is also used here, but the motion of the class
heavy particle evolves on onlyone adiabatic potential sur-
face at each instant of time, with instantaneous ‘‘hoppin
between states according to the fewest switches algorit
Thus, in contrast to the method described above, the hea
particle is subjected to a force that is simply

F52
]

]X
$V1e j

~0!% ~30!

except for occasional delta-function impulses required
conserve total energy when hops occur. Note that
method, unlike the mean-field method, is defined upon a
sis set which in this case is chosen to be the light part
adiabatic basis set,f j (xuX). The fewest switches algorithm
minimizes the number of state switches while maintainin
statistical distribution in an ensemble of trajectories th
closely reproduces the light particle state populations. To
so, instantaneous switching probabilities from the occup
level i to all the others statesj during the time intervalt to
t1D are calculated as

gk, j5
Dbj ,k

ucku2 , ~31!

whereb is defined by@see Eq.~26!#

]ucj u2

]t
5(

kÞ j
bj ,k ~32!

522Ẋ(
kÞ j

Re@cj* ckdj ,k#, ~33!
ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

7 Mar 2014 05:10:51



b
r

ow
wo
n

he
n
li

ch
ng
bil
be

in

er

he
ng
f

w

th
he
.

th
ng

th

et
se
w

b
g-

th
ns
ar
n

n of
ition
tum

ics
t a

on.
ine
m

he
on,

own
ns
ith

Eq.

r
it,

t
-
the
the

he
bi-

4717J. Chem. Phys., Vol. 109, No. 12, 22 September 1998 Kohen, Stillinger, and Tully

 This a
and compared to a uniform random number,j between 0 and
1 to determine if a switch is to occur. For example, ifj 51, a
switch to state 2 will occur ifj,g1,2. A switch to state 3
will occur if g1,2,j,g1,21g1,3, etc. In addition, for a hop
to occur the kinetic energy of the classical particle must
large enough to compensate for the loss in potential ene
that might be involved in the transition. To understand h
the algorithm works note that if the system has only t
levels the switching probability is the rate at which the qua
tum light particle population probability is increasing on t
surface where the classical particle might hop. In the abse
of ‘‘forbidden’’ hops, i.e., the appearance of nonzero amp
tudes in states that are energy forbidden, the fewest swit
algorithm statistically partitions trajectories correctly amo
different potential energy surfaces according to the proba
ties ucj u2. The treatment of forbidden hops is discussed
low.

The approximate mixed quantum-classical methods
volve solving both the time dependent Schro¨dinger equation
~26! and the Newton equations. Both were solved num
cally using the Runga–Kutta–Gill method.46

IV. NUMERICAL RESULTS

A. Model I: Harmonic oscillator

This model consists of harmonic potentials in both t
heavier and lighter particle coordinates, with a coupli
that could be viewed as bilinear@expanding the square o
(x2X)#,

H~x,X!5
p2

2m
1

P2

2M
1

1

2
k~x2X!21

1

2
KX2. ~34!

In this section some representative results for this model
be described.

As mentioned above the evolution of a system under
Hamiltonian can be determined trivially by transforming t
problem into its separable~normal! modes, see Appendix
This will be used to calculate the exact~fully quantum!evo-
lution of the system. But we reiterate that the motions of
heavy and light particles will be viewed as such, drawi
upon the Born–Oppenheimer representation. Figure 1~a! dis-
plays the potential surfaces, the BO eigenvalues plus
heavy particle external potential@see Eq.~12!#,

Vn~X!5 1
2 KX21~n1 1

2!\Ak/m, ~35!

Vn~X!5 1
2 15X21~n1 1

2!A5. ~36!

These equations indicate choices for some of the param
used in our numerical calculations. In addition the mas
m51 and M510 were assigned, and for convenience
use atomic units. The width parameter was chosen to
s50.15 in Eq.~15! and is such that the results do not si
nificantly change whens is smaller. Initially the ground state
is the only populated adiabatic state, andX0 and2\k0 @the
large dot in the Fig. 1~a!# are the initial conditions of the
heavy particle in the mixed quantum-classical methods or
center of the wave packet in the fully quantum calculatio

The ratio of masses is such that this example falls cle
in a regime were the BO approximation should not hold a
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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transitions between the levels must occur. The separatio
the parallel adiabatic states assures that when a trans
occurs the amount of energy transferred from the quan
degree of freedom to the classical one affects the dynam
of the heavy particle. This problem then may represen
challenge to any of the approximation methods.

First we concentrate on the mean field approximati
Figure 1~b!shows the phase space diagram. The solid l
corresponds to the solution of the fully quantum proble
~^X& is plotted vŝ P&!. The mean field results~X is plotted vs
P! are essentially identical to the fully quantum results. T
dotted line is the quantum adiabatic approximation soluti
i.e., no transitions~^X& is plotted vŝ P&!. Thus exact quantum
and mean field versions are identical, even though as sh
by the contrast with the adiabatic approximation, transitio
occur to a great extent. This result can be understood w
the aid of the Ehrenfest theorem47 which states that for any
Hamiltonian of the form

H~q!5
pq

2

2m
1V~q!, ~37!

the mean valueŝq& and ^pq& are given by

d

dt
^q&5

^pq&
m

;
d

dt
^pq&52 K dV

dqL . ~38!

When applied to the present completely harmonic model,
~34!, we obtain

d

dt
^x&5

^p&
m

;
d

dt
^p&52k~^x&2^X&!; ~39!

d

dt
^X&5

^P&
M

;
d

dt
^P&52~k1K!^X&2k^x&. ~40!

Alternatively, invoking the mean field approximation fo
the heavy particle motion, and then taking the classical lim
produces the following Newton equations of motion:

d

dt
X5

P

M
;

d

dt
P5

]

]X H 1

2
KX21E dxF* H ~0!FJ

5KX2E dxF* F]H ~0!

]X GF
52~K1k!X2k^x&, ~41!

where the fact thatF is the solution of the time dependen
Schrödinger equation involvingH (0) has been applied to ob
tain the second to the last equation. The dynamics of
quantum degree of freedom can be examined applying
Ehrenfest theorem toH (0) @see Eq.~4!#, this leads to

d

dt
^x&5

^p&
m

;
d

dt
^p&52k~^x&2X!, ~42!

where here as in the rest of the paper the^ & represents inte-
gration over the quantum degree~s! of freedom. Note how
the equations of motion, Eqs.~41! and ~42!, are identical to
the solution of the fully quantum problem, Eqs.~39! and~40!
~with X↔^X& and P↔^P&!, explaining why the mean field
approximation is exact while calculating the evolution of t
heavy particle. This is true only because the coupling is
ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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FIG. 1. Numerical example for model I: Harmonic oscillator.~a! Potential surfaces. The small circle indicates the initial position of the heavy particle~in the
mixed quantum-classical calculations!or the center of the wave packet~in the fully quantum calculations!.~b! Mean field results: Phase space diagram. T
solid line corresponds to the solution of the fully quantum problem~^X& is plotted vŝ P&!. For this case themean fieldresults~X vs P! are identical to the fully
quantum results. The dotted line corresponds to the quantum adiabatic approximation solution~^X& is plotted vŝ P&!. The figure shows the first 20 time unit
of the evolution.~c! Mean field results: Evolution of populations. The solid line is the numerically exact ground state population and the broken lin
result of themean fieldapproximation, both are plotted as a function of time. Only the ground state population is shown for clarity although there is po
transfer to the first and second excited states.~d! Surface hopping results: Phase space diagram. The solid line corresponds to the solution of the fully q
problem, the broken line to thesurface hoppingresults~averageX is plotted vs averageP! and the dotted line to the quantum adiabatic approximation solut
The first 20 time units of the evolution are shown.~e! Surface hopping results: Evolution of populations. The solid line is the numerically exact ground
population, the broken line the population calculated as the fraction of trajectories on each surface and the dotted line the population calculated as
~over all the different trajectories! of uci u2. The last two are results of thesurface hoppingapproximation. As in~c! only the ground state population is show
for clarity.
t
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is
b-
hat
linear and the potentials quadratic in both coordinates, o
erwise deviations occur as will be seen below. As a curio
~it is hard to envision a practical direct use of what follow!
note that if the role ofx andX are interchanged while apply
ing the mean field method~the heavier particle is treated b
quantum mechanics and the lighter by classical mechan!
their evolution in phase space would still be described
actly.

Even for harmonic models, the mean-field mix
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quantum-classical method is exact only in reproducing
first moments,̂ X& and ^P&. Higher moments are not com
puted exactly. This is apparent when comparing the ti
dependence of the light particle quantum-state probabili
in Fig. 1~c!. While the curves resemble each other, they
not identical.

Overall the performance of the mean field method
remarkably good for model I. The harmonic oscillator pro
lem is peculiar and therefore it is interesting to study to w
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degree this result survives when the harmonicity is someh
relaxed. Clearly, there are circumstances where the me
will eventually stop performing well. In particular, as ha
been described in detail elsewhere15,35,42,48this method can-
not describe accurately the evolution of minority reacti
channels if these channels involve potential energy surfa
that differ considerably from the one experienced by the m
jority channel. Note that this is precisely the class of pro
lems that the method of surface hopping was designe
address.35 It would be of little use to modify the potential jus
in order to see the mean field approximation fail; it see
more informative instead to concentrate on a specific clas
potentials. Here, as mentioned earlier, we will focus on
class of potentials that are harmonic in the separation
tweenx andX but let theV(X) change~the potential energy
surfaces are then constrained to be parallel! and monitor the
degree to which the given approximation holds.

Now we focus on the performance of the second
proximation method, the fewest switches surface hopping
gorithm. The results shown correspond to averaging 1
trajectories, all starting at (X0 ,2k0\) but with a different
stochastic history of hops. Figure 1~d! shows the resulting
phase space diagrams. The different lines have a sim
meaning to those in Fig. 1~b!although here the classica
quantities represent an average over all the trajectories. N
how the first two curves differ significantly, especially
longer times. Figure 1~e! shows the population evolutions
The solid line is the exact result, the broken line the popu
tion calculated as the fraction of trajectories on each surfa
and the dotted line the population calculated as the ave
~over all the different trajectories! of ci* ci . At early times,
the populations computed by surface-hopping are very s
lar to the mean field results of Fig. 1~c!. At longer times, the
results of surface hopping show damped oscillations in
populations and an inward spiraling in the phase space
gram. This can be attributed to the fact that different traj
tories exhibit a different history of random hops. Over
period of time this causes the ensemble to lose coherence
therefore spread in phase space. A second factor that
introduce error in surface hopping is associated with ‘‘fo
bidden hops.’’ With the algorithm employed here, hops
duced by the evolving quantum populations are tested
energetic feasibility. In the present calculation the class
particles were started at a turning point and immediat
quantum population began to develop on the upper surf
On the other hand some time elapses before the clas
particle reaches a position where it is energetically poss
for it to begin to evolve on the upper energy surface. A
consequence the fewest switches algorithm fails to stat
cally partition trajectories correctly among different potent
energy surfaces. This will not appear to be the major sou
of error in this case, however.

A related issue is that of the treatment of a forbidd
surface hop. It has been argued49 that the velocity of the
classical particle should be reversed after such an oc
rence. More recently, Mu¨ller and Stock48 have shown that it
may be more accurate to continue motion in the same di
tion.

The reason behind the unsatisfactory performance of
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surface hopping algorithm for longer times is not related
the precise nature of the potential in model I. Whenever
potential involves a coupling that does not vanish outsid
localized scattering region, surface hopping will introdu
unphysical loss of coherence. In addition, this class of in
actions also encourages the presence of regions where
hops are classically forbidden but encouraged by quan
mechanics. This situation describes all of the models stud
in this work; they involve heavy and light particles co
nected by a spring and therefore coupled for all times. T
only difference between them is the profile of the scatter
region. This fact plus the explicit exclusion~see earlier!of
the class of potentials were the surface hopping metho
known to outperform the mean field method motivates us
focus on the performance of the mean field approximatio

B. Model II: Morse oscillator A

In relaxing the harmonic restriction in the form ofV(X)
an obvious choice is that of the Morse oscillator,

H~x,X!5
p2

2m
1

P2

2M
1

1

2
k~x2X!2

1e@exp~22aX!22 exp~2aX!#. ~43!

In this section some representative results for this model
be described. Figure 2~a!displays the potential surfaces,

Vn~X!5e@exp~22aX!22 exp~2aX!#

1~n1 1
2!\Ak/m, ~44!

Vn~X!560@exp~20.6X!22 exp~20.3X!#

1~n1 1
2!A200. ~45!

Also shown in the equation above is the choice of some
the parameters used in this calculation. As before, the ma
arem51 andM510, and initially the ground adiabatic sta
is the only one populated in the lighter particle degree
freedom.

The anharmonicity of the potential causes the quant
wave packet to deform, losing its Gaussian shape as t
progresses, unlike model I. Therefore, when using this mi
quantum-classical method one trajectory is not sufficient
is necessary to perform dynamics for a collection of traj
tories differing in the initial position and momentum of th
heavy particle. To choose the initial conditions we have u
a Wigner transform.50 The Wigner transform carries a den
sity operator in the coordinate representationr(X,X8)
5uQ(X)&^Q(X8)u to phase space;

r~X,P!5
1

p\ E
2`

`

dY^X2Yur~X,X8!uX1Y&

3exp@2iPY/\#. ~46!

From thisr(X,P) the set of different initial conditions for
the collection of trajectories is chosen. The number of diff
ent initial conditions is such that the results are substanti
independent of it, and this number depends not only on
potential surface but also on the initial conditions and len
of the dynamics.
ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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Figure 2~b!shows phase space diagrams. The solid l
corresponds to the solution of the fully quantum proble
~solved numerically as described in Sec. III!, the broken line
to the ensemble averaged mean field results and the d
line to the quantum adiabatic approximation solution. Fig
2~c! shows the time dependence of the light parti
quantum-state probabilities. Even though the results are
identical, the method performance is still quite good. W
emphasize that this result, although representative, was

FIG. 2. Numerical example for model II: Morse potential A.~a! Potential
surfaces. The initial wave packet,Q0(X,t50) ~see text!, is also shown.~b!
Phase space diagram. The solid line corresponds to the solution of the
quantum problem~^X& is plotted vs^P&!, the broken line to themean field
results~ensemble averagedX vs ensemble averagedP! and the dotted line to
the quantum adiabatic approximation solution~^X& is plotted vs^P&!. The
figure shows the first 20 time units of the evolution.~c! Evolution of popu-
lations. The solid lines are the numerically exact populations and the bro
lines are the result of the ensemble averagedmean fieldapproximation, both
are plotted as a function of time. Only the ground state population is sh
for clarity although there is population transfer to the first and second
cited states.
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tained keeping in mind the goal of finding the limitations
the mean field method for this class of potentials. Its succ
motivated the selection of model III described in the ne
subsection.

C. Model III: Double well

The mean field method cannot properly describe sit
tions for which the wave packet bifurcates into two or mo
distinct paths governed by different interactions.

Model III introduces quadratic anharmonicity that ca
represent bistable motion~if A.0 andB,0!,

H~x,X!5
p2

2m
1

P2

2M
1

1

2
k~x2X!21AX41BX2. ~47!

In what follows some representative results for this mo
will be described, and again the conditions were chosen a
maximize the chances of the mean field method to fail. F
ure 3~a!displays the potential surfaces,

Vn~X!5AX41BX21~n1 1
2!\Ak/m, ~48!

Vn~X!5X4212X21~n1 1
2!A300, ~49!

that are accessible. As in the previous models, the masse
m51 and M510. The initial state is the ground adiabat
state in the lighter particle degree of freedom; and
heavier particle degree of freedom is a Gaussian wave pa
in the fully quantum calculation, while in the mixe
classical-quantum calculations it is described by a collect
of X0 and2\k0 ~the initial conditions for the set of trajec
tories!chosen from a Wigner distribution as described in t
previous subsection.

Figure 3~b!shows phase space diagrams. The solid l
corresponds to the solution of the fully quantum proble
~solved numerically as described in Sec. III!, the broken line
to the ensemble averaged mean field results and the do
line to the quantum adiabatic approximation solution. Figu
3~c! shows the time dependence of the light partic
quantum-state probabilities. Note that the phase space tra
tory, Fig. 3~b!, spirals inwards approaching an unsymmet
position ofx about 0.5. Quantum mechanically, this is due
trapping of the fraction of the wave packet that has be
excited to then51 level. The initial conditions of the wave
packet have been chosen so that there is sufficient energ
most of the wave packet to traverse the barrier in the gro
(n50) state, but not in the first excited (n51). Tunneling
through the excited state is sufficiently slow that the asy
metry in position persists over the time scale of the calcu
tion. It is interesting to note that the mean field approxim
tion reproduces this effect quite well, at least in an avera
way. There is a spread of initial energies of the independ
mean field trajectories, determined from the Wigner distrib
tion. For the conditions of Fig. 3, trajectories in the lo
energy tail of this distribution get trapped by the potent
barrier ~slightly higher that the ground state barrier due
mixing with the excited state!. The high energy majority
traverse the barrier. The phase space asymmetry in the m
field result of Fig. 3 is thus largely determined by the wid
of the initial momentum distributions, not by the probabili
of excitation to then51 state as in the fully quantum cas

lly
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Nevertheless, on average, the mean field method quite a
rately reproduces the asymmetry of the full quantum cal
lation, at least for the initial conditions chosen here.

Even though the results are not perfect the performa
of the mean field method is still quite good, despite the f
that during the evolution a small but significant portion
the population is in the excited state. Note that at the ene
we selected, the potential does not permit exploring la
regions of space. This may imply that even when the deta
evolution is not being described properly, the evolution
the averaged quantities that are being measured is accu
Therefore, in the next section model II will be re-examin
but in a case were the evolution is not confined to a restric
region of space.

FIG. 3. Numerical example for model III: Double well.~a! Potential sur-
faces. The initial wave packet,Q0(X,t50) ~see text!, is also shown.~b!
Phase space diagram. Same as Fig. 2.~c! Evolution of populations. Same a
Fig. 2.
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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D. Model II revisited: Morse oscillator B and C

The potential surfaces involved in the first example
this subsection are displayed in Fig. 4~a!,

Vn~X!510@exp~21.0X!22 exp~20.5X!#

1~n1 1
2!A30. ~50!

Note that these differ from the case shown above in Eq.~45!.
The initial conditions were chosen so that a small but n
negligible fraction of population might be transiently trapp
in the well of the first excited potential curve. The masses
m51 andM510, and the initial state is the ground adiaba
state in the lighter particle degree of freedom, and in
heavier particle degree of freedom it is a Gaussian w
packet in the fully quantum calculation, and in the mix
classical-quantum calculations it is described by a set ofX0

and 2\k0 as already stated. The initial state in the heav
particle degree of freedom,Q0(X), is also shown in Fig.
4~a!, its baseline representing total energy of the system
this calculation. Note that outside the well region the to
energy is less thanV1(X).

Figure 4~b!shows phase space diagrams. The solid l
corresponds to the solution of the fully quantum proble
~^X& vs ^P&!, the broken line to the ensemble averaged m
field results, and the dotted line to the quantum adiab
approximation solution. Figure 4~c! shows the time depen
dence of the light particle quantum-state probabilities. N
the persistent oscillations~clearly shown in the inserts dis
playing the 190–200th time units! in both the populations
and in the phase space diagram, resulting from the fact
the coupling between the heavy and light particle does
vanish when the compound particle leaves the scattering
gion. The oscillations correspond to the periodic transfer
energy between the heavy and light particles, and far fr
the scattering region simply monitor the behavior of t
heavier particle in the unperturbed composite particle.

The amount of population transfer is rather small, d
spite our efforts to find parameters where the mean fi
approximation was likely to fail. This surprising situation
caused by the fact that if the initial momentum is increas
the size of the oscillations just described increase as w
thus masking any other effects. This adds to the fact t
increasing the magnitude of the coupling does not hav
significant net effect on the transition rates sincek is also
proportional to the separation of the levels and therefore
versely proportional to the transition probabilities. Desp
this, the method performance is still better than expec
even though the populations in the different channels evo
in regions that are quite separated spatially.

This ‘‘puzzle’’ can be solved by recognizing that pop
lation can be evolving in the upper surface but not be trap
~and therefore not in a minority channel!. Figures 4~d!and
4~e! show Q0(X,t) and Q1(X,t), respectively. The region
enclosed in the quadrilateral figure in 4~e! is the only portion
of the population effectively trapped, and this portion is
most nonexistent. Most of the population in the upper s
face behaves as a ‘‘ghost’’ of the population on the grou
state, the behavior of the former merely mirroring that of t
ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

7 Mar 2014 05:10:51



e
ped.

4722 J. Chem. Phys., Vol. 109, No. 12, 22 September 1998 Kohen, Stillinger, and Tully

 This a
FIG. 4. Numerical example for model II: Morse potential B.~a! Potential surfaces. The initial wave packet,Q0(X,t50) ~see text!, is also shown.~b! Phase
space diagram. Same as Fig. 2.~c! Evolution of populations. Same as Fig. 2. The inserts in~b! and ~c! display the evolution between the 190 and 200 tim
units. ~d! Evolution ofQ0(X,t). ~e! Evolution ofQ1(X,t). The region enclosed in the quadrilateral is the only portion of the population effectively trap
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latter. This is a consequence of the persistent coupling
tween the light and heavy particles.

Thus, to observe a significant failure the transition r
must be somehow increased. This may be accomplishe
increasing the slope of the inner wall and therefore incre
ing the match between the frequency of the bounce and
of the oscillations. This creates a small fraction of the po
lation with a significantly different amount of kinetic energ
than that of the majority, consequently evolving under ina
propriate forces. That is the case if the potential surfaces

Vn~X!50.001@exp~220.0X!22 exp~210.0X!#

1~n1 1
2!A10 ~51!

as shown in Figs. 5~a!–5~e! ~the figures are equivalent t
those in Fig. 4!. In this example the well is extremely sh
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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low and the inner wall is quite steep; therefore it might re
resent a collision with a hard wall. To encourage transitio
given the absence of a substantial well, the population
initially in the first excited adiabatic state. An alternativ
would have been to give the heavier particle more init
kinetic energy, but this would have resulted in the appe
ance of masking oscillations.

This final choice of parameters produces a bifurcation
the initial wave packet into two scattered portions of qu
different velocity. An average path cannot be expected
properly describe the individual pathways, so the mean fi
method is expected to break down. The surface hopp
method was developed in order to handle such bifurcat
However, this specific example, in addition to producing
bifurcation, involves a coupling between light and heavy th
ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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FIG. 5. Numerical example for model II: Morse oscillator C.~a! Potential surfaces. The initial wave packet,Q1(X,t50) ~see text!, is also shown.~b! Phase
space diagram. Same as in Fig. 2.~c! Evolution of population on the ground state.~d! Evolution of population on the second excited state. Note how w
the mean field approximation is used the state to which most of the population is transferred is not the correct one.~e! Evolution of Q0(X,t). The region
enclosed in the quadrilateral is the portion of the population evolving in the minority channel.~f! Evolution of Q1(X,t).
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never vanishes. It is likely, therefore, that surface-hopp
would also have difficulty with this model, at least reprodu
ing the long time oscillatory behavior.

V. DISCUSSION AND CONCLUSIONS

We have examined the accuracy of mixed quantu
classical dynamics as applied to an increasingly challeng
series of model problems. The models involve one light a
one heavy degree of freedom, and exhibit substantial no
diabatic behavior. In all of the models the coupling betwe
the light and heavy particles is linear~harmonic!. In addition,
an external potential is applied to the heavy particle on
The models differ only in the magnitude of the couplin
force constant, and the form and magnitude of the exte
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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potential. The energies of the light particle quantum states
a function of the position of the heavy particle, define
sequence of ground and excited Born–Oppenheimer po
tial energy curves. Because the light particle experience
purely harmonic potential, the potential energy curves
parallel and equally spaced for all of the models. In additi
the nonadiabatic couplings among potential energy cur
persists for all times due to the nonvanishing linear coupl
between light and heavy particles.

The model problems were used to test two strategies
carrying out mixed quantum-classical dynamics in syste
involving nonadiabatic transitions, mean-field and surfa
hopping. With the mean-field approach the classical mot
of the heavy particle is governed by an effective poten
ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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energy surface resulting from an average over light part
quantum states, weighted by their time-varying populatio
It is well known that this method is inadequate in cas
where the quantum wave packet splits into parts that
governed by substantially different forces. The surfa
hopping procedure for stochastically splitting a trajecto
into multiple branches was developed in order to overco
this difficulty. Surface-hopping has been shown to outp
form the mean-field method in such cases.51 In the present
series of model studies, however, the forces associated
each quantum state are identical since the potential en
curves are parallel. The necessity for splitting trajector
into branches is therefore not apparent. Furthermore, the
that nonadiabatic transitions continue to occur for arbitra
long times presents a significant obstacle for surface-hop
methods; the different stochastic histories of individual t
jectories result in an unphysical loss of quantum coherenc
long times. This was demonstrated by application to mode
where surface hopping proved to be an adequate approx
tion to the exact quantum results at short times, but w
inadequate at long times and clearly inferior to the me
field method.

The fact that the forces are identical on each poten
energy curve does not ensure the success of the mean
method. First, the classical approximation is certainly
exactly even when motion is confined to a single poten
energy surface. Since our interest here is in mixed quant
classical treatment of systems involving multiple poten
surfaces, we selected model parameters so that classica
chanics provided an accurate description of single surf
dynamics, as judged by comparison with exact quantum
culations within the adiabatic approximation. Second, e
with parallel potential energy surfaces, the mean-field
proximation is not exact. The results reported above h
delineate the range of validity of the method.

For a completely harmonic system, model I, we ha
shown in analogy with the standard Ehrenfest theorem
the mean-field classical heavy particle positionX and mo-
mentumP reproduce exactly the corresponding quantum m
chanical expectation values^X& and^P&. Higher moments of
X andP and quantum state probabilities are not reprodu
exactly by the mean-field method, but they are quite ac
rate. With the addition of anharmonicity into the extern
potential that acts on the heavy particle, models II and
the Ehrenfest correspondence is no longer exact, and
mean-field results deviate somewhat more from the ex
quantum results. Nevertheless, the mean-field method wa
acceptable accuracy for all but one of the model syste
studied.

For the double well potential, model III, we expecte
that the mean-field method would be incapable of corre
describing the bifurcation of the quantum wave packet i
two parts localized, respectively, in the left and right pote
tial wells. However, the fraction of mean-field trajectori
trapped in each well agreed quite accurately with the qu
tum probabilities as did the mean values ofX and P. The
only case for which the mean-field method did not prov
an acceptable description was the final parameterizatio
model II, for which the quantum wave packet split into
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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scattered wave packet on the ground state potential curve
a scattered wave packet on the first excited potential.

The class of models considered here, restricted to lin
light–heavy coupling, is admittedly artificial. The mode
were chosen to elucidate the application of mixed quantu
classical dynamics to condensed phase systems invol
many heavy ~classical! degrees of freedom which ar
coupled to a few light~quantum!degrees of freedom. In suc
systems it is impractical to carry out dynamical simulatio
using normal mode coordinates. Rather, the bare coordin
of the heavy and light coordinates are generally used. In
bare particle coordinate system, the coupling between l
and heavy particles will have a linear term. It is reasonable
suppose that in many cases this linear term will dominate
coupling, particularly when the masses of the light and he
particles do not differ greatly, e.g., hydrogen versus carb
The model calculations reported here suggest that, in c
where linear couplings dominate, the mean-field mix
quantum-classical method can be of useful accuracy an
robust to the introduction of anharmonic heavy-particle
teractions.
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APPENDIX: NORMAL MODES OF MODEL I

The total Hamiltonian is

H~x,X!5
p2

2m
1

P2

2M
1

1

2
k~x2X!21

1

2
KX2. ~A1!

If the potential is written in matrix form and in term of mas
weighted coordinatesq5Amx andQ5AMX it becomes

1

2
~qQ!S a g

g b D S q
QD , ~A2!

wherea5k/m, b5(k1K)/M , and g52k/AmM. There-
fore to obtain the normal modes it is necessary to solve
following eigenvalue problem:

Ua2l g

g b2l
U50. ~A3!

The eigenvalues are

l65
a1b

2
6A~a2b!2

4
1g2 ~A4!

and the corresponding diagonalizing coordinates are

h5
g

m
q1

~l12a!2

m
Q, ~A5!

z52
~l12a!2

m
q1

g

m
Q, ~A6!

where

m5A~l12a!21g2. ~A7!

The Hamiltonian thus becomes a two-dimensional uncoup
harmonic problem, with normal modes coordinatesz andh,
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 This a
H~x,X!5
ph

2

2
1

pz
2

2
1

l1h2

2
1

l2z2

2
~A8!

with solutions

x i , j~z,h!5j i~z!n j~h!, ~A9!

n j~h!5Nj exp@2 1
2h82#H j~h8!, e j

h5~ j 1 1
2!Al1, ~A10!

j i~z!5Ni exp@2 1
2z82#Hi~z8!; e i

z5~ i 1 1
2!Al2, ~A11!

wherez85z(l2 /\2)1/4, h85h(l1 /\2)1/4, Hn are the Her-
mite polynomials, andNn are normalization constants.
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