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Model studies of nonadiabatic dynamics
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Mixed quantum-classical methods are applied to an increasingly challenging series of model
problems, and their accuracy is examined. The models involve one light and one heavy degree of
freedom, and exhibit substantial nonadiabatic behavior. In all of the models the coupling between
the light and heavy particles is lineénarmonic). In addition, different external potentials are
applied to the heavy particle only. The energies of the light particle quantum states, as a function of
the position of the heavy particle, define a sequence of ground and excited Born—Oppenheimer
potential energy curves. Because the light particle experiences a purely harmonic potential, the
potential energy curves are parallel and equally spaced for all of the models. In addition, the
nonadiabatic couplings among potential energy curves persist for all times due to the nonvanishing
linear coupling between light and heavy particles. The model problems were used to test two
strategies for carrying out mixed quantum-classical dynamics in systems involving nonadiabatic
transitions: mean field and surface hopping. The model calculations reported here suggest that, in
cases where linear couplings dominate, the mean field mixed quantum-classical method displays
useful accuracy and is robust to the introduction of anharmonic heavy-particle interactions. The
model calculations also reveal special situations in which the surface hopping approximation is
inappropriate. ©1998 American Institute of Physids$$0021-9606(98)52436-1]

I. INTRODUCTION hand, there are methods that can accurately treat the electron
dynamics even if electronic excitations occur but provided

Many dynamical phenomena in physics and ChemlStr){hat their impact on the motion of the heavier atoms is
11-14

involve coupled motions of particles with widely differing -
. negligible:
masses. Electronic and nuclear degrees of freedom, respec-= .. " . : L .
Difficulties begin to arise in those cases where electronic

tively, in single atoms and molecules, provide a vivid illus- : ) -
tratig)/n whicgh the Born—Oppenheimerpseparation schem (or other light particlg excitations out of the ground state
' ecome significant and these, in turn, influence the behavior

exploits to a good advantage. The transfer of light proton f the heavi ic| his situati f
along hydrogen bonds between pairs of heavy electronegé)- the heavier particles. One encounters this situation, for

tive atoms(e.g., N, O, F, Ol constitutes another class of example, in photochemical reactions involving nonradiative
exampleg The nteraction of liquicHe or *He with high-  transitions, and in oxidation-reduction or proton transfer re-

atomic-weight solids, both crystalline and amorphous, preactions in liquid solutions. Accurate description of structure
sents further illustrations. and dynamics in liquid metals and reactions at metal surfaces
The presence of extreme mass ratios invites the use of &€ also problematic, since a continuum of excited conduc-
mixed quantum and classical descriptfoithis is particu- tion electrons must be involved.
larly appropriate for describing theirtually classical)mo- The intrinsic power of molecular dynamics computer
tions of electron-bearing heavy atoms or molecules that forngimulations to illuminate physical and chemical phenomena
nonreactive insulating media. That is precisely the basis ofas lent considerable weight to extending its traditional clas-
the molecular dynamics simulation method, for which thesical version as described above, to cover cases with elec-
Born—Oppenheimer ground-electronic-state energy surfacgonic excitation. Indeed several approximation schemes for
provides the potential energy function for numerical integra-ealizing this goal treating the quantum and classical degrees
tion of Newton’s equation3® Assuming that electronic ex- of freedom self-consistently have been propost re-
citation remains absent, methods are available when requiradews, see Refs. 15 and J16These include both mean
to generate quantum corrections to the strict classical dyfield'’~*3and surface hoppiri§ 2 approaches. But in spite
namical description of the heavier particle$ On the other  of an extended effort no universally acceptable approxima-
tion strategy has yet emerged. The present paper reports re-
dCurrent address: Department of Chemistry, University of California, Irv- sults of a modest study intended to contribute some further
ine, Irvine, California 92697. understanding to this active research area. In particular, our
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efforts could be regarded as an attempt to understand to what Let ,(x,X) and E,, be the exact eigenfunctions and
degree the use of some of these methods is appropriate wheigenvalues for the time-independent wave equation corre-
the evolution of a heavy plus light particle system is studiedsponding to the Hamiltoniahl in operator form,

using the particle coordinates directiather than some col-

lective coordinates). For simple model problems it would be Hn(X,X) = Enihn(X.X) )
more appropriate to base a quantum-classical separation @ubject to given boundary conditions. The general time-
normal mode coordinates in order to minimize the effect ofdependent solution to this quantum-mechanical problem has
the quantum coordinates on the classical ones, and vicde form

versa. In realistic many particle simulations a normal mode )
separation is not practical, however, and the bare particle W (x,X t)=2 A ex;{—l— E.t
must generally be used. This introduces coupling between Y U "

classical and.quantur_n coordinates, even n harmomc_ SY3hith constantA,, selected to satisfy initial conditions. One
tems, and this coupling can be problematical for mixed T . ) -
X . : - must keep in mind that this last equation must be modified to
guantum-classical dynamics. The simplest model potentials o .
A . include an appropriate integral over continuum states when
that represent this situation are those of linearly coupled har; . . )
. : . . ._they exist for a case under consideration.
monic and anharmonic oscillators. In this context nonadia- : S
The Born—OppenheimefBO) approximation replaces

batic transitions may occur between the adiab&Born— . .
Oppenheimer)light-mass states simply because the barethe full quantum problem Eq2) by a sequential pair of

particle coordinates do not correspond to the “normalsmgle—partmle problems. The first examines the light particle

modes” of the system. The following section argues in favorg;(c;téogt |Fr)10tshi§:o$]>r(e)sence of a stationary heavy partice,
of studying simple tractable models of nonadiabatic effects, '
and introduces three such models, each involving a coupled  H©(x|X) ¢;(x|X) = €% (X) ¢; (x| X), (4)
pair of particles moving in one dimension under the influ- ) . .

ence of an external potential. Section Ill provides computa®WhereH™(x|X) simply containsX as a parameter,
tional details about the respective dynamical investigations p2

for each of these three models. Section IV presents our nu- HO(x|X)= ﬁJrv(x,X). (5)
merical results for the three. The final Sec. V discusses the

implications of our results for future theoretical and simula-The second utiIize&fo)(X) as a supplement tv/(X) for

(X, X) 3

tional activity. motion of the heavy particle,
Hfl)(x)%,j(x): €|(,lj)<P|,j(X)1 (6)
Il. SIMPLE MODELS where now
. . . p2
Each of the three cases to be examined involves a pair of ngm(x): o FV(X) + Ej(O)(x)_ @)

spinless particles confined to move in one dimension only.
The lighter particle of the paifmassm, positionx, momen-
tum p) interacts with the heavier particlenassM, position
X, momentunP) via potentialv (x,X). At the same time the

The outcomes of this sequential approximation are estimates
for the exact eigenfunctions

heavier particle experiences an external poteM{a). The (X, X) = ¢;(X[X) @) ;(X) (8)
two-particle Hamiltonian consequently has the form and for the exact eigenvalues
pZ P2 1)
= 4 E.,~e€ 9
H= S+ 535 T 0 (. X) +V(X). (1) n~ €] 9)

for the full two-particle HamiltoniarH. In principle these

The thrge cases to be analyzed are distingui;hed by the CQlgtimates could be inserted into E§) to approximate time
responding assignments ofandV, to be specified below. dependence of the two-particle dynamics.

. Reli.ance on one-dimensipnal models to il!uminatg three- For all three models to be examined, the interaction
Q|men3|onal phenome_na obviously must be viewed with cau; (x,X) was assumed to depend only on relative separation
tlon._ Nevertheless th|s_ stratggy offers some advantages. X, and in particular was chosen to be harmonic,
particular, some one-dimensional models can be solved ana-
lytically in closed form(see model | beloy while others v(x,X)=3k(x=X)2. (10)

that are not fully solvable may still permit a more thorough . .
. : . . ~ "Consequently the light and heavy particles are bound to-
analysis than do their more complicated three-dimensions ; . " ; 9
ether, forming a kind of “harmonic hydrogen atom.” As a

countgrpartg. Furthermore, various c;ontnbutmg effects | result of this extra simplification, the first stage of the BO
one dimension can usually be easily isolated from model tg

model, thereby simplifying the task of interpretation. We sequengnal approximation, Eqet)~(5), leads to the explicit
. e : resulté

view the study of nonadiabatic effects in the one-

dimensional context as a helpful precursor to the develop-  ¢;(x|X)=N; exd — 3s%]H;(s), (11)
ment of theoretical techniques that are broadly applicable to O i L 1vr ()

three-dimensional systems. & =(jt2)ho'”, (12)
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whereH; is the Hermite polynomial; is the normalization i (X—Xg)?
constant, W(x,X,t=0)=Ng;(x|X)exg — 7 KoX— —

s=(mk/H?)Y4(x—X), (13) (15)

0) i . . . _HereN is a normalizing constani, the initial mean posi-
and w'”’ is the harmonic frequency for the light particle os tion of the heavy particle— ik, is the initial momentum,

o ' e (0) — 1/2
cillating about the fixed heavy particle, ™= (k/m)™*. Note and the width parametes is assigned values typically

that m is larger than the reduced mass for the pair of par- : . o
. _ . ©) ; around 20 times the inverse of the initial momentum, unless
ticles, u=mM/(m+M); consequentlyw'*’ is smaller than

w=(k/w)*?, the natural oscillation frequency for the pair in otherwise noted. The BO function; ¢, ; form a complete
free space. set for all three models, and could be used for propagation in

o . time. Indeed one of our objectives is to monitor time depen-
Our three models are now distinguished by the following : . .
V(X) choices: dence of the light particle quantum-state probabilities

V(X)=3KX? model I, a(t)=>, ek (e (), (16)
J

V(X)=¢[exp(—2aX)—2 exgd —aX)], model I,
(14)  where

V(X)=AX*+BX?, model lll.
o _ cj,i(t)=f dX@fi(X)f dx ¢f (X|X)¥(x,X,1) (17)
The first is fully harmonic, and therefore fully solvable

by separation into independent normal modes. The seconcri] L . h . . il
involves a Morse oscillator potential for the heavy particle,t at indicate transitions between the adiabatic potential sur-

and can be viewed as a one-dimensional analog of an atorf@ceS: In addition to following the(t) we have found it
substrate binding potential of the type often encountered i#Seful to examine the time dependence of the heavy particle
surface physics and chemisf§/The third introduces quartic Mean position and momentum,
anharmonicity, and ifA>0, B<O0 it can represent bistable
motion. _ *
Because the(®, Eq.(12), are equally spaced and inde- X f f dx X HXF (L), 18)
pendent ofX for the harmoniaw choice, Eq.(10), the adia-
batic potential surfaces for motion of the heavy particle are .
parallel and equally spaced for all three models. Note that <P>(t):f f dx dX¥* (1) PW(D). (19)
sets of parallel potentials also originate when the system is
chosen such that in the diabatic representation it is a tridiyye present these results below as phase space diagrams, i.e.,
agonal Hamiltonian matrix where all the diagonal terms aress curves in th&, P plane.
identical functions of the classical coordinates and the off-  Model | has the advantage that the fully quantum prob-
diagonal couplings are properly chosen constants, all indgem is solvable in terms of independent normal motkese
pendent of the classical subsystem coordinate. Appendix). This is used when examining the system time
evolution. First, the trivial time evolution in the normal
modes basis set is calculated and then transformed into the
IIl. SOLUTION PROCEDURE BO basis set to obtain tha; mentioned above. Note that
these normal mode quantum states differ from the BO states
Our objective for each of the three models is to deterby an amount dependent on the mass ratitl; as the ratio
mine the precise quantum evolution of an initial wave packegoes to zero the two representations converge to one another.
state, and to compare these results with predictions of twélowever when the ratio is nonzero the chosen initial state
specific approximation scheméEhrenfest mean field™3®  [Eq.(15)]cannot be a proper normal mode eigenstate, so that
and fewest switches surface hoppifig the subsequent evolution inevitably involves transitions be-
The initial state is selected to conform to the BO “pic- tween the BO surfaces. Therefore this model is a very simple
ture” reflecting the intention to use the heavy and light par-case to study the extent to which the mixed quantum-
ticle coordinates as the relevant coordinates. For the modelassical approximation schemes under consideration are
potentials that are explored below the use of approximatelguitable to represent the system evolution using the particle
separable linear combinations of the bare coordinates migtdoordinates explicitly.
simplify our efforts. But despite this possibility this alterna- To calculate the full quantum evolution for models II
tive was rejected in order to retain generality, given that asnd Il fast Fourier transform techniques are used. The pro-
the complexity of the system increases it becomes more difeedure used to solve the two-dimensional time dependent
ficult to identify such combinations. In particular, the light Schralinger equation is that of Kosloff and Kosl8tgener-
particle is placed in one of the(?) eigenstatesg; , and the  alized ton light particle stategthe n accessible adiabatic
heavy particle in a translating Gaussian wave packet. Consetates). To do so &, X,t) is expanded in the;(x|X) basis;
quently, we set it becomes
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Oo(X,1) where the dot represents a time derivative and
0,(X,1) I,
W(x,X,1)—| OxX1) |, (20) d“zf dxdj 5x (@)
@n.(.).(,t) It can be shown, based on conservation of energy argu-
ments, that the effective force is then given by the following
where expression:
Oi(X,t =J dx ¢ (X[ X)W (x,X,t 21 Vv 9el? €9 glci|?
(X, $r (X)W (X, X, (21) P~ 0 Jof L |&:l 08)
is a wave function evolving ol/;(X)=V(X) + &?(X), and J :
the Hamiltonian becomes a nondiagonal matrix, 0
__ O ad
. X 9 I&i” 5%
.%’j(X)zf dx ¢ (X[ X)H (X, X) ¢;(x|X). (22)
0 0
Thus the two-dimensional time evolution problem has been + 2 [cfetclolle”—e1d;,. (29)

. . . . iI<j
transformed intn-coupled one-dimensional time dependent

Schralinger equation. Note that the coupling occurs becaus&he first term on the right-hand side in this last equation is
the BO basis functionsp;(x|X), are not eigenvectors of the the force due to the external potential acting directly on the
P operator included irH [see Eq.(1)]. As them/M ratio  heavy particle, the second is an adiabatic contribution to
goes to zero the coupling vanishes, and as in the case &f, While the third term comprises nonadiabatic effects
model | transitions cease to occur. (light particle quantum number change®bserve that the
The precise full quantum results will be compared with effective force interpolates among the forces defined sepa-
results generated by the two approximate methods mentioneétely on each of the accessible states.
above, Ehrenfest mean field and the fewest switches surface Fewest switches surface hopping is an intrinsically sto-
hopping. These are two well-established approximatiorchastic method in which the heavier particle executes finite-
schemes that are designed to take advantage of the simplicityne-interval classical motion on distinct surfaces. Equation
of classical dynamics for the heavier particle, while presum{26), the time dependent Schiinger equation for the light
ing to account for nonadiabatic quantum effects of the lighteparticle ®(x|X[t]) in terms of the light particle adiabatic
particle in a self-consistent manner. These methods are déasis set, is also used here, but the motion of the classical
scribed below. heavy particle evolves on onlgne adiabatic potential sur-
The Ehrenfest mean field approximation postulates clasface at each instant of time, with instantaneous “hopping”
sical dynamics for the heavier particle, subjected to an effechetween states according to the fewest switches algorithm.
tive force F ¢ defined as Thus, in contrast to the method described above, the heavier
particle is subjected to a force that is simply

Feif= v+f dch*H<°><1>], (23)

X F=— % V+e) (30)
where @ (x|X[t]), the light particle wave function in the
presence of the classically moving heavy particle, evolvegxcept for occasional delta-function impulses required to
according to the following time dependent Saftirger equa- conserve total energy when hops occur. Note that this
tion, method, unlike the mean-field method, is defined upon a ba-
J sis set which in this case is chosen to be the light particle
ih— O(x|X[t])=HO(x,X[t])D(x|X[t]). (24)  adiabatic basis se¢j(x|X). The fewest switches algorithm
at minimizes the number of state switches while maintaining a
These equations define the method and can be used directhfatistical distribution in an ensemble of trajectories that
Alternatively the time-dependent solution for the motion of closely reproduces the light particle state populations. To do

the light particle can formally be expressed so, instantaneous switching probabilities from the occupied
level i to all the others statgsduring the time intervat to
d(x|X[t]) = ci() ¢j(x|X), (25) t+A are calculated as
J Ab.
using the previously introduced light particle BO basis func- Ok :|c_kl|’2_’ (31)

tions, ¢;(x|X). Thesec;’s are the coefficients that will be

use to compute the light particle quantum-state probabilitiesvhereb is defined by[see Eq.(26)]

that will be compared with the results of the fully quantum dlci|?

calculations. Clearly, the equations for thgs time evolu- _— bj (32)
tion can be obtained using E(R4), ot iF

ine;=e%c,—1hX> djCr, (26) =—2X2, Recred;l, (33)
K k#j
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and compared to a uniform random numkgEbetween 0 and transitions between the levels must occur. The separation of
1 to determine if a switch is to occur. For examplej,#1, a  the parallel adiabatic states assures that when a transition
switch to state 2 will occur i€<<g;,. A switch to state 3 occurs the amount of energy transferred from the quantum
will occur if g, ,<£<0;,+0; 3, €tc. In addition, for a hop degree of freedom to the classical one affects the dynamics
to occur the kinetic energy of the classical particle must beof the heavy particle. This problem then may represent a
large enough to compensate for the loss in potential energghallenge to any of the approximation methods.
that might be involved in the transition. To understand how  First we concentrate on the mean field approximation.
the algorithm works note that if the system has only twoFigure 1(b)shows the phase space diagram. The solid line
levels the switching probability is the rate at which the quan-corresponds to the solution of the fully quantum problem
tum light particle population probability is increasing on the ((X) is plotted vs(P)). The mean field resul{X is plotted vs
surface where the classical particle might hop. In the absende) are essentially identical to the fully quantum results. The
of “forbidden” hops, i.e., the appearance of nonzero ampli-dotted line is the quantum adiabatic approximation solution,
tudes in states that are energy forbidden, the fewest switché®., no transition$(X) is plotted vs(P)). Thus exact quantum
algorithm statistically partitions trajectories correctly amongand mean field versions are identical, even though as shown
different potential energy surfaces according to the probabiliby the contrast with the adiabatic approximation, transitions
ties |CJ—|2. The treatment of forbidden hops is discussed beoccur to a great extent. This result can be understood with
low. the aid of the Ehrenfest theoréhwhich states that for any
The approximate mixed guantum-classical methods inHamiltonian of the form
volve solving both the time dependent Satirmer equation 2
(26) and the Newton equations. Both were solved numeri-  (q)= ﬁﬂ/(q), (37)
cally using the Runga—Kutta—Gill methd8. 2m

the mean valuegy) and(p,) are given by

(Py).

IV. NUMERICAL RESULTS d d dv
gila= gt (Pa) =~ aq/ (38)

A. Model I: Harmonic oscillator m

This model consists of harmonic potentials in both theWhen applied to the present completely harmonic model, Eq.
heavier and lighter particle coordinates, with a coupling(34), we obtain

that could be viewed as bilinegexpanding the square of d ) d
_X _— = —" _— = — — .

(x=X)], G 0= g (P= k()= 00); (39)

H(x,X) il + i + ! k(x—X)2+ ! KX? (34) d (Py d

X, X)= =+ —+ = k(x— = .
2m 2M 2 2 G 0= g (P =~ (k+K(X)—k(x).  (40)

In this section some representative results for this model will
be described. Alternatively, invoking the mean field approximation for

As mentioned above the evolution of a system under thi§he heavy particle motion, and then taking the classical limit,
Hamiltonian can be determined trivially by transforming the Produces the following Newton equations of motion:
problem into its separablénormal) modes, see Appendix. d p d

J (1
This will be used to calculate the exgétilly quantum)evo- qt X= K i P= . (— KX2+ j dxd* H(O)CD}

lution of the system. But we reiterate that the motions of the 2

heavy and light particles will be viewed as such, drawing H©

upon the Born—Oppenheimer representation. Fig(a¢dis- :KX—f dx®* | — }‘1’

plays the potential surfaces, the BO eigenvalues plus the

heavy particle external potentifdee Eq.(12)], = — (K+ k)X —=k{x}, (41)
Vo (X)=2 KX?+(n+3)#AVk/m, (35)  where the fact tha is the solution of the time dependent

Schralinger equation involvingd(®) has been applied to ob-

Vo(X)=3 15X+ (n+3) 5. (36)  tain the second to the last equation. The dynamics of the

These equations indicate choices for some of the parametef§lantum degree of freedom can be examined applying the

used in our numerical calculations. In addition the masse&hrenfest theorem tbl® [see Eq.(4)], this leads to

m=1 and M =10 were assigned, and for convenience we d (p) d

use atomic units. The width parameter was chosen to be ﬁ<x)=ﬁ; at (p)=—k({x)—X), (42)

0=0.15 in Eq.(15) and is such that the results do not sig-

nificantly change whemr is smaller. Initially the ground state where here as in the rest of the paper ¢heepresents inte-

is the only populated adiabatic state, aX¢land — %k, [the  gration over the quantum degtsgof freedom. Note how

large dot in the Fig. (&)] are the initial conditions of the the equations of motion, Eq§1) and (42), are identical to

heavy patrticle in the mixed quantum-classical methods or théhe solution of the fully quantum problem, Eq489) and(40)

center of the wave packet in the fully quantum calculations(with X« (X) and P« (P)), explaining why the mean field
The ratio of masses is such that this example falls clearlyapproximation is exact while calculating the evolution of the

in a regime were the BO approximation should not hold ancheavy particle. This is true only because the coupling is bi-
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FIG. 1. Numerical example for model I: Harmonic oscillat@) Potential surfaces. The small circle indicates the initial position of the heavy pditidtee

mixed quantum-classical calculatiorm)the center of the wave packigt the fully quantum calculationsfb) Mean field results: Phase space diagram. The

solid line corresponds to the solution of the fully quantum problédis plotted vs(P)). For this case thmean fieldesults(X vs P) are identical to the fully

guantum results. The dotted line corresponds to the quantum adiabatic approximation goXitismplotted vs(P)). The figure shows the first 20 time units

of the evolution.(c) Mean field results: Evolution of populations. The solid line is the numerically exact ground state population and the broken line is the
result of themean fieldapproximation, both are plotted as a function of time. Only the ground state population is shown for clarity although there is population
transfer to the first and second excited stafgsSurface hopping results: Phase space diagram. The solid line corresponds to the solution of the fully quantum
problem, the broken line to tteurface hoppingesults(averageX is plotted vs average) and the dotted line to the quantum adiabatic approximation solution.

The first 20 time units of the evolution are showe) Surface hopping results: Evolution of populations. The solid line is the numerically exact ground state
population, the broken line the population calculated as the fraction of trajectories on each surface and the dotted line the population calculated as the average

(over all the different trajectori¢®f |c;|2. The last two are results of thearface hoppingipproximation. As ir(c) only the ground state population is shown
for clarity.

linear and the potentials quadratic in both coordinates, othquantum-classical method is exact only in reproducing the
erwise deviations occur as will be seen below. As a curiositifirst moments{X) and (P). Higher moments are not com-
(it is hard to envision a practical direct use of what follpws puted exactly. This is apparent when comparing the time
note that if the role ok andX are interchanged while apply- dependence of the light particle quantum-state probabilities
ing the mean field metho@he heavier particle is treated by in Fig. 1(c). While the curves resemble each other, they are
guantum mechanics and the lighter by classical mechanicsiot identical.
their evolution in phase space would still be described ex- Overall the performance of the mean field method is
actly. remarkably good for model I. The harmonic oscillator prob-
Even for harmonic models, the mean-field mixedlem is peculiar and therefore it is interesting to study to what



J. Chem. Phys., Vol. 109, No. 12, 22 September 1998 Kohen, Stillinger, and Tully 4719

degree this result survives when the harmonicity is somehowurface hopping algorithm for longer times is not related to
relaxed. Clearly, there are circumstances where the methdtie precise nature of the potential in model I. Whenever the
will eventually stop performing well. In particular, as has potential involves a coupling that does not vanish outside a
been described in detail elsewherg42%8this method can- localized scattering region, surface hopping will introduce
not describe accurately the evolution of minority reactionunphysical loss of coherence. In addition, this class of inter-
channels if these channels involve potential energy surfaceactions also encourages the presence of regions where the
that differ considerably from the one experienced by the mahops are classically forbidden but encouraged by quantum
jority channel. Note that this is precisely the class of prob-mechanics. This situation describes all of the models studied
lems that the method of surface hopping was designed tt this work; they involve heavy and light particles con-
address?® It would be of little use to modify the potential just nected by a spring and therefore coupled for all times. The
in order to see the mean field approximation fail; it seemnly difference between them is the profile of the scattering
more informative instead to concentrate on a specific class gegion. This fact plus the explicit exclusidqsee earlier)of
potentials. Here, as mentioned earlier, we will focus on théhe class of potentials were the surface hopping method is
class of potentials that are harmonic in the separation benown to outperform the mean field method motivates us to
tweenx and X but let theV(X) change(the potential energy focus on the performance of the mean field approximation.
surfaces are then constrained to be panadatd monitor the
degree to which the given approximation holds. B. Model II: Morse oscillator A

Now we focus on the performance of the second ap-
proximation method, the fewest switches surface hopping al-  In relaxing the harmonic restriction in the form g{X)
gorithm. The results shown correspond to averaging 100@n obvious choice is that of the Morse oscillator,

trajectories, all starting atXy,—kq#) but with a different p2 P2
stochastic history of hops. Figurdd) shows the resulting H(X,X)= =—+ =+ = k(x—X)?
. . . . 2m 2M 2
phase space diagrams. The different lines have a similar
meaning to those in Fig. 1(balthough here the classical + e[ exp(—2aX)—2 exg —aX)]. (43)

guantities represent an average over all the trajectories. No‘e . : . : .
i . - : N this section some representative results for this model will
how the first two curves differ significantly, especially at

longer times. Figure (&) shows the population evolutions. be described. Figure 2(alisplays the potential surfaces,

The solid line is the exact result, the broken line the popula-  V,(X)=e[exp—2aX)—2 exg — aX)]
tion calculated as the fraction of trajectories on each surface,

and the dotted line the population calculated as the average +(n+ %)h\/k/_m, (44)
(over all the different trajectorieof cc;. At early times, V,(X) =60 exp —0.6X)—2 exg —0.3X)]

the populations computed by surface-hopping are very simi-

lar to the mean field results of Fig(c). At longer times, the +(n+3)1/200. (45)

results _Of surface hqpping shpw.dar.nped oscillations in tr_‘%lso shown in the equation above is the choice of some of
populations and an inward spiraling in the phase space digne parameters used in this calculation. As before, the masses
gram. This can be attributed to the fact that different trajecyrem=1 andm = 10, and initially the ground adiabatic state
tories exhibit a different history of random hops. Over ajg the only one populated in the lighter particle degree of
period of time this causes the ensemble to lose coherence afgdedom.

therefore spread in phase space. A second factor that can The anharmonicity of the potential causes the quantum
introduce error in surface hopping is associated with “for-yyave packet to deform, losing its Gaussian shape as time
bidden hops.” With the algorithm employed here, hops in-progresses, unlike model I. Therefore, when using this mixed
duced by the evolving quantum populations are tested fojuantum-classical method one trajectory is not sufficient. It
energetic feaSIblllty In the present calculation the CIaSSicais necessary to perform dynamics for a collection of trajec-
particles were started at a turning point and immediatelytories differing in the initial position and momentum of the
quantum population began to develop on the upper surfac@eavy particle. To choose the initial conditions we have used
On the other hand some time elapses before the classicalwigner transforni® The Wigner transform carries a den-

particle reaches a position where it is energetically possiblgjty operator in the coordinate representatipfX,X’)
for it to begin to evolve on the upper energy surface. As a=]0(X)){0(X")| to phase space;

consequence the fewest switches algorithm fails to statisti-

cally partition traject(_)ries_ correctly among different potential p(X,P)= i Jx dY(X—=Y|p(X,X)|X+Y)

energy surfaces. This will not appear to be the major source mh ) -

of error in this case, however. .
A related issue is that of the treatment of a forbidden X exq 2iPY/h]. (46)

surface hop. It has been arg®dhat the velocity of the From thisp(X,P) the set of different initial conditions for

classical particle should be reversed after such an occuthe collection of trajectories is chosen. The number of differ-

rence. More recently, Mler and Stock® have shown that it ent initial conditions is such that the results are substantially

may be more accurate to continue motion in the same diredndependent of it, and this number depends not only on the

tion. potential surface but also on the initial conditions and length
The reason behind the unsatisfactory performance of thef the dynamics.
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tained keeping in mind the goal of finding the limitations of

V.X) ° lu, ‘\ ’/' " _- the mean field method for this class of potentials. Its success
-10 ‘“\ R motivated the selection of model Ill described in the next
vo \“:__ Y 7 subsection.
RSN ._,." Ve
-30 ‘\ ‘\ // C. Model Ill: Double well
-40 ‘\ e // ——ene0 The mean field method cannot properly describe situa-
\\ /e =1 tions for which the wave packet bifurcates into two or more
-50 <7 —mn=2 distinct paths governed by different interactions.
6w n=s Model III introduces quadratic anharmonicity that can
-4 -2 0 X 2 4 6 8 represent bistable motidiif A>0 andB<0),
a
N L 21 At B2
v HOX) = 54 5o+ 5 k(X=X)?+ AX*+B X2, (47)
<P>orP In what follows some representative results for this model
10 will be described, and again the conditions were chosen as to
maximize the chances of the mean field method to fail. Fig-
o ure 3(a)displays the potential surfaces,
Vo(X)=AX*+BX2+ (n+3fik/m, (48)
-10 V,(X)=X4—12X2+ (n+%)/300, (49)
that are accessible. As in the previous models, the masses are
-20 m=1 andM =10. The initial state is the ground adiabatic
(b) state in the lighter particle degree of freedom; and the
heavier particle degree of freedom is a Gaussian wave packet
1 in the fully quantum calculation, while in the mixed
population classical-quantum calculations it is described by a collection
0.05 of Xg and —#ikg (the initial conditions for the set of trajec-
' tories)chosen from a Wigner distribution as described in the
previous subsection.
0.9 Figure 3(b)shows phase space diagrams. The solid line
corresponds to the solution of the fully quantum problem
0.85 (solved numerically as described in Sec),lthe broken line
to the ensemble averaged mean field results and the dotted
line to the quantum adiabatic approximation solution. Figure
0.8 3(c) shows the time dependence of the light particle
0 10 20 30 40 50 e .
(© time quantum-state probabilities. Note that the phase space trajec-

tory, Fig. 3b), spirals inwards approaching an unsymmetric
FIG. 2. Numerigql example for model II: Morse potential @) Potential position ofx about 0.5. Quantum mechanically, this is due to
surfaces. The initial wave packéd,(X,t=0) (see text), is also show(b) . .
Phase space diagram. The solid line corresponds to the solution of the fqufap_P'”g of the fraction of th_e_wave pa_c_ket that has been
quantum problemi(X) is plotted vs(P)), the broken line to thenean field ~ excited to then=1 level. The initial conditions of the wave
results(ensemble averagexivs ensemble averagéy and the dotted lineto  packet have been chosen so that there is sufficient energy for

the quantum adiabatic approximation soluti@X) is plotted vs(P)). The most of the wave packet to traverse the barrier in the ground
figure shows the first 20 time units of the evolutiga) Evolution of popu-

lations. The solid lines are the numerically exact populations and the broke(ln = 0) state, bu.t not in th_e first .e.xciteah (: 1)- Tunne”ng
lines are the result of the ensemble averagedn fieldapproximation, both ~ through the excited state is sufficiently slow that the asym-

are plotted as a function of time. Only the ground state population is showrmetry in position persists over the time scale of the calcula-
fqr clarity although there is population transfer to the first and second tion. It is interesting to note that the mean field approxima-
cited states. tion reproduces this effect quite well, at least in an average
way. There is a spread of initial energies of the independent
Figure 2(b)shows phase space diagrams. The solid linenean field trajectories, determined from the Wigner distribu-
corresponds to the solution of the fully quantum problemtion. For the conditions of Fig. 3, trajectories in the low
(solved numerically as described in Sec),lthe broken line  energy tail of this distribution get trapped by the potential
to the ensemble averaged mean field results and the dottddrrier (slightly higher that the ground state barrier due to
line to the quantum adiabatic approximation solution. Figuremixing with the excited staje The high energy majority
2(c) shows the time dependence of the light particletraverse the barrier. The phase space asymmetry in the mean-
guantum-state probabilities. Even though the results are ndield result of Fig. 3 is thus largely determined by the width
identical, the method performance is still quite good. Weof the initial momentum distributions, not by the probability
emphasize that this result, although representative, was olof excitation to then=1 state as in the fully quantum case.
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D. Model Il revisited: Morse oscillator B and C

The potential surfaces involved in the first example in
this subsection are displayed in Fig. 4(a),

V,(X) =10 exp( — 1.0X) — 2 exp — 0.5X) ]
+(n+%)4/30. (50)

Note that these differ from the case shown above in(Eg).

The initial conditions were chosen so that a small but non-
negligible fraction of population might be transiently trapped
in the well of the first excited potential curve. The masses are
m=1 andM =10, and the initial state is the ground adiabatic
state in the lighter particle degree of freedom, and in the
heavier particle degree of freedom it is a Gaussian wave
packet in the fully quantum calculation, and in the mixed
classical-quantum calculations it is described by a sefpf
and — %k, as already stated. The initial state in the heavier
particle degree of freedon®)y(X), is also shown in Fig.
4(a), its baseline representing total energy of the system in
this calculation. Note that outside the well region the total
energy is less thak';(X).

Figure 4(b)shows phase space diagrams. The solid line
corresponds to the solution of the fully quantum problem
((X) vs (P)), the broken line to the ensemble averaged mean
field results, and the dotted line to the quantum adiabatic
approximation solution. Figure(d) shows the time depen-
dence of the light particle quantum-state probabilities. Note
the persistent oscillation&learly shown in the inserts dis-
playing the 190-200th time unjtsn both the populations
and in the phase space diagram, resulting from the fact that
the coupling between the heavy and light particle does not
vanish when the compound patrticle leaves the scattering re-
gion. The oscillations correspond to the periodic transfer of
energy between the heavy and light particles, and far from
the scattering region simply monitor the behavior of the
heavier particle in the unperturbed composite particle.

0 5 10 15 20 25 30 The amount of population transfer is rather small, de-
© time spite our efforts to find parameters where the mean field
FIG. 3. Numerical example for model lll: Double wella) Potential sur- approximation was likely to fail. This surprising situation is
faces. The initial wave packe€),(X,t=0) (see text), is also showrib) caused by the fact that if the initial momentum is increased
Phase space diagram. Same as FigcPEvolution of populations. Same as  the size of the oscillations just described increase as well,
Fig. 2. thus masking any other effects. This adds to the fact that
increasing the magnitude of the coupling does not have a
significant net effect on the transition rates sirces also
Nevertheless, on average, the mean field method quite accproportional to the separation of the levels and therefore in-
rately reproduces the asymmetry of the full quantum calcuversely proportional to the transition probabilities. Despite
lation, at least for the initial conditions chosen here. this, the method performance is still better than expected

Even though the results are not perfect the performanceven though the populations in the different channels evolve
of the mean field method is still quite good, despite the facin regions that are quite separated spatially.
that during the evolution a small but significant portion of This “puzzle” can be solved by recognizing that popu-
the population is in the excited state. Note that at the energhation can be evolving in the upper surface but not be trapped
we selected, the potential does not permit exploring largéand therefore not in a minority chanheFigures 4(d)and
regions of space. This may imply that even when the detailed(e) show 0 (X,t) and ®,(X,t), respectively. The region
evolution is not being described properly, the evolution ofenclosed in the quadrilateral figure ifedis the only portion
the averaged quantities that are being measured is accuraté.the population effectively trapped, and this portion is al-
Therefore, in the next section model Il will be re-examinedmost nonexistent. Most of the population in the upper sur-
but in a case were the evolution is not confined to a restrictethce behaves as a “ghost” of the population on the ground
region of space. state, the behavior of the former merely mirroring that of the
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FIG. 4. Numerical example for model II: Morse potential (B) Potential surfaces. The initial wave pack®f(X,t=0) (see text), is also showib) Phase
space diagram. Same as Fig.(®). Evolution of populations. Same as Fig. 2. The insertébinand (c) display the evolution between the 190 and 200 time
units. (d) Evolution of ®4(X,t). (e) Evolution of ®4(X,t). The region enclosed in the quadrilateral is the only portion of the population effectively trapped.

latter. This is a consequence of the persistent coupling bdew and the inner wall is quite steep; therefore it might rep-
tween the light and heavy particles. resent a collision with a hard wall. To encourage transitions
Thus, to observe a significant failure the transition rategiven the absence of a substantial well, the population is
must be somehow increased. This may be accomplished hyitially in the first excited adiabatic state. An alternative
increasing the slope of the inner wall and therefore increasyould have been to give the heavier particle more initial
ing the match between the frequency of the bounce and thg§netic energy, but this would have resulted in the appear-
of the oscillations. This creates a small fraction of the popuynce of masking oscillations.
lation with a significantly different amount of kinetic energy s final choice of parameters produces a bifurcation of
than that of the majority, consequently evolving under inapyg jnitial wave packet into two scattered portions of quite

propriate forces. That is the case if the potential surfaces A fferent velocity. An average path cannot be expected to
V,(X)=0.00T exp( —20.0X) — 2 exg —10.0X) ] properly describe the individual pathways, so the mean field

1 /10 method is expected to break down. The surface hopping
+(n+3)v10 (51) method was developed in order to handle such bifurcation.
as shown in Figs. @)-5(e) (the figures are equivalent to However, this specific example, in addition to producing a

those in Fig. 4). In this example the well is extremely shal-bifurcation, involves a coupling between light and heavy that
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FIG. 5. Numerical example for model Il: Morse oscillator @) Potential surfaces. The initial wave packet,(X,t=0) (see text), is also showib) Phase
space diagram. Same as in Fig.(@. Evolution of population on the ground state) Evolution of population on the second excited state. Note how when
the mean field approximation is used the state to which most of the population is transferred is not the corfegttwmodution of @y(X,t). The region
enclosed in the quadrilateral is the portion of the population evolving in the minority chafnglolution of ®,(X,t).

never vanishes. It is likely, therefore, that surface-hoppingpotential. The energies of the light particle quantum states, as
would also have difficulty with this model, at least reproduc-a function of the position of the heavy particle, define a

ing the long time oscillatory behavior. sequence of ground and excited Born—Oppenheimer poten-
tial energy curves. Because the light particle experiences a
V. DISCUSSION AND CONCLUSIONS purely harmonic potential, the potential energy curves are

We have examined the accuracy of mixed quantumparallel angl qually spaped for all of the quels. In addition,
classical dynamics as applied to an increasingly challengin§® nonadiabatic couplings among potential energy curves
series of model problems. The models involve one light andpersists for all times due to the nonvanishing linear coupling
one heavy degree of freedom, and exhibit substantial nondetween light and heavy particles.
diabatic behavior. In all of the models the coupling between ~ The model problems were used to test two strategies for
the light and heavy particles is linedrarmonic). In addition, carrying out mixed quantum-classical dynamics in systems
an external potential is applied to the heavy particle onlyinvolving nonadiabatic transitions, mean-field and surface-
The models differ only in the magnitude of the coupling hopping. With the mean-field approach the classical motion
force constant, and the form and magnitude of the externadf the heavy particle is governed by an effective potential
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energy surface resulting from an average over light particlescattered wave packet on the ground state potential curve and
guantum states, weighted by their time-varying populationsa scattered wave packet on the first excited potential.

It is well known that this method is inadequate in cases The class of models considered here, restricted to linear
where the quantum wave packet splits into parts that arbght—heavy coupling, is admittedly artificial. The models
governed by substantially different forces. The surfacewere chosen to elucidate the application of mixed quantum-
hopping procedure for stochastically splitting a trajectoryclassical dynamics to condensed phase systems involving
into multiple branches was developed in order to overcoménany heavy (classical) degrees of freedom which are
this difficulty. Surface-hopping has been shown to outpercoupled to a few lightquantum)degrees of freedom. In such
form the mean-field method in such casés$n the present systems it is impractical to carry out dynamical simulations
series of model studies, however, the forces associated witlising normal mode coordinates. Rather, the bare coordinates
each quantum state are identical since the potential energdf the heavy and light coordinates are generally used. In the
curves are parallel. The necessity for splitting trajectoriedare particle coordinate system, the coupling between light
into branches is therefore not apparent. Furthermore, the faéind heavy particles will have a linear term. It is reasonable to
that nonadiabatic transitions continue to occur for arbitrarilysuppose that in many cases this linear term will dominate the
long times presents a significant obstacle for surface-hoppingoupling, particularly when the masses of the light and heavy
methods; the different stochastic histories of individual tra-particles do not differ greatly, e.g., hydrogen versus carbon.
jectories result in an unphysical loss of quantum coherence dthe model calculations reported here suggest that, in cases
long times. This was demonstrated by application to model IWhere linear couplings dominate, the mean-field mixed
where surface hopping proved to be an adequate approximguantum-classical method can be of useful accuracy and is
tion to the exact quantum results at short times, but wagobust to the introduction of anharmonic heavy-particle in-

inadequate at long times and clearly inferior to the mearteractions.
field method.
energy curve does not ensure the success of the mean-field
method. First, the classical approximation is certainly not
energy surface. Since our interest here is in mixed quantumfPPENDIX: NORMAL MODES OF MODEL |
classical treatment of systems involving multiple potential
chanics provided an accurate description of single surface
dynamics, as judged by comparison with exact quantum cal-
wnh_pargllel_potenual energy surfaces, the mean-field apWeighted coordinateg= \mx and Q= JMX it becomes
proximation is not exact. The results reported above help
1 a q
For a completely harmonic system, model |, we have 2 (qQ)( y B (Q) (A2)
shown in analogy with the standard Ehrenfest theorem that
mentumP reproduce exactly the corresponding quantum mefore tq obtz_iin the normal modes it is necessary to solve the
chanical expectation valuéX) and(P). Higher moments of following eigenvalue problem:
a—N vy
exactly by the mean-field method, but they are quite accu-
. " o B—X\
rate. With the addition of anharmonicity into the external
the Ehrenfest correspondence is no longer exact, and the 7
: , atp (a—p)

mean-field results deviate somewhat more from the exact ), = > + y + 42
acceptable accuracy for all but one of the model systemand the corresponding diagonalizing coordinates are
studied. 2

Y g M7
that the mean-field method would be incapable of correctly M H
describing the bifurcation of the quantum wave packet into (s —a)?
tial wells. However, the fraction of mean-field trajectories K
trapped in each well agreed quite accurately with the quanwhere

_ 2 2

only case for which the mean-field method did not provide Ay =)™+ y%. (A7)
an acceptable description was the final parameterization dfhe Hamiltonian thus becomes a two-dimensional uncoupled

The fact that the forces are identical on each potentiafACKNOWLEDGMENT
We thank Dr. David Sholl for valuable discussions.

exactly even when motion is confined to a single potential
surfaces, we selected model parameters so that classical me-
culations within the adiabatic approximation. Second, EVeTk the potential is written in matrix form and in term of mass
delineate the range of validity of the method. Y
the mean-field classical heavy particle positisrand mo- ~Wherea=k/m, g=(k+K)/M, and y=—k/JmM. There-
X andP and quantum state probabilities are not reproduced
potential that acts on the heavy particle, models Il and Ill,The eigenvalues are
guantum results. Nevertheless, the mean-field method was of

For the double well potential, model Ill, we expected n=—
two parts localized, respectively, in the left and right poten- (=—-——q+
tum probabilities as did the mean valuesXfand P. The
model II, for which the quantum wave packet split into a harmonic problem, with normal modes coordinadesnd 7,

The total Hamiltonian is
2 P2

Hooo= 2w P ke xo2 T e (A1)
X =omtamt2 7 KX%

=0. (A3)

(Ad)

Q. (A5)

Q. (A6)
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