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A method is developed for the efficient calculation of free volumes and corresponding surface 
areas in the hard sphere system by extending a previous method for calculating, exactly, cavity 
volumes in sphere packings. This method is used for the first time to evaluate the free-volume 
distribution of the hard sphere liquid over a range of densities near the freezing transition. 
From the distribution of free volumes, the equation of state can be obtained from a purely 
geometric analysis, which permits the calculation of pressure in Monte Carlo simulations 
where the dynamic definition cannot be employed. Furthermore, the cavity-volume distribu- 
tions are obtained indirectly from the free-volume distributions in a density range where direct 
measurement is inadequate. Direct measurement of the first moment of the cavity-volume 
distribution makes it possible to calculate the chemical potential in the vicinity of the freezing 
transition. 

1. Introduction 
It is well established that the structure of most dense 

liquids is dominated by repulsive interactions. The sim- 
plest model liquid that embodies this feature is the hard 
sphere fluid, in which impenetrable particles interact 
solely via hard-core repulsions. The hard sphere 
system has played a major role in liquid state theory 
ever since seminal investigations by computer simula- 
tion [l-31 suggested strongly that it exhibits a first- 
order freezing transition. In the late 1950s, comparable 
strides occurred on the theoretical front with the intro- 
duction of the scaled-particle theory of fluids [4], which 
offered simple and accurate equations of state for sys- 
tems comprising hard core molecules. These contribu- 
tions allowed Longuet-Higgins and Widom [5 ] ,  and later 
Guggenheim [6], to extend the van der Waals theory by 
refining the repulsive contribution to the equation of 
state. In turn, the theories yielded quantitatively accu- 
rate predictions for the melting properties of argon. 

Following the high-temperature expansions of 
Zwanzig [7], Barker and Henderson [8, 91 introduced 
in 1967 their landmark perturbation theory as applied 
to a simple fluid in which the unperturbed reference 
system consisted of the positive part of the Lennard- 
Jones potential, which in turn was related to an essen- 
tially equivalent hard sphere system. The remarkable 
success of the theory of Barker and Henderson demon- 
strated quantitatively that simple liquids near their triple 

point are removed by a minor perturbation from a 
purely repulsive fluid. This result was reaffirmed by the 
first-order perturbation expansion of Weeks, Chandler 
and Andersen [lo, 111. These methods inspired 
researchers [12, 131 to explore in detail the structure of 
the equilibrated hard sphere fluid. In particular, the per- 
turbation techniques motivated Verlet and Weis [ 141 to 
develop a semi-empirical parmeterization of the radial 
distribution function for the hard sphere liquid, which 
has become the standard for numerical calculations. 

Just as the hard sphere fluid provides a reference for 
understanding liquid structure, it also represents the 
simplest system which exhibits a fluid-solid transition 
and, possibly, a glass transition [15, 161. The fact that 
the properties of the hard sphere liquid arise from 
strictly entropic contributions, that is to say from 
purely geometric considerations, underlies the continued 
interest in this system, with recent emphasis directed 
towards understanding the statistical geometry of 
dense sphere packings [16-3 11. In particular, quantities 
that describe the void space (volume available for inser- 
tion of an additional hard sphere), the free volume 
(volume within which a given hard sphere centre can 
move without requiring alteration of the other sphere 
positions), and the corresponding surface areas are 
directly related to thermodynamic quantities. 

A computational method has recently been presented 
by us [32] which permits exact determination of cavity 
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290 S .  Sastry et al. 

volumes and surface areas in three-dimensional mono- 
and polydisperse spherical packings. We utilize this 
method here to evaluate the chemical potential of the 
hard sphere liquid over a range of densities near the 
freezing transition. Furthermore, we extend the above 
method for the calculation of free volumes and use this 
information to predict the equation of state of the fluid 
near the freezing density. We also determine, for the first 
time exactly, the free-volume distribution in the hard 
sphere system over a range of densities. The sparsity 
of void space at high densities renders the cavity- 
volume distribution statistically inaccessible by the 
direct approach. However, it will be demonstrated that 
the cavity-volume distribution can be deduced indirectly 
from the free-volume distribution, which itself can be 
determined with a high degree of precision. 

In section 2 we present definitions and background 
information. In section 3 we describe the method for 
calculating free volumes in sphere packings. The results 
of our calculations of chemical potentials, pressures, and 
free- and cavity-volume distributions in the dense hard 
sphere liquid are presented in section 4. Section 5 con- 
tains a summary and concluding remarks. 

2. Background 
In a system containing N hard spheres, a geometrical 

free volume u f  can be defined [33] as the volume over 
which the centre of a given sphere can translate, given 
that the other N - 1 spheres are fixed (see figure 1). This 
should not be confused with the cavity volume u, which is 
the volume of a connected region of space available for 
the addition of another sphere. By definition, a point is 
inside of a cavity if it lies outside of the exclusion spheres 
surrounding each particle centre, i.e., if it is separated 
from each particle centre by at least one hard core dia- 
meter 0. At low densities, the void space present in the 
system is connected, and hence the free volume 
approaches the void volume. As the density of the 
system is increased, the void space becomes discon- 

nected, corresponding to the percolation of the exclu- 
sion spheres. This change in topography of the void 
space occurs when the exclusion spheres occupy 
approximately 30% of the space [34], which translates 
to a reduced density of pl M 0.076 [35], where 
p* = N a 3 / 1 /  and V is the system volume. Here, we 
focus on the statistical geometry of the high-density 
liquid, i.e., systems well above the percolation threshold. 

Speedy and Reiss [36] have demonstrated that the 
free-volume and cavity-volume distribution functions 
are related. For completeness, their arguments are 
reproduced below. In what follows p(v )  du is the prob- 
ability that a cavity has a volume between u and u + du, 
whilef(uf) duf is the probability that the free volume of a 
sphere lies between uf and uf + duf. Analogous prob- 
ability densities can be defined for the cavity surface 
ps(s) and the free surfacefs(sf). 

For a given configuration of spheres, the union 
volume of the cavities represents the available space 
V o .  The available surface area So comprises the surface 
areas of the individual cavities. The average cavity 
volume and surface area are given by 

where N c  represents the number of cavities in the 
system, which is averaged over all realizations of the 
particles. Speedy [37] has shown that the equation of 
state of an equilibrium hard sphere fluid can be 
expressed in terms of the statistical geometry of the 
cavities 

where P is the pressure, p is the number density, /3 is 
(kT)- ' ,  and D is the dimensionality of the system. Stell 
[38] has made the interesting observation that 
Boltzmann [39] may have been the first to derive this 

Figure 1. 2D schematic of a con- 
figuration of particles with 
exclusion discs (left). The vol- 
ume of the cavity that is 
formed upon removal of the 
central particle is the free vol- 
ume tif of that particle (right). 
The interface of that cavity is 
the particle's free surface area 
Sf. 
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Free volume in the hard sphere liquid 29 1 

result. When an additional sphere is added to the 
system, it enters a cavity of size x which becomes its 
free volume. Since the sphere additions sample the avail- 
able space uniformly, a cavity is visited with a frequency 
that is proportional to its size, i.e., 

Strictly speaking, this equation relates the free-volume 
distribution of a system with N + 1 spheres to the 
cavity-volume distribution of the N-sphere system. 
These two systems become equivalent in the thermo- 
dynamic limit. 

For any quantity g(uf) that depends on the free 
volume, the following relationship holds 

In particular, if we choose g(uf) = uf“, then equation (4) 
yields an equation relating the moments of the free and 
cavity volume distributions 

( 5 )  

From equation (9, it follows that 

(uf’) = ( u ) ? ,  (6) 
indicating that the average cavity size is equal to the 
harmonic mean of the free volume. The surface area 
that bounds uf is termed the free surface area sf. 
Choosing g ( q )  to be the ‘free surface’-to-‘free volume’ 
ratio reveals the following valuable relationship: 

(7) 

which was proved originally by Speedy [40] using a 
slightly different argument. From equations (2) and 
(7), it is apparent that the pressure can be deduced 
from free-volume information alone: 

This equation was suggested 25 years ago by Hoover et 
al. [33] when they considered the dynamics of a light 
particle in a classical system. 

The chemical potential of the hard sphere system is 
directly related also to its statistical geometry: 

where N is the number of particles in the system and A is 
the familiar thermal wavelength. The second equality 
follows from equations (1) and (5) and establishes the 
connection between the chemical potential and the free- 
volume distribution. Note that the number of cavities 
N, appears in the second relationship, indicating that 
the chemical potential cannot be determined from free 
volume information alone. It is conventional to separate 
the chemical potential p into an ideal and an excess 
contribution, i.e., 

The former term represents the chemical potential for an 
ideal gas, while the latter embodies the reversible work 
required to form a cavity of radius u. 

Both analytical and numerical methods have been 
employed [40-43] to study the cavity volume and free- 
volume distributions in two dimensions (hard discs). 
The present work will focus on the exact determination 
of these quantities for the three-dimensional system. 

3. Methodology 
The algorithm described below is an extension of the 

method proposed by Sastry et al. [32] to calculate cavity 
volumes and surface areas in particle packings. For 
brevity, only a summary of the method is given; the 
interested reader can find more details in their original 
paper. 

Given a configuration of hard spheres, the first step in 
the algorithm is the generation of Voronoi and 
Delaunay tessellations. Both of these constructions 
divide space into distinct, non-overlapping regions. 
The Voronoi tessellation divides the system into 
convex polyhedra which surround each atom. Specifi- 
cally, a Voronoi polyhedron V i  consists of points 
closer to atom i than any other atom. There will be 
several polyhedra V k  which share a face wiith Vi. The 
atoms corresponding to the neighbouring polyhedra V ,  
are termed ‘geometric neighbours’ of atom i .  The 
Delaunay tessellation is obtained by connecting all geo- 
metric neighbours, forming a ‘primitive graph’ of 
Delaunay simplices (triangles in two dimensions, tetra- 
hedra in three dimensions). A schematic of the dual 
construction is given in figure 2. A cavity corresponds 
to a percolation cluster of Voronoi edges that lie entirely 
within the available space (i.e., outside of the exclusion 
spheres) [44, 451. Sastry et al. [32] have demonstrated 
that a cavity is enclosed entirely by the Delaunay sim- 
plices which are dual to the Voronoi vertices within the 
cavity. 

To calculate the volume and surface area of each 
cavity, the corresponding Delaunay simplices are sub- 
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292 S .  Sastry et al. 

Figure 3. Proof that upon removal of i, only geometric 
neighbours of i (i.e., k ,  but not j )  must be re-tessellated. 
See text for discussion. 

Figure 2. Typical 2D configuration of exclusion discs is 
shown with its corresponding Voronoi (solid lines) and 
Delaunay (dashed lines) tesselations. A set of Voronoi 
vertices connected by edges that lie entirely within the 
void region represents a cavity. 

divided into a set of (generally overlapping) subsim- 
plices. The advantage of this division, which is described 
in detail elsewhere [32], is that for each subsimplex, only 
one exclusion sphere must be considered for determining 
its contribution to the surface area and volume. With an 
appropriate sign designation, the subsimplex contribu- 
tions can be added directly to yield the total surface area 
and volume for each cavity (by design this method 
avoids the cumbersome calculation of multiple sphere 
overlaps). 

To determine the free volume and the free surface 
area for a given sphere, the sphere is simply removed 
from the system. The cavity that contains the centre of 
the sphere so removed is then analysed using the afore- 
mentioned algorithm. Of course, when a sphere is 
removed from the configuration a local region sur- 
rounding the resulting cavity must be re-tessellated. 
The efficiency of this routine can be maintained if the 
region to be re-tessellated is minimal. Fortunately, some 
properties of the dual tessellation allow for the determi- 
nation of such a minimal region: 

Theorem 1: if an atom is removed from the system, only 
the Voronoi polyhedra of its geometric neighbours must be 
re-tessellated. 

To see this, consider the removal of atom i from the 
configuration. By definition, the only Voronoi poly- 
hedra that are affected are those whose atoms are 
closer to a point in V i  than any other atom. To prove 
the above theorem, we must demonstrate that at least 
one geometric neighbour k is closer than any non-neigh- 

bouring atom j to an arbitrary point p in Vi. Given a 
point p in Vi, consider the nearest non-neighbouring 
a tomj  (see figure 3). If a vector, rip, is drawn to connect 
the point of interest to atom j ,  then it will intersect V i  at 
some point p ’ .  The point p ’  will be on the face shared 
between V i  and Vk,  and the definition of V k  requires that 
Irjp,l > Irkp/I. Furthermore Irjpl = Irjptl + lrpplI and ITkp( 6 
Irkp!/ + Irpp,( (by the triangle inequality). It then follows 
that ]rip] > I r k p ) ,  and the theorem is proved. 

Theorem 2: Pairs of geometric neighbours of atom i that 
share a Voronoi face continue to do so after atom i is 
removed. 

Consider atoms k and k‘ which are geometric neigh- 
bours of atom i and share a common face. Any point on 
the common face is closer to atoms k and k‘ than any 
other atom in the system. Clearly the removal of any 
other atoms (including atom i )  will not change this fact, 
verifying the theorem. 

Theorems 1 and 2 indicate that the minimal region in 
which the tessellation must be reconstructed after the 
removal of atom i is the superpolyhedron Si composed 
of all Delaunay simplices that share atom i as a vertex. 
This region is illustrated in figure 4. When atom i is 
removed, the tessellation is reconstructed inside of Si, 
and the surface area and volume of the cavity that con- 
tained the centre of atom i can be calculated directly. 

The above procedure is applied to each atom in the 
system, for each configuration considered. The pro- 
cedure described above is very efficient, consuming less 
than 2 minutes of CPU time per configuration (for 500 
hard spheres on an HP 715/100 workstation). In section 
4 the results are presented for the equilibrated hard 
sphere liquid and a modest extension into the metastable 
region. 
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Free volume in the hard sphere liquid 293 

4. Results for the hard sphere liquid 
Systems of N = 500 spheres of diameter CT were simu- 

lated in a cubic cell of volume V using a standard mol- 
ecular dynamics (MD) algorithm [31, 461. The initial 
configuration was chosen to be a face-centred cubic lat- 
tice at a reduced density p* = 0.80, where p* = Na3/V. 
In each case, the lattice was melted by simulating for 
5000N collisions to obtain the equilibrated fluid. 
Higher densities were achieved by allowing the diameter 
of the spheres to increase linearly with time via the pre- 
scription of Lubachevsky and Stillinger [46, 471. This 
compression protocol will, in general, create a non-equi- 
librium state at the density of interest. The properties of 
this state will be an extremely complex function of the 
system's history. To remove these effects, compressed 
packings were allowed to relax over a period of 3500N 
sphere collisions, which was sufficient to guarantee 
reproducible thermodynamic properties. 

In order to explore the statistical geometry of the 
dense liquid, several packing fractions were investigated 
in the vicinity of the freezing transition (p; PZ 0.943). In 
particular, runs were performed at reduced densities 
pt = 0.80, 0.85, 0.90, 0.91, 0.93, 0.943, 0.95, and 0.96. 
Strictly speaking, any amorphous packing with a density 
p* > pr exists in a state that is metastable with respect to 
formation of the crystalline phase. However, the 
entropic barriers to crystallization are large for modest 
extensions along the metastable branch. Indeed, Speedy 
1311 has found that metastable hard sphere systems with 
p* < 1.03 will not crystallize even after lo5 collisions per 
particle. 

As can be seen from equation (8), the equation of 
state for the hard sphere fluid can be determined from 
free-volume considerations alone. The exact algorithm 
presented in section 3 allows for the first direct test of 
equation (8) by computer simulation. For the calcula- 

Figure 4. Typical configura- 
tion of discs before the 
central particle is removed 
(left). After the central 
particle is removed (right), 
the tessellation must be 
reconstructed inside of the 
superpolyhedron (bold, 
dashed line). Thus, the 
volume and surface area 
of the cavity that once 
held atom i can be deter- 
mined. 

15 
~ Carnahan-Starling 

0 MD Virial 
Free Volume 

13 I A 
71 I 
0.80 0.85 0.90 0.95 

P' 

Figure 5 .  Dimensionless pressure p P / p  of the hard sphere 
system as calculated from both free-volume information 
and the molecular dynamics collision rate. The 
Carnahan-Starling [56] equation is shown also for com- 
parison. 

tion of the pressure, 500 configurations (separated by 
lo4 collisions each) were stored at each state point. 
Results for the 500-sphere system are shown in figure 
5. Given the relatively small number of configurations 
considered, the agreement between the pressure calcu- 
lated from equation (8) and from the virial (collision 
rate) is remarkable. As a check, the pressure was deter- 
mined also from the free-volume distributions of config- 
urations generated by a series of Monte Carlo (MC) 
simulations (see the discussion of the chemical potential 
results for details on the MC runs). The equations of 
state produced by the MD and MC routes were statis- 
tically indistinguishable. In principle, equation (2) pro- 
vides yet another geometric route to the equation of 
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state. However, the available space vanishes for many 
dense configurations of lo2- 1 O3 spheres, rendering equa- 
tion (2) problematic from a sampling viewpoint. 

The calculation of the pressure from geometric con- 
siderations is crucial for studies of dense systems, in 
particular for the metastable densities where crystalliza- 
tion occurs readily (1.03 < p* < 1.11) [31, 481. It has 
been recognized that the statistical mechanical form- 
alism used to describe such states must be modified 
through the introduction of specific constraints [49- 
521. Furthermore, Corti et al. [53] have demonstrated 
that geometrical constraints can be applied to simulate 
superheated liquids using an MC algorithm. In their 
investigation, the liquid was prevented from boiling by 
constraining the size of the largest void in the system. 
For the metastable hard sphere liquid, the corre- 
sponding constraint should prevent the formation of 
crystallites. Rintoul and Torquato [48] have shown 
that a bond-orientational order parameter [54] can be 
invoked to filter out configurations that contain signifi- 
cant crystallization. Due to the need for repeated 
enforcement of constraints, MC simulations have an 
obvious advantage over their deterministic counterpart 
(MD) for simulating metastable phases. However, effi- 
cient and accurate methods for calculating the hard 
sphere equation of state have been lacking in MC simu- 
lations, where the dynamic definition cannot be 
employed. The free-volume algorithm presented here 

1 o-2 lo-' 

Figure 6. Free-volume distribu- 
tions for densities p* = 0.8, 
0.8.5, 0.9, 0.91, 0.93, 0.943 
(freezing density), 0.95, and 
0.96. The solid lines represent 
the fit to equation (12). 

provides one such efficient route to the pressure, 
requiring only static information. 

The distribution of free volumes f ( u f )  is shown in 
figure 6 for densities in the vicinity of the freezing transi- 
tion. Note that there seems to be a smooth change in the 
behaviour of the free-volume distributions as the fluid 
enters the metastable region. It is not known if the free- 
volume distribution continues to vary in a regular way 
as the fluid is compressed along the metastable extension 
of the fluid branch. If a thermodynamic glass transition 
occurs in the metastable region, it will be a result of 
structural arrest. Such a profound signature of attenu- 
ated particle mobility should be evidenced by a change 
in form of the free-volume distribution. Studies are 
underway to probe the statistical geometry of the 
dense, metastable fluid. 

It should be noted that in one dimension the free- 
volume distribution is known exactly [%], and is given by 

For dimensions D > 1 there are no exact results, 
although Hoover et at. [41] proposed the following 
form for the free-volume distribution for hard discs 
(above the percolation threshold): 

f ( u r )  vf" exp ( - P O ; )  ( 12) 
where a is a small and positive constant, and y is a 
parameter chosen (in their study) to be unity. We have 
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Free volume in the hard sphere liquid 295 

Free Volume Information 

found that this simple form describes the exact free- 
volume distributions in three dimensions accurately, 
with a = 0.28-0.35 and y = 0.55-0.45 for the range of 
densities investigated. It has been pointed out [24] that 
this expression cannot be correct since it implies, along 
with equation (3), that the probability of observing a 
cavity of zero volume diverges, i.e., p ( 0 )  = 00. We 
note that there is no fundamental problem with a prob- 
ability density diverging, as long as the integrated prob- 
ability is suitably defined for a given interval. More 
precisely, the probability density must be non-negative 
and normalize to unity. Hence, the form proposed by 
Hoover et al. [41] is both plausible and accurate for the 
three-dimensional hard sphere system near its freezing 
point. 

Although the free volume is positive for every particle 
that is not rigidly jammed, the available space is identi- 
cally zero for many configurations in the dense liquid. 
Therefore, direct measurement of the entire cavity- 
volume distribution is futile for densities near the 
freezing transition. Fortunately, equation (3) provides 
an indirect method for determining the cavity-volume 
distribution from the free-volume distribution. Results 
are presented in figures 7 and 8 for the liquid at reduced 
densities of p* = 0.8 and 0.943, respectively. For the 
system at p* = 0.8, the free-volume data provide infor- 
mation about the tail of the distribution where direct 
sampling fails. As can be seen in figure 8, even less can 
be determined by direct measurement at the freezing 
transition. In simulations of reasonable size, the fluctua- 
tions which give rise to the tail of the cavity-volume 
distribution are so rare as to be virtually non-existent. 

Although it is difficult to obtain the entire distribution 
of cavity volumes at high densities, reasonable statistics 

'~ 
10.. , '\ 

lo-* 1 o3 I 
1 oJ 1 o-2 lo-' 1 oo 

v~03 

Figure 7. Cavity-size distribution p of the hard sphere fluid 
at density p* = 0.8 as calculated from free-volume infor- 
mation and direct measurement. 

10' 

I o5 

1 o3 

P W d  
10' 

lo-' 

10.' 

Free Volume Information 
Direct Calculation 

'. '~ 
\ 

'. 
\ 

v~03 

Figure 8. Cavity-size distribution p of the hard sphere fluid 
at the freezing density p* = 0.943 as calculated from free- 
volume information and direct measurement. 

can be obtained for the average cavity size ( u )  and, 
through equations (1) and (lo), the excess chemical 
potential. This is true, in part, because the large cavities 
that contribute to the tail of the distribution are indeed 
rare occurrences. To measure the excess chemical poten- 
tial directly, 5000 configurations were generated by a 
standard NVT MC algorithm for the densities p* = 
0.8, 0.85, 0.9, 0.91, 0.93, and 0.943. For each density, 
a face-centred cubic lattice was melted for lo5 MC cycles 
(attempted moves per particle). The configurations were 
saved in intervals of 200 cycles during a lo6 cycle pro- 
duction run. 

The available volume of each configuration was meas- 
ured via the method of Sastry et al. [32], and the excess 
chemical potential pex was determined using equation 
(10). The results are presented in figure 9 along with 
the excess chemical potentials consistent with the accu- 
rate hard sphere equations of state developed by Car- 
nahan and Starling [56] and Sanchez [57]. For 
comparison, the precise calculations of Attard [58] and 
Labik and Smith [59] are shown also. The standard devi- 
ation was estimated by blocking the configurations into 
20 subsets. As can be seen, good agreement is obtained 
for all densities, including the freezing transition. 

5. Conclusion 
A methodology for determining exactly the free 

volume and free surface area of a given particle in a 
configuration of hard spheres is presented. Using pre- 
viously derived identities [36, 39, 401 that relate the sta- 
tistics of the free-volume distribution to the hard sphere 
equation of state, the pressure was determined in the 
vicinity of the freezing transition. The efficiency of this 
algorithm allows for the pressure to be determined pre- 
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I " " " " " " " ' /  
~ Carnahan-Starling 

17.0 - ~ ~ Sanchez 
0 Attard 
0 Labik-Smith 
0 Cavity Volume 

15.0 - 

BP"' 
13.0 - 

11 .o y 
9.01 " " I '  " " " " ' 1 
0.79 0.84 0.89 0.94 

P' 

Excess chemical potential peX is shown as calcu- 
lated from the cavity-volume statistics. The excess chemi- 
cal potential consistent with the Carnahan-Starling [56] 
and Sanchez [57] equations of state along with accurate 
data obtained by the methods of Attard [58] and Labik- 
Smith [59] are shown for comparison. 

Figure 9. 

cisely in an MC simulation, where the collision rate is 
inaccessible. 

Free volume distributions for the dense, hard sphere 
fluid are characterized for the first time. The distribu- 
tions provide an indirect route to information about the 
statistics of cavity volumes. This is significant because 
the infrequent appearance of void space at high densities 
prevents the direct measurement of such quantities. 
Characterization of both cavity- and free-volume distri- 
butions should prove to be interesting for metastable 
sphere systems, where the statistical geometry is poorly 
understood. 

It is shown that the first moment of the cavity-volume 
distributions, i.e., the average cavity size, can be 
obtained by direct measurement. This quantity was 
calculated for the hard sphere liquid in the vicinity of 
the freezing transition. From this information the 
excess chemical potential was determined and was 
found to be in good agreement with previously tabu- 
lated results. 
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