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The mechanically stable spatial arrangements of interacting mole@demtial energy minima, “inherent
structures”)provide a discrete fiducial basis for understanding condensed phase properties. Simple plausibility
arguments have been advanced previously suggesting that at fixed positive density the number of distinguish-
able inherent structures rises exponentially with system size. A more systematic analysis is presented here,
using lower and upper bounds, that leads to the same conclusion. Further examination reveals that the char-
acteristic exponential rise rate for inherent structure enumeration diverges as the density approaches zero, when
attractive interparticle forces are presdi®1063-651X(99)07001-4]

PACS number(s): 05.90.+m, 61.90.+d, 64.60.My, 82.20.Wt

I. INTRODUCTION tion requires that thé! factor in Eq.(1.1) be replaced by
(N—121)!.] Consequently}; only enumerates geometrically
Eiistinct minima.

It has been arguef?,3] for realistic model potential®
that (), asymptotically rises exponentially with system size
(with N/V>0 held fixed and the shape df held fixed).
ore precisely, the claim has been that

One of the intrinsic difficulties faced by the field of non-
linear optimization is that many problems of interest presen
large numbers of “false” solutions. In the case of an objec-
tive function requiring minimization, the global absolute
minimum may be hidden as a needle in a proverbial haystac
of local nonabsolute minima, possibly requiring an exhaus-

tive search and comparison procedure. Indeed, many famllles lim (N~Yn Q))=a, a>0. (1.2)
of problems are known for which the total number of minima Nesoo

rises at least exponentially as the number of variables in-

creasegl]. The exponential rise rate parameters expected to be sub-

Under some circumstances it may be valuable to identifystance specific and to depend on the number deisiy.
and classify the entire collection of minima from the “best” The tentative validity of relatio1.2) rests partly on the fact
to the “worst,” i.e., from the absolute minimum to the that some exactly solvable many-body models indeed exhibit
highest-lying local minimum. This is the case in condensedust that property4,5]. However, it rests as well on a frankly
matter physics/materials science where the objective funcerude and intuitivelbut generalargument that macroscopic
tion in one important application is the potential energy ofsubvolumes ofv could be geometrically reordered essen-
interaction ® for the constituent particles and its minima tially independently of one another and thus tfiat would
represent the mechanically stable arrangements of those parave to be multiplicative over those subvoluni&d. The
ticles in spacd“inherent structures”) ,3]. If the particles purpose of the present work is to supply a stronger general
involved numbeN and are structureles$, would have to be  basis for the claim of exponential multiplicity of distinct in-
minimized over the Bl-dimensional space of particle posi- herent structures in material systems.
tionsrq,...ry. If each particle additionally possessedn- Section Il establishes on physical grounds a lower bound
ternal degrees of freedofdescribing orientation, vibrational for (), that itself rises exponentially witN, soa in the right
amplitudes, or conformation), the relevant configurationalmember of Eq(1.2) must be greater than zero, if it exists.
space over whickP would have to be minimized would have Section 1l establishes that this right member is bounded
dimension (3+ v)N. above, using the strategy ofductio ad absurdum. Section
Let Q2(N,V) be the number o minima whenN particles |V takes up the question of enumerating inherent structures
are confined to a volum¥ of given shape. For a single- in free space and concludes that if attractive forces are
component systertall particles identicaljt is useful to write  present(as is true for “real” material systemsthena must
diverge to infinity asN/V goes to zero. Section V presents
Q(N,V)=NIQL(N,V). (1.1) sevgral concluding remarksz including some directed to poly-
meric substances and to mixtures.

This accounts for the fact that with hard walls present each
minimum is but one oN! equivalent minima that differ only
by permutation of identical particleBWhen periodic bound- As in the preceding Introduction, attention will focus for
ary conditions are imposed o¥, the resulting free transla- the moment on the single-component case. Realistic interac-

Il. LOWER BOUND
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tion potentials® that describe such systems are continuous exp[[nal|n(1+7)]N}ng_ (2.3)
and at least once differentiable away from nuclear conflu-

ences; furthermore, they are bounded below-bBN for If the limit indicated earlier in Eq(1.2) indeed exists, then
someB>0 [7]. In the large system limit of interest here, the the expression2.3) implies

absolute minimum ofP will correspond to some periodic

crystal structure whose detailsymmetry, unit cell dimen- 0<ngIn(1+y)<a. (2.4)
sions, etc.yeflect the molecular shape and flexibility and the
balance between intermolecular attractions and repulsions. Il. UPPER BOUND

Several alternative, less stable, crystal structures may also
exist for the pure substance of interest; however, only the The next task is to examine the implications of the pos-
classical ground statéhe absolute® minimum) need be sible violation of the limiting behavior in Eq1.2) due to
considered for establishing a lower bound tdip. greater-than-linear rise of 1, with N. Suppose tentatively

Place theN molecules into one of the permutationally that the following largeN behavior(with positiveN/V fixed)
equivalent absolute-minimum configurations. The resulting@pplies:
elastic solid may or may not entirely fill the finite available

system volumeV, depending on how the latter compares In Q,~f(N), 3.1)
with the zero-pressure, zero-temperature volume of th%vhere
N-molecule crystal. In either event I&, be the volume
actually occupied by the crystal. lim [N/f(N)]=0. (3.2)
Divide V, into identical compact subvolumes, of mi- N
croscopic size, each containing on averagemolecules.
The number of such subvolumes is This could arise, for example, ff(N) were proportional to
N9 g>1. Such behavior has significant consequences for
Vo/vo=N/ng. (2.1)  the mean size of basins belonging to the system’s inherent

structures.

The intention is to choose, sufficiently large(though still The configuration space content for a single molecule/

on the molecular scalehat a mechanically stable defect- nanicle can be written agw. The first factor is attributable
containing rearrangement of molecules could be effected iy, center of mass translation, while the second factor is just
each subvolume, without affecting the possibility of suchy,q integral (between bounded limit)f the » internal de-

rearrangement in any other subvolume. The type of crystgleeg of freedom. In the simple case of structureless particles
defect involved can vary according to the substance und »=0),  is set to unity. The content of the multidimen-

consideration. In the case of atomic substances a near onal configuration space describing al molecules/

vacancy-interstitial pair(Frenkel defect)is the natural §articles simultaneously isv)N. The mean basin content

choice, resulting from lengthwise displacement of a shor meraes upon dividing this content by the number of basins
line of particled 8]. On the other hand, substances compose g P g y

of large flexible molecules admit defects resulting from (V)N
single molecular reorientation or internal motig). NIOL(N) (3.3)
Notice that we do not require the defects in separate sub- L

volumes be noninteracting, but only that the interactions be | order to interpret the expressi@8.3) physically, it is
sufficiently weak that the absence or presence of defects ifiseful to reexpress it in terms of a mean linear displacement
all subvolumes be possibilities that are independent of ongfor each molecule/particle. Consequently E83) can al-
another. Elastic strains surrounding defects will propagatgernatively be written in the formdfl3)N. The asymptotic

through the crystal medium causing defect-defect interacprge-Nbehavior tentatively postulated 6, then leads to
tions, but these strain fields die off algebraically with dis-he following result for:

tance[10]. Hence the independence assumption will place a
lower limit onvg (and thusng). I3(N)~(V/N)exd 1— f(N)/N]. (3.4)
Let v be the number of distinguishable configurations that
the defective state im, can adopt. This might count the The postulated propert{8.2) for f(N) forces! to vanish in
different relative positions of a vacancy-interstitial pair or thethe large system limifN— +, positiveN/V fixed). This is
different “unnatural”’but mechanically stable reconfigurings physically unacceptable because it implies that arbitrarily
of a flexible molecule. In any event the number of undis-small displacements in virtually any direction suffice to
turbed plus defective states considered for each subvolume $vitch the system from one inherent structure to another. In
1+ y. On account of subvolume independence, we thus corparticular this would render impossible phonon motions of
sider the following number of distinguishable, mechanicallyfinite amplitude in the crystalline stateo restoring forces
stable configurationgéinherent structuresfor the N-particle ~ as well as kinetic arrest in nonergodic trapped glassy states
system: common occurrence for amorphous substanc€onven-
tional experience, however, indicates thashould remain
(1+ y)VO’UOEexp{[nglln(lJr v)IN}. (2.2)  positive and of the order of molecular dimensions in the
large system limit. This can only happenfifN) is linear in
Presumably this represents only a small subset of all distiny and in accord with Eq(1.2), specifically
guishable inherent structures for tNeparticles in fixed finite

volumeV, so we can write f(N)~aN. (3.5)
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IV. DENSITY DEPENDENCE on which the exponential rise rate 6, with N [Eq. (1.2)]
The considerations presented in Secs. Il and Il force théas been established for fixed positive density. _
conclusion thaf), indeed rises exponentially witk at fixed An elementary, approximate, enumeration scheme for in-

positive density, i.e., that in Eq. (1.2)is well defined. How- herent structures in free space implies thk rises more
ever, this leaves open the issues of havdepends on the rapidly than as a simple exponential. Suppose in fact that the

substance under consideration and for any given substancé/Pical” free-space inherent structure is indeed very open.
how this parameter varies with density. Imagine constructing such arrangements patrticle by particle

A particularly simple situation arises if the potential en- from an initial seed. At any intermediate stage, the number
ergy functiond is homogeneous of degreen, n>3. This  ©Of distinct sites at which the next particle could be attached

obtains specifically whe is composed of purely repulsive 0 the incomplete cluster would be roughly proportional to

inverse_power pair potentia|s N’, the number already in place. Therefore, we hakke (
>0)
D(ry,...ry)=2, (alr" (4.1) Q3(N"+1)=KN'Qy(N"). (4.2)
i<j
Taking logarithms and treating the large variableas con-
In this circumstance any inherent structutecal ® mini-  tinuous, we have

mum) at system volumeV, with particle locations
l1q,---fng» transforms precisely to a corresponding inherent
structure at volumeV’, with scaled particle locations
(V'IV)raq,..., (V' IV)¥3ry,. Consequentlya is density
independent for this special case, though it may depend on In Q,(N)=N In N+ (InK—1)N+C (4.4)
exponentn. ! ’ '
The wider circumstance whege is not homogeneous evi-
dently can lead to density dependence for the exponenti

rise ratg para}metet. Th"e exactly solyqble one-dimensional and suggests a faster-than-exponential rise rate with increas-
model investigated by Her and Schillind5] possesses an ing N

a that declines monotonically with increasing pressure, i.€., s nore insightful enumeration scheme than the crude one
with increasing density. Furthermore, Malandro and Lack;(g

d In Q,(N")/dN"=In(KN"). (4.3)

This can be integrated to yield

%/herec is an integration constant. Clearly this result contra-
icts the positive density presumption embodied in @®R)

X . . -"Just presented might reveal that as particles are added, the
[11] ha_tve nl_JmerlcaIIy mvesnggte.d a Lennard-Jone.s—Illk reviously emplaced “substrate” might not simply serve as
three_—dlmensm_nal _m_odel, establishing at least over a I|_m|te nearly rigid host, but be capable of new and distinct stable
density range in finite systems thé¥, decreases with in-  59ngements that could not exist without the additional par-
creasing density. Heuer has obtained similar results for th

del12 hould also b ioned th Vi ficle. If such possibilities are present and sufficiently numer-
same mode[12]. It should also be mentioned that analytic s e estimatés.4) above might actually be a significant
properties of the pairwise additive Gaussian core model als

) : L i fBnderestimate. That could conceivably lead to the fé8ri)
re(rq]gllrehthat s, d?jcreasedwth mcreasmlg ((jjenr?[tgﬁ]. ibi hown earlier withf (N) proportional toN9, q> 1. However,
While the present understanding cannot exclude the possibi;i, . having to settle these technical details, we can safely

ity that « might increase with density over a limited density oo de that for any three-dimensional model substance
range for some model potential, this would seem to be exy,ssessing attractive interparticle interactions, the parameter

ceptional behavior. must diverge to infinity as the density goes to zero
The tendency fof),, and thusa, to increase as density * 9 y y g :

declines when attractive interparticle forces are present
seems to have a straightforward explanation. Attractions V. DISCUSSION

have been observed in simulations to stabilize porous inher- The |ower bound foi provided by Eq(2.4) may prove
ent structures in which the void space can adopt a wide vag be very weak in many applications. In order to satisfy the
riety of convoluted and multiconnected shaps,15]. Fur-  defect-independence assumption on which that result is
thermore, the real substances Kr anglddn experimentally pasedn, would probably have to be of order Z0assigning

be prepared in analogous states as mesoporous $a6ds the value 6 toy then might be reasonablg9]. Conse-
and the very low-density aerogels composed of,§i@vide  quently, Eq.(2.4) would state

a particularly dramatic related example/]. The presence of
substantial open space in these structures offers many oppor- (In 7)/100=0.019 4591 . . . =. (5.1)
tunities for reconfiguring the particles into alternative me-
chanically stable arrangements, far exceeding in numbeBy contrast, Wallacg¢20] estimates that
those available at high density where particles interfere se-
verely. a=0.8 (5.2)

To strengthen this argument it is useful to consider the
formation of inherent structures fd¥ particles in free space, for a wide range of monatomic substances. Flexible organic
i.e., V—+o, The very open and multiply branched struc- molecules such as the fragile glass former ortho-terphenyl
tures produced by diffusion-limited aggregation processe$OTP) appear to exhibit substantially larger values; a
[18] suggest that similar forms might be expected for free-simple calculation based on its measured heat capacity and
space inherent structures. This in turn invalidates the basiseat of fusion suggests thigt1]
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a(OTP)=13.14. (5.3) restricted to single-component systems, mixtures also de-
serve examination. In the general case involving components
Linear polymeric substances may exhibis that increase 1, ..., Eq.(1.1) generalizes to
roughly linearly with the degree of polymerizationumbers
of monomer units), at fixed overall mass density, owing to Q(Ng,...N,,V)=(IIN,)Q1(Nyg,...N,,V), (5.5)

backbone flexibility degrees of freedom. These discrepancies. _ ] ] )
with Eq. (5.1) warrant searching in the future for more pow- With {; expected asymptotically to rise exponentially with
erful bounds fora. the total number of particle&ll densitiesN,,/V held fixed).
The focus of the foregoing arguments has been the totdfowever, because the components are distinguishable, the
number of inherent structures, regardless of how they magxponential rise rate quantity should be larger than its
differ in detail. However, it is also important to classify in- Single-component relatives on account of mixing entropy ef-
herent structures according to one or more intensive “order'fects. _ _
parameters and if possible to obtain their distribution with A concrete example serves to illustrate the last point. Let
respect to these parameters. A particularly important cas&(N2) be the exponential rise rate quantity for pure molecu-
involves ¢, the potential energy per particle of the inherentlar nitrogen. Carbon monoxide has a small molecular dipole
structures, because this leads to an especially simple expré§oment[22] and has nearly the same molecular size as the
sion for the free energy of the many-particle syst8y6].  dipole-moment-free nitrogen molecul@3]. Consequently,
Given the validity of Eq.(1.2) and assuming the continuity CO should be able freely and stably to substitute Norin

of the asymptotic distribution with respect & it is inevi-  @ny inherent structure for the latter. Taking due account of
table that this distribution of distinguishable inherent struc-the two distinguishable orientations available for each sub-

tures have the forri3,6] stituting CO, one estimates for the N-CO mixture to be
exdNo(¢)], o=0. (5.4) a=a(Ny)+x In2-xIn x—(1-x)In(1-x), (5.6)

Although the developments in the Secs. II-IV have beerwherex is the mole fraction of CO in the mixture.
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