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Geometric attributes of a many-body-system potential energy function suggest a natural description of that
system in terms of inherent structures (local potential minima), and intra-basin vibrational displacements
away from those discrete structures. This description is applied herein to the isobaric thermal expansion
property (R). Starting with the virial form of the pressure equation of state, two distinct contributions toR
can be unambiguously identified. The first (Rvib) arises from intra-basin anharmonic thermal vibrations; the
second (Rstr) stems from thermally induced structural shifts in basin occupancy. OnlyRvib appears for
nondefective crystals, and for glasses below theirTg’s. An approximate analysis for liquid water suggests
thatRstr alone manifests a liquid-phase density maximum, thought shifted to slightly higher temperature than
the observed density maximum at 4°C.

I. Introduction

Isobaric thermal expansion (R) is a basic materials property
that measures volume (V) response in a closed system under
constant pressure (p) to an incremental change in temperature
(T):

The fact thatR usually is nonvanishing can technologically be
either an advantage or a liability. On one hand, thermal
expansion in liquids and in solids, respectively, permits the
construction and use of thermometers, and bimetallic strips for
thermostats. On the other hand, devices or instruments with close
dimensional tolerances (e.g., optical systems, computer hard-
disk storage systems) as well as those required to operate over
a wide temperature range could be seriously compromised in
their operation by unwanted, or uncompensated, thermal expan-
sion.

Connections between atomic-level materials structure and
interactions and the macroscopic quantityR become especially
intriguing in the case of those few (but important) substances
exhibiting negativeR’s. Solid-state examples of this anomalous
behavior include ice Ih at low temperature,1 cubic ZrW2O8,2

and amorphous SiO2.3 The collection of liquids with negative
R contains superfluid HeII just below itsλ transition,4 equilib-
rium-state and supercooled water below 4°C,5,6 and the binary
compound In2Te3.7

The theoretical approach adopted in the following focuses
on the multidimensional configuration-space geometry of the
potential energy functionΦ for any material of interest. The
“rugged landscape” presented by theΦ hypersurface in this
space naturally divides into “basins of attraction,” one sur-
rounding each of the many localΦ minima (“inherent struc-

tures”). The development below shows thatR contains two
distinct contributions, an intra-basin (vibrational) part and an
interbasin (structural equilibration) part. This separation has
direct relevance to glass-forming liquids: Cooling through the
glass transition temperature essentially produces a discontinuity
in R owing to kinetic arrest of the structural relaxation
contribution. It should be noted in passing that the isolation of
vibrational and structural parts inR detailed below is analogous
to a corresponding separation procedure that has been developed
for isothermal compressibility.8

The initial portion of our analysis employs classical statistical
mechanics, in the interests of presentation clarity and economy.
In fact, the following Section II further restricts attention to
classical statistical mechanical models comprising structureless
spherical particles with additive interactions. Section III consid-
ers application of the approach to three such models that have
enjoyed some measure of theoretical popularity: the inverse-
power family of models,9 the hard sphere model,10 and the
Gaussian core model,11 the last of which displays a region of
negativeR. Section IV extends the analysis of Section II to
include polyatomic molecules and nonadditive interactions.
Section V outlines the manner in which proper quantum statistics
must be invoked, an important consideration for solids at low
temperature and for any substance with high-frequency intramo-
lecular vibrational modes. Section VI presents an analysis of
the vibration versus structural equilibration separation for liquid
water. Conclusions and discussion of several issues raised by
the present study appear in the final Section VII.

II. Simple Spherically Symmetric Particles

Initially we shall consider the case of a closed, thermostatted
system containingN1 particles of species 1, ...,Nν particles of
speciesν, with
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R ) (∂ ln V/∂T)p (1.1)
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TheseN particles are confined to volumeV by suitable repelling
walls;V will eventually be allowed to fluctuate (movable walls),
but external forces on the walls will be present to maintain the
system at fixed pressurep. Interactions in the system can be
designated with a two-part potential energy functionΦ as
follows:

wherer1...rN represent particle positions,Φo is the translation
and rotation invariant collection of interactions among the
particles, andΦw is the set of particle-wall interactions.

If the N-particle system is in a time-independent state, either
at thermal equilibrium or in an indefinitely-long-lived metastable
state, the Clausius virial theorem12 applies. It asserts the
following identity:

wherekB is Boltzmann’s constant,

is the total force due to all interactions acting on particlei, and
〈...〉 indicates a time or ensemble average. Force terms in eq
2.3 attributable to wall interactionΦw can be identified as
combining to give (3/2)pV, so virial relation (2.3) becomes:

Assume now thatΦo consists only of additive spherical pair
interactions:

Hereγ andδ denote the species of particles i and j, respectively.
Under these special circumstances eq 2.5 undergoes further
reduction to the following form:13

Here we have set

and thegγδ
(2) are the pair correlation functions forγ, δ species of

particle pairs.
Apply the differential operator (∂/∂T)p to both members of

eq 2.7. By using the definition 1.1 forR, the result may be
transformed into an expression for that quantity:

In the absence of any pair interactions, theN-particle system
would be an ideal gas mixture, and the right member of this
last expression forR reduces simply toT-1.

To distinguish vibrational from structural equilibration con-
tributions toR in eq 2.9, it is necessary to invoke a constant
pressure steepest-descent mapping in the multidimensional space
spanned by all particle coordinatesr1...rN and the volume,V.
Define the “potential enthalpy” function as follows:

Steepest-descent trajectories on theΨ hypersurface are defined
as solutions r1(s)...V(s) to the simultaneous equations
(s g 0):14,15

In the sf ∞ limit, these trajectories (only with zero-measure
exceptions) carry any initial system configuration to a localΨ
minimum. The set of all configurations that map to the same
local Ψ minimum l defines the basinBl for that minimum.

Let Pl(T,p) denote the probability that basinBl is occupied
by the configuration space point describing theN-particle
system. Each of the pair correlation functionsgγδ

(2) amounts to a
weighted average of contributionsgγδl

(2) from the individual
basins:

This equation makes explicit the relationship between equilib-
rium liquid structure (i.e.gγδ

(2)) and the manner in which the
underlying landscape is explored (i.e.Pl). Differentiating eq
2.12, we have

The first sum on the right side of the last equation is a weighted
sum of intra-basin temperature variations for thegγδl

(2) owing to
increased intensity of vibrational motions asT rises. The second
sum on the right side arises from shifting equilibrium between
basins as temperature varies. Consequently these sums can be
identified respectively as distinct “vibrational” and as “structural
equilibration” effects. In a low-temperature crystalline solid, only
intra-basin vibrational motions (possibly anharmonic) are
expected to occur within the basins corresponding to the absolute
Ψ minimum, so only the first sum in eq 2.13 would be
nonvanishing.

Inserting eq 2.13 into eq 2.9 induces the desired separation
for R. Specifically, we have

where

Φ(r1...rN,V) ) Φo(r1...rN) + Φw(r1...rN,V) (2.2)

3

2
NkBT ) -

1

2
∑
i)1

N

〈Fi‚r i〉 (2.3)

Fi ) -∇iΦ ≡ Foi + Fwi (2.4)

pV ) NkBT +
1

3
∑
i)1

N

〈Foi‚r i〉 (2.5)

Φo ) ∑
i)2

N

∑
j)1

i-1

Vγδ(rij) (2.6)

p ) FkBT - (2πF2/3) ∑
γ,δ)1

ν

xγxδ ∫0

∞
r3V′γδ(r)gγδ

(2)(r)dr (2.7)

F ) N/V (total number density)

xγ ) Nγ/N (mole fraction of speciesγ) (2.8)

R ) (2p - FkBT)-1{FkB -

(2πF2/3) ∑
γ,δ)1

ν

xγxδ ∫0

∞
r3V′γδ(r)[∂gγδ

(2)(r)/∂T]p dr} (2.9)

Ψ(r1...rN,V) ) Φ(r1...rN,V) + pV (2.10)

dr i(s)/ds) - ∇iΨ[r i(s)...V(s)] (1e i e N)

dV(s)/ds) - ∂Ψ[r i(s)...V(s)]/∂V (2.11)

gγδ
(2) (r) ) ∑

l

Plgγδl
(2) (r) (2.12)

[∂gγδ
(2)(r)/∂T]p ) ∑

l

Pl[∂gγδl
(2) (r)/∂T]p + ∑

l

(∂Pl/∂T)p gγδl
(2) (r)

(2.13)

R ) Rvib + Rstr (2.14)

Rvib ) (2p - FkBT)-1{FkB -

(2πF2/3) ∑
γ,δ)1

ν

xγxδ∑
l

Pl∫0

∞
r3V′γδ(r)[∂gγδl

(2) (r)/∂T]p dr} (2.15)
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and

III. Specific Model Applications

The next step is to review the results of the preceding Section
II in the context of three specific models. Each of the three
involves just a single component whose particles are structure-
less and spherically symmetric. The interparticle interactions
operative in each conform to the additivity assumption expressed
earlier in eq 2.6.

A. Inverse Power Model.This case is defined by the generic
pair potential (n> 3)

where ε and σ are positive energy and length parameters,
respectively. The simple form ofV implies that nonideal parts
of thermodynamic functions depend on temperature and density
only through a single scaling variable that contains both.9 In
particular, the pressure equation of state takes the following
form:

The dimensionless nonideality functionqn will vary with n
certainly, and will satisfy the conditions

and will possess a set of singular points on the positive real
axis associated with phase transitions. The latter include the
melting and freezing points and, at least for somen values,
singular points associated with FCCT BCC crystal transi-
tions.16,17

Upon differentiating expression (3.2), one concludes that
thermal expansion for the inverse power model must have the
form:

One can show that this is always positive. The explicit
occurrence of the factorT-1 in this expression forR reflects
the fact that thermal expansion as conventionally defined is not
dimensionless.

The fact thatΦo for this model is homogeneous of degree
minus-nproduces important simplifications for inherent struc-
tures and their energies. Let configurationr1

(a)...rN
(a) represent a

minimum ofΦo under the condition that volume is fixed atVa.
Then as the volume is changed to some other valueVb the
isochoric inherent structure scales continuously to

At the same time the isochoric inherent structure potential energy
changes fromΦo

(a) to

The persistence (with scaling) of each isochoric inherent
structure implies that under isobaric (constantp) conditions the
same inherent structures also appear, though each would have
its own characteristic volume. Specifically, the potential enthalpy
functionΨ for inherent structurel is determined by minimizing

leading to the result

Numerical simulations of inverse-power systems at fixed
volume reveal that the isochoric inherent structures obtained
from the liquid state are very narrowly distributed in energy,
and that this narrow distribution is essentially temperature-
independent. The basic scaling property indicates that the
distribution of pressures for the inherent structure must similarly
be very narrowly distributed, and so the same must be true for
the enthalpy quantitiesΨ(l). Equation 3.8 thus requires thatV(l)-
(p) will also be narrowly distributed and independent of liquid
temperature.

Returning to eq 2.13, these considerations indicate that for
the inverse power model liquid, temperature change causes
virtually no shift in basin population: the second sum in eq
2.13 essentially vanishes. This is reasonable in view of the fact
that the relative size of all basins, and their relative ordering in
energy, pressure, and enthalpy are all unchanged by volume
variations. The temperature variation of the pair correlation
function is then strictly an intra-basin vibrational phenomenon.
Thus for both the crystal and fluid phases

though the numerical values may differ for the two phases.
B. Hard Sphere Model.The virial equation of state for hard

spheres of diameterσ takes the following form:10

which involves the temperature-independent pair correlation
function evaluated at the contact distanceσ. Differentiation leads
to an expression for this system’s thermal expansion coefficient:

The quantity enclosed in curly brackets in this last expression
is a function only of the reduced density variableFσ3, and
because it is always positive, so too isR. The superficial
similarity between R expressions 3.4 and 3.11 is hardly
surprising, considering that the hard sphere pair potential

Rstr ) -[2πF2/3(2p-

FkBT)] ∑
γ,δ)1

ν

xγxδ∑
l
∫0

∞
r3V′γδ(r)(∂Pl/∂T)p gγδl

(2) (r)dr (2.16)

V(r) ) ε(σ/r)n (3.1)

p
FkBT

) 1 + qn(εσnFn/3/kBT) (3.2)

qn(0) ) 0

qn(u) > 0 (u > 0) (3.3)

R ) [ 1 + qn(u) - uq′n(u)

1 + qn(u) + (n/3)uq′n(u)]1
T

u ) εσnFn/3/kBT (3.4)

r1
(b)...rN

(b) ) (Vb/Va)
1/3r1

(a)...(Vb/Va)
1/3rN

(a) (3.5)

Φo
(b) ) (Va/Vb)

n/3 Φo
(a) (3.6)

V-n/3Φo
(l)(Va) + pV (3.7)

Ψ(l)(p) ) (3n)(n-3)/(n+3)
pn/(n+3)[Φo

(l)(Va)]
3/(n+3)

V(l)(p) ) [nΦo
(l)(Va)/3p]3/(n+3) (3.8)

R = Rvib (3.9)

p
FkBT

) 1 + 2
3

πFσ3g(2)(σ,F) (3.10)

R ) { 1 + (2/3)πF3g(2)(σ,F)

1 + (2/3)πσ3 ∂

∂F
[Fg2(σ,F)]}1

T
(3.11)
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emerges from then f + ∞ limit of the inverse power pair
potential:9,18

The interparticle potential energyΦo in the hard-sphere limit
collapses to zero for any physically realizable configuration. It
is known that isochoric inherent structures in this limit geo-
metrically correspond to sphere packings, where the individual
particles are positioned as though they had diameters sufficiently
larger thanσ to be spatially jammed.18 However, under positive-
pressure isobaric conditions the resulting inherent structures are
just the jammed configurations of theσ-diameter spheres
themselves. The volumesV(l), of course, are independent ofp,
have a minimum for regular crystalline close packing, and
exhibit a range of larger values for more disordered sphere
packings. The potential enthalpies thus are simply

Because the hard sphere model connects to the inverse power
model through the large-nlimit, eq 3.12, we can conclude that
eq 3.9 is also valid for hard spheres.

C. Gaussian Core Model. The third specific case for
consideration involves additive pair interactions that are Gauss-
ian functions of distance:

This choice produces several special mathematical features that
are not shared by other models.11 Furthermore, a substantial
simulational database now exists for this Gaussian core
model,11,19-21 which may afford an idealized view of some
micellar and polymer solutions.

The attribute of the Gaussian core model that is most
significant for the present study is that it exhibits a negative-R
region of its phase plane that encompasses both BCC crystal
and fluid phases.11 For illustrative purposes we focus on the
behavior of the model at reduced density

at which the BCC crystal has a melting point at the reduced
temperature

As temperature increases from absolute zero, throughT*mp, and
into the stable fluid range, the pressure declines monotonically
until it passes through a minimum at

Pressure rises monotonically with temperature beyond this
minimum.

The general thermodynamic identity

where κT is the isothermal compressibility (never negative),
requires obviously thatR have the same sign as the isochoric
temperature derivative of pressure. Consequently,T*min(F*) for
the Gaussian core model is the locus in theF*, T* plane across
which R changes sign. Equivalently, it is the locus of density

maxima for the system examined at constant pressure. Numerical
simulations for the Gaussian core model indicate thatT*min-
(F*) is a properly defined positive function ofF* for all

although it appears to converge to zero asF* increases to
infinity.11

It is important to point out that even in the limit of absolute
zero temperature, withF* in the range (3.19),R remains
negative. As an example, one finds atF* ) 0.7, T* ) 0:

The significance of this result is that it must be a purely intra-
basin vibrational phenomenon. In this low temperature limit,
the system resides exclusively in one of the permutation-
equivalent basins for the perfect BCC crystal.

While the isochoric inherent structures for the fluid phase
aboveT*mp(0.7) are not all identical, they are statistically similar
to one another and are very narrowly distributed in energy, an
attribute that also occurs at other densities. The same narrowness
of distribution is also expected when the inherent structures are
obtained by isobaric quenching. As a result we must again
conclude that the fluid-phaseR in both its negative and positive
regimes is essentially an anharmonic intra-basin phenomenon.

The appearance of negative thermal expansion in the Gaussian
core model can be attributed to unusual mathematical properties
displayed by its interaction potential energyΦo and associated
potential enthalpyΨ. To be specific, decreasing the volume
for a fixed numberN of particles causes the topography of the
multidimensionalΦo hypersurface to become smoother.11 This
causes a reduction in the number of local minima (isochoric
inherent structures), although the BCC crystal and at least some
of the amorphous structures survive the reduction. Furthermore,
the difference in energy between the surviving inherent struc-
tures, as well as the saddle points that connect their basins,
declines as volume decreases. Consequently, the relevant basins
flare outward, flatten, and act in a less confining manner under
compression. This is just the opposite of the usual behavior,
wherein compression tends to increase particle confinement.
When a temperature rise induces the Gaussian core system to
seek a condition of lesser confinement (i.e., higher configura-
tional entropy), it contracts.

The occurrence of a negativeR can also be explained22 by
noting that the mathematical form ofV(r) given in eq 3.14 leads
to negative curvature forr/σ < 2-1/2. This means that the
repulsive force between two particles diminishes as their mutual
separation decreases below 2-1/2 σ. These close encounters are
more and more frequent as temperature rises, resulting in a net
reduction in interparticle repulsive forces. Hence, at high enough
density, the pressure decreases with increased temperature.

Although thermal expansion in the three models just examined
arises almost exclusively from intra-basin vibrational effects,
important examples exist wherein interbasin equilibration ap-
parently plays a dominating role. In particular, this latter
behavior arises in many good glass-forming liquids. As such
substances are isobarically supercooled across and below their
glass transition temperaturesTg, R typically experiences a large
reduction, often by a factor of 2 or more.23 The glass transition
marks the point below which configuration (interbasin) relax-
ation experiences kinetic arrest, with the consequence thatRvib

+ Rstr for these substances suddenly reduces toRvib alone. In
contrast to the three simple models discussed above, glass-
forming systems exhibit mean inherent structure energies and

0.30j F* (3.19)

R* ) εR/kB = -0.437 (3.20)

lim
nf+∞

ε(σ/r)n ) + ∞ (r < σ)

) 0 (r > σ) (3.12)

Ψ(l)(p) ) pV(l) (3.13)

V(r) ) ε exp(-r2/σ2) (3.14)

F* ≡ Fσ3 ) 0.7 (3.15)

T*mp(0.7)≡ kBTmp(0.7)/ε) 0.00197 (3.16)

T*min (0.7)) 0.0183 (3.17)

R ) κT(∂p
∂T)F

(3.18)
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enthalpies that depend on the temperature of the liquid; this
attribute has been demonstrated both for the model system
composed of a two-component Lennard-Jones particle mix-
ture,24 as well as for the real systemo-terphenyl.15

IV. Classical Generalizations

The case of materials composed of polyatomic molecules
requires an extension of the formalism presented in Section II.
The configuration of each moleculei now may be specified by
the following direct-sum vectors:

The 3-component vectorr i has the same interpretation as before,
the centroid position of moleculei. Internal degrees of freedom
(orientation, dihedral angles of rotation about bonds, bond length
changes) are comprised insi, the number of components of
which may vary between species. At the level of pairwise
additivity for intermolecular interactions, the potential energy
Φo now must be extended to the following format:

a straightforward generalization of the earlier eq 2.6. As before,
the Greek subscriptsγ and δ denote the chemical species of
moleculesi and j, respectively. TheVγ

(1) represent the intramo-
lecular potential energy functions for each of the species present.

The virial eq 2.5 continues to hold in this polyatomic
generalization, whereFoi is the net force on moleculei due to
all others with which it interacts. Formally we have

where the gradient operator∇i involves differentiation only with
respect to the three components of the centroid positionr i. The
intramolecular potentialsVγ

(1) do not contribute directly to this
net force because they depend only on the internal degrees of
freedomsi.

Transforming virial expression eq 2.5 to a form that reveals
its dependence on molecular short-range order requires first
defining polyatomic pair correlation functions. Specifically we
write FγFδgγδ

(2) (t i,tj) for the pair distribution function ofγ, δ
molecular pairs in the given molecular configurations. With
appropriate boundary conditions these distribution functions can
be invariant to translations and overall rotations, for both fluid
and crystalline phases. In the event that the system is in an
isotropic amorphous phase, we have for an infinite system the
normalization:

With this definition in hand, we can now present the polyatomic
extension of eq 2.7.

Consistent with the earlier usage,F stands for the total molecular
number density, and thexγ are species mole fractions. It is worth

stressing that intramolcular forces make no direct contribution
to the pressure.

Inherent structures for polyatomic substances are mechani-
cally stable arrangements of molecules that represent a balance
of intramolecular, intermolecular, and wall forces. They emerge
from the generalization of the isobaric mapping differential
equations (2.11) to include the intramolecular degrees of
freedom (sg 0):

where now the gradient operator covers all components oft i.
This mapping again partitions the system’s configuration space
into basins of attraction surrounding the configuration of each
inherent structure. The dimension of that configuration space
has now expanded from 3Nto:

where uγ is the number of internal degrees of freedom for
molecular speciesγ (i.e. the number of components of the
correspondingsi).

With the basin division of the configuration space in hand,
we can now, in principle, resolve each pair correlation function
into separate contributions from each basinl. Hence the prior
eq 2.12 trivially extends to the following:

wherePl is the residency probability for basinl. This in turn
leads to the generalization of eq 2.13:

The two sums in the right member of this last equation represent
intra-basin vibrational and interbasin structural contributions,
respectively. Differentiating the pressure equation of state (eq
4.5) and rearranging the result leads to the polyatomic extension
of the simple eq 2.9 forR:

Finally, inserting the separated form (eq 4.9) for the pair
correlation temperature derivatives once again effects a separa-
tion of R into a purely intra-basin vibrational part (eq 4.10 with
just the first sum from eq 4.9), plus a structural equilibration
correction. Equation 2.14 still applies.

The other direction of generalization to be considered is that
associated with nonpairwise-additive molecular interactions.
These can be significant when ionic or highly polar species are
present, creating large local electric fields with associated
electronic polarization effects. They can also be expected if the
chemical species that are present exhibit formation and dis-
sociation of chemical bonds. In this circumstance we must now

t i ) r i x si (4.1)

Φo ) ∑
i)1

N

Vγ
(1)(si) + ∑

i)2

N

∑
j)1

i-1

Vγδ
(2)(t i,tj) (4.2)

Foi ) -∇iΦo (4.3)

lim
rijf∞

∫dsi ∫dsj gγδ
(2)(t i,tj) ) 1 (4.4)

p ) FkBT -(F2/6) ∑
γ,δ)1

ν

xγxδ ∫dr12∫ds1 ∫ds2 ×

[r 12‚∇12Vγδ
(2)(t1,t2)]gγδ

(2)(t1,t2) (4.5)

dti(s)/ds) -∇t i
Ψ[t1(s)...V(s)]

dV(s)/ds) -∂Ψ[t1(s)...V(s)]/∂V (4.6)

3N + ∑
γ)1

ν

Nγuγ (4.7)

gγδ
(2)(t1,t2) ) ∑

l

Pl(T,p)gγδl
(2) (t1,t2) (4.8)

[∂gγδ
(2)(t1,t2)/∂T]p ) ∑

l

Pl[∂gγδl
(2) (t1,t2)/∂T]p +

∑
l

(∂Pl/∂T)p gγδl
(2) (t1,t2) (4.9)

R ) (2p - FkBT)-1{FkB -

(F2/6) ∑
γ,δ)1

ν

xγxδ ∫dr12∫ds1 ∫ds2 ×

[r 12‚∇12Vγδ
(2)(t1,t2)][∂gγδ

(2)(t1,t2)/∂T]p} (4.10)
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use the following general format for the total molecular potential
function:

For most applications of interest, it seems reasonable to suppose
that this is a rapidly converging sum, and that largen values
need not be considered.

The forcesFoi that appear in the virial relation (eq 2.5) now
receive contributions from all nonvanishingV(n), n > 1. This
leads in turn to an expression for p that incorporates molecular
correlation functionsg(n) of comparable orders:

Thenth order correlation functions introduced here are subject
to normalization conditions analogous to those shown in eq 4.4,
namely reduction to unity when all pair distances become large,
and upon integration over the internal degrees of freedoms1...sn.

By applying the differential operator (∂/∂T)p to both sides of
the general eq 4.12, and then rearranging results, the following
expression forR emerges:

The denominatorD previously could be expressed entirely in
terms of thermodynamic quantities (Eqs 2.9, 4.10), but now
includes explicit molecular corrections fromn > 2 interactions:

Despite the extra complexity, expression (4.13) forR displays
the same property as before that permits separation into
vibrational and structural equilibration components. Each cor-
relation function temperature derivative can be resolved [as in
eq 4.9 above forn ) 2] into distinct intra-basin and interbasin
contributions, and soRvib andRstr in eq 2.14 continue in principle
to be well defined.

V. Quantum Statistics

The classical statistical analysis that has dominated the
discussion thus far becomes inappropriate if the system’s
constituent particles contain light atoms and/or possess high-
frequency intramolecular vibrations. In particular, the presence
of hydrogen or deuterium can be an aggravating circumstance.
For some limited applications it may be acceptable to disregard
intramolecular vibrational degrees of freedom and to postulate
an “effective” interaction potential for use in classical statistical

mechanics that implicitly incorporates residual quantum effects.
Nevertheless, it is important to understand the deeper quantum
statistical mechanical context and how it affects thermal
expansion.

Diagonal elements of the density matrix, in the position
representation, play the role for quantum statistics that has been
assigned to the classical configuration distribution function.25

Integrating this diagonal density matrix over each of theΨ
basins in turn generates the quantum versions of the basin
residence probabilitiesPl(T) that have been central to the
preceding analysis. The basins and inherent structures them-
selves depend only on the given potential enthalpy functionΨ,
and do not depend on the subsequent applicability of classical
versus quantum statistics. However thePl(T) do reflect the
influence of spin, statistics, energy level quantization, and
tunneling effects.

The virial equation of state for quantum systems can be put
into a form that is outwardly similar to the classical version.
Mazo and Kirkwood26 have shown, for the case of a single
spherically symmetric species, that the virial expression for the
pressure takes the form:

Here τ is an effective temperature equal to two-thirds of the
mean kinetic energy per particle, divided bykB. Quantum zero-
point motions increaseτ aboveT.

By applying the usual differential operators (∂/∂T)p to both
sides of eq 5.1, followed by rearrangement to produce an
expression forR, two types of terms are encountered, just as
before. The collection of terms that include thePl, but not their
temperature derivatives should be identified as the intra-basin
vibrational quantityRvib. The remainder, containing the (∂Pl/
∂T)p, comprises the structural equilibration portion of thermal
expansion, and as before would be designated byRstr. BothRvib

andRstr would manifest the effects of quantization.
As noted earlier, low temperature crystals are essentially

confined configurationally to one of the permutationally equiva-
lent basins for the absoluteΨ minimum. Motions about this
minimum are resolvable in terms of phonon excitations.
Anharmonicity is conventionally described as volume depen-
dence of phonon frequencies, or more compactly as a volume
dependence of the crystal Debye temperatureΘ(V), often
expressed as the Grüneisen constant27

This in turn can be converted toRvib, the only contribution to
crystal thermal expansion.

VI. Density Maximum in Water

Understanding thermal expansion effects in the condensed
phases of water presents an unusual challenge. The substance
evokes each of the generalizations discussed above: (a) it is
composed of polyatomic molecules with internal rotational and
vibrational degrees of freedom; (b) intermolecular interactions
include at least three-molecule contributions with significant
magnitudes but variable sign;28,29 and (c) the presence of two
hydrogen atoms in each molecule produces substantial quantum
effects at room temperature and below. This Section VI is
devoted to one modest aspect of the pure water problem, namely
a rough analysis of how the famous liquid-phase density
maximum at 4 °C is determined by a balance between
vibrational and structural equilibration influences.
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The ambient-pressure inherent structures for water that
possess the lowest potential enthalpy values are those that
correspond to the structure of ice Ih and the closely related ice
Ic. These crystals exhibit 4-fold coordination for each water
molecule to nearest neighbors by hydrogen bonding. The
structures are not unique, because the pattern of hydrogen bonds
can be fulfilled in many ways that differ only in orientation of
the participating water molecules. The number of distinct ice
inherent structures for anN-molecule crystal is close to the
Pauling estimate:30,31

These alternatives appear to be nearly degenerate in potential
enthalpy, and to give rise to the calorimetrically measured
residual entropy of ice at absolute zero.32

The thermal expansion of ice Ih is negative below about 65
K, but changes sign upon heating.1,33 In the vicinity of its
melting point, one finds1

where t is the Celsius temperature. Evidently this is a purely
intra-basin vibrational phenomenon, because virtually all of the
relevant ice Ih basins have nearly equal a priori occupation
probabilities. The specific result (eq 6.2) represents a combina-
tion of effects from the attributes (a), (b), and (c) mentioned
above.

The melting of ice to produce liquid water deforms and breaks
hydrogen bonds. The extent of this structural damage can be
gauged by comparing the cohesive energies of ice Ih and of
liquid water at 0°C:34

On account of the weaker binding present in the liquid, we can
reasonably expect that its inherent structures will produce an
intra-basin vibrational componentRvib to the total thermal
expansion of the liquid that exceeds the ice Ih result shown in
(eq 6.2) above. We propose that a crude estimate of this
enhancement can be based on the intuitive notion that weaker
molecular binding entails correspondingly smaller force con-
stants, larger vibrational amplitudes, and thus increased anhar-
monicity. For this reason, we choose to scale-upR (Ih), eq 6.2,
by the ratio of cohesive energies, eq 6.3:

We can now address the issue of how the vibrational contribu-
tion influences the position of the liquid’s density maximum at
4 °C. In this temperature range, the measured thermal expansion
coefficient for liquid water can be represented as35

Subtracting estimate 6.4 forRvib leaves

This passes through zero at

indicating an upward shift in temperature for the purely
structural equilibration density maximum by about 3.7°C.

Admittedly, results 6.6 and 6.7 rely upon the crude and
tentative estimate 6.4 for their validity. But even if these results
are only qualitatively valid, they raise a significant novel issue
concerning the liquid water density maximum. The clear
implication is that within structural equilibration by itself, two
distinct and competing phenomena are at work. One, which
dominates at low temperature (particularly in the supercooled
regime), involves a tendency toward more and more open but
well-bonded water networks as illustrated by the family of
clathrate networks.36 The second, increasing in effect as
temperature rises, apparently concerns formation of low-density,
fissure-containing inherent structures37 made possible by disrup-
tion of a significant fraction of the hydrogen bonds. Both of
these phenomena act to lower density, but as temperature rises
from supercooling toward boiling, the first weakens before the
second fully takes hold, to produce by default a density
maximum in the purely structural part of the statistical descrip-
tion. The anharmonic vibrations within basins then act to shift
the maximum to the lower observed temperature.

The rationale just presented is speculative at present. How-
ever, it is subject to verification or contradiction by a combina-
tion of thermal expansion measurements on a variety of water-
containing materials of fixed structures but variable extents of
hydrogen bonding, and by suitable computer simulation on water
models. The density maximum issue, furthermore, is not
restricted to ambient pressure, but deserves study both under
elevated pressure and in the regime of negative pressures (states
of tension).38 The latter may bear on the controversial nature
of low-temperature amorphous water.39-41

VII. Discussion

No general examination of thermal expansion would be
complete without mentioning its divergent behavior in the
liquid-vapor critical region. Even the venerable van der Waals
equation of state qualitatively captures this phenomenon. It leads
to the following expression forR (wherepc, Tc, andVc are the
critical-point values of pressure, temperature, and molar vol-
ume):

Above the critical temperature, along the critical isochore (V )
Vc), this becomes

while along the critical isotherm (T) Tc) it predicts

A more realistic nonclassical description of the liquid-vapor
critical region42 would replace the divergence exponents 1 and
2 in eqs 7.1 and 7.2 with the Ising universality-class exponents,
approximately 1.3 and 3.3, respectively.

The present analysis raises the question of how the critical
divergence ofR should be apportioned between vibrational and
structural equilibration contributions. For the moment this must
remain an intriguing open issue. In seeking answers in the future
it may be helpful to use computer simulation on simple models
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(3/2)N (6.1)

R(Ih) = (54 + 0.24t)× 10-6/deg (6.2)

ice Ih: 11.661 kcal/mol

liquid: 10.225 kcal/mol (6.3)

Rvib (liq,t) = 1.14R(Ih)

= (61.6+ 0.274t)× 10-6/deg (6.4)

R(liq,t) = (-68.1+ 17.1t)× 10-6/deg (6.5)

Rstr(liq,t) = (-129.7+ 16.8t)× 10-6/deg (6.6)

t ) 7.72°C (6.7)
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(such as the Lennard-Jones fluid) in the general vicinity of the
critical region to characterize their inherent structures and their
basins. On account of the divergence of the correlation length
at the critical point,42 such simulations must necessarily involve
large system sizes (largeN), and can only approach the true
critical point.

A recent study of ZrW2O8 suggests that a close connection
exists between negative thermal expansion in the crystal phases
of framework solids, and the capacity for those solids to undergo
pressure-induced amorphization.43 In particular, the negative
thermal expansion of ZrW2O8 over a wide temperature range
at ambient pressure is purely vibrational in origin, arising from
low-frequency “rigid unit modes” that substantially preserve the
geometries of ZrO6 and WO4 polyhedral units. Application of
high pressure (>1.5 Gpa), however, causes segregation of
distinct large-amplitude framework distortions as their own
inherent structures. These appear to involve disruption of the
low-pressure polyhedral units, leading to the possibility of
recovering amorphous ZrW2O8 at low pressure and room
temperature. Other materials with framework crystal structures
and at least some temperature range of negativeR (SiO2,H2O)
can also be amorphized under pressure.

Experience with the theoretical Gaussian core model dis-
cussed in Section IIIc above suggests that a negative volume
of melting (which it exhibits11) may also be a good indicator of
susceptibility to pressure-induced amorphization. The BCC
crystal exhibited by this system can, at positive temperature,
always be crushed into an amorphous “fluid” state, but this
model cannot be described as a framework system. In addition
to the previously mentioned real substances, such a criterion
suggests that the elements Sb, Bi, and Ga that display negative
melting volumes might show pressure-induced amorphization.44

More generally, the relationship between negativeR and
negative volume of melting remains to be explored.
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