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The topography of the multidimensional potential energy landscape is receiving much attention as a useful
object of study for understanding complex behavior in condensed-phase systems. Examples include protein
folding, the glass transition, and fracture dynamics in solids. The manner in which a system explores its
underlying energy landscape as a function of temperature offers insight into its dynamic behavior. Similarly,
sampling in density, in particular the relationship between the pressure of mechanically stable configurations
and their bulk density (the equation of state of the energy landscape), provides fresh insights into the mechanical
strength of amorphous materials and suggests a previously unexplored connection with the spinodal curve of
a superheated liquid. Mean-field calculations show a convergence at low temperature between the superheated
liquid spinodal and the pressure-dependent Kauzmann locus, along which the difference in entropy between
a supercooled liquid and its stable crystalline form vanishes. This convergence appears to have implications
for the glass transition. Application of these ideas to water sheds new light into this substance’s behavior
under conditions of low-temperature metastability with respect to its crystalline phases.

I. Introduction

Many of the most striking and provocative phenomena with
which physical chemistry and materials science are concerned
occur in condensed phases. Examples include the occurrence
of metastable states and their destruction by nucleation or
spinodal decomposition,1 shock and detonation wave propaga-
tion,2 protein folding from random-coil to native states,3

spontaneous assembly of diverse mesoscopic structures,4 and
fracture dynamics of solid materials.5 A feature common to all
of these is the concerted, or cooperative, action of many
molecular degrees of freedom subject to the molecular interac-
tions that are present.

A full understanding of collective phenomena exhibited by
condensed phases must account for the consequences of each
constituent molecule constantly experiencing strong and often
competing interactions with many neighbors. This situation has
sown the seeds for germination and growth of a general “rugged
landscape paradigm” for understanding condensed phase be-
havior, i.e., a formal representation of many-molecule systems
that focuses on the multidimensional potential energy hyper-
surface.6,7 This Feature Article presents some recent results and
thoughts that have emanated from this rugged landscape
viewpoint. In particular, we concentrate on how the equation
of state (including both equilibrium an metastable states) reveals
some key aspects of the multidimensional potential energy

landscape topography. As will be demonstrated below, this line
of investigation goes to the fundamental questions concerning
the nature of the liquid state and of the amorphous glasses that
can be formed from supercooled liquids.

The following section II lays the groundwork for our
presentation with the necessary basic definitions and statistical
thermodynamic relations to establish the energy landscape
representation. Section III considers the information that can
be extracted by sampling the system at different temperatures
under constant volume conditions; in particular we review and
interpret results that have emerged form recent computer simula-
tions on glass-forming binary mixtures.8-10 Section IV examines
the complementary case of sampling in density, which leads to
the analysis of spinodal curves and to the issue of the mechanical
strength of amorphous solids. Section V illustrates these phe-
nomena with some mean-field calculations of the kind initiated
some years ago by Longuet-Higgins and Widom,11 but general-
ized here, and with implications for the density (or pressure)
dependent Kauzmann temperature. Section VI applies these
ideas to the case of water, showing connections to the com-
plicated and still-debated properties of this substance’s super-
cooled liquid and amorphous solid states at low temperature.12-14

The final section, section VII, contains our views about the most
productive future directions for the rugged landscape approach
to open problems in physical chemistry and materials science.

II. Theoretical Background

We shall be concerned with material systems containing some
macroscopic total numberN of discrete particles (atoms, ions,
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or molecules). In generalN will include ν chemically distin-
guishable species present in respective numbersN1,...,Nν,

Each species of particle possesses a characteristic set of degrees
of freedom that include center of mass position, and for
polyatomics may also include rotational, vibrational, and
conformational degrees of freedom. If these configurational
degrees of freedom total 3+ nR for a particle of speciesR, the
number of configurational degrees of freedom for the entire
system is

The potential energy function for the system will be written
Φ(X|V). It contains interparticle interactions, wall potentials that
confine the system to fixed volumeV and intraparticle force
fields, if any. TheD-component configuration vectorX is
shorthand notation for the complete set of individual particle
configuration vectors:

The “energy landscape” cited in the title to this article refers to
the geometry of theΦ hypersurface in the (D+1)-dimensional
space of variablesX, Φ. Although our three-dimensional
capacity to visualize topographic features has limited ability to
cope with this high-dimensional geometry, the three-dimensional
analogy and its intuitive suggestions are useful for understanding
condensed-phase properties.

Some general remarks aboutΦ are in order. First, it is
bounded below by a quantity proportional to the number of
particles present:

Second,Φ is continuous and at least twice differentiable in all
D configuration coordinates, provided all pairs of nuclei have
nonzero separation. Third,Φ is invariant under permutation of
identical particle species, and under operations corresponding
to permanent symmetries of the particles (e.g., inversion of
homonuclear diatomics).

Assuming that classical dynamics suffices to describe the
system’s time evolution, the Newtonian equations of motion
determine the evolution of the configuration pointX on theΦ
hypersurface:

where M is a diagonal matrix of appropriate masses. If the
system is weakly coupled to a heat bath at sufficiently high
temperatureT, the motion ofX(t) will explore the Φ hyper-
surface quasi-ergodically,i.e., it will provide a dense and
representative sampling of that hypersurface. This corresponds
to a state of thermodynamic equilibrium for the givenT andV,
and thermodynamic properties can then be extracted from the
canonical partition function:

Here F is the Helmholtz free energy, andâ is (kB T)-1. The
configurational integrations cover the fixed volumeV. The
single-particle quantitiesCR result from integration over con-
jugate momenta and depend only onT (not V); for monatomic
particles they are cubes of mean thermal de Broglie wavelengths.

Steric repulsions dominate the interaction between any two
atoms when they are sufficiently close. Consequently the
physically relevant portions of theD-dimensional configuration
space contributing to the integral in eq 2.6 avoid all severe atom-
pair overlaps. It is then possible to show that only an expo-
nentially small (inN) fraction of the full configuration space
contributes significantly toZ, eq 2.6. The implied topographic
vision thus conveyed for the physically relevant portion of the
Φ hypersurface is that of a very sparse, steep-walled labyrinth
threading across theX space.

Further elaboration of the rugged energy landscape rests upon
identifying local minima ofΦ and their surrounding “basins of
attraction”. These minima satisfy the relation

and are mechanically stable arrangements of theN particles in
V that are often denoted “inherent structures” of the system.7,15,16

The set of all configurationsX(0) that continuously deform to
a given inherent structureµ by steepest descent on theΦ
hypersurface according to

defines the basin of attraction B(µ) forµ. By means of this
steepest descent mapping ontoΦ minima, the entire configu-
ration space becomes divided among (i.e., tiled by) inherent
structure basins.

Introduction of the inherent structures and their basins leads
naturally to an alternative expression forZ(â, V):

Here we have taken advantage of permutational symmetry, so
that the primedµ summation includes only one of each of the
∏NR! equivalent inherent structures. Small displacements from
the basin minimum can adequately be described as harmonic
vibrations. Large excursions, particularly those that take the
system near the transition states (saddle points) in the basin
boundary entail substantial anharmonicity but can still validly
be described as intrabasin “vibrational” displacements for that
inherent structure.

It is useful to classify the inherent structures by their depths,
i.e., theirΦ values on a per particle basis:

In the large system limit (fixedN/V) the depth-dependent density
of distinct inherent structures possesses an asymptotic form
exponential inN that we write as follows:17

whereσ is nonnegative. As indicated,σ is defined strictly only
between finite limits that correspond to the most stable (æl) and
least stable (æu) inherent structures. This permitsZ to be
rewritten as a one-dimensional integral over the depth parameter
æ:

3XΦ ) 0 (2.7)

dX(s)/ds) -3XΦ[X(s)|V] s g 0 (2.8)

Z ) {∏
R

CR
-NR}∑

µ

′∫B(µ)
exp(-âΦ)dDX (2.9)

æ(µ) ) N-1Φ[X(µ)|V] (2.10)

exp[Nσ(æ)] (æl e æ e æu) (2.11)

N ) ∑
R)1

ν

NR (2.1)

D ) ∑
R)1

ν

(3 + nR)NR (2.2)

X ≡ (x1, ...,xN) (2.3)

Φ g B(N1/V, ...,Nν/V)N (2.4)

M‚X2 (t) ) -3XΦ(X) (2.5)

Z(â, V) ) {∏
R

NR![CR(â)]NR}-1 ∫exp[-âΦ(X|V)]dDX

≡ exp[-â F(â, V)] (2.6)
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Heref(V) represents the mean intrabasin vibrational free energy
per particle, for those basins whose depths lie in a narrow
interval surroundingæ:

For systems of macroscopic size, whereN is comparable to
Avogadro’s number, the integral in eq 2.12 forZ is dominated
by the immediate neighborhood ofæ*(â, V), the position of
the integrand maximum. This is located by the criterion

and so the large-system free energy per particle becomes

This expression makes clear the sense in which temperature
variations sample different portions of the rugged potential
energy landscape: as temperature varies, the corresponding
changes inæ*(â,V) identify the depth of the basin subset that
preferentially hosts the system configuration pointX(t).

The pressure (p) equation of state follows from eq 2.15 by
applying an isothermal volume derivative. Using the chain rule
this leads to the following expression (F ) N/V):

Phase transitions generally will produce singularities in all of
σ, f(V), andæ*.

The thermal equilibrium assumption under which all results
thus far have been derived presumes that configuration point
X(t) can explore the entire available configuration space.
However, first-order phase changes (melting, freezing, boiling,
condensation) can have very substantial kinetic nucleation
bottlenecks that effectively block such full exploration on the
laboratory, or simulation, time scale. Thus “equilibrated”
metastable states can appear, for whichX(t) is confined to, but
densely explores, a subset of the complete available phase space.
This confinement can equally well be described as involving
only a subset of inherent structures and their basins.18,19

To illustrate this last point, consider specifically the liquid
supercooled below its thermodynamic freezing point. The
inherent structures for this metastable state are amorphous,i.e.,
they are devoid of crystalline regions of any but the smallest
size, too small in fact to support crystal nucleation. The
crystallite-free amorphous inherent structures (denoted by
subscript “a”) and their basins are enumerated asymptotically
with the analog of expression 2.11:

This subset has its own vibrational free energyfa(V) (â, æ, F).
The supercooled liquid above its glass transition temperature
(to assure full relaxation) then has its free energy and pressure

given by the same expressions as shown in eqs 2.15 and 2.16,
respectively, but withσ, f(V), andæ* replaced withσa, fa(V), and
æ*a.

III. Isochoric Temperature Sampling

Computer simulation studies in both molecular dynamics
(MD) and Monte Carlo (MC) variants have been valuable
information sources concerning potential energy landscapes. The
typical procedure involves applying an inherent-structure-finding
minimization routine at regularly spaced intervals within an
equilibrated run. A variety of model systems have now been so
analyzed and have revealed some initially unsuspected properties
of æ*, æ*a, and the associated inherent structures. In this
section we review principal findings from constant-volume
simulations for dense liquids.

Single-component nonassociated liquids present a consistent
insightful pattern. This group includes monatomic models with
additive pair potentials of the Lennard-Jones type:20 those that,
upon crystallization, produce body-centered cubic21 and simple
hexagonal22 solids, and Gaussian23 and inverse-power24 poten-
tials. It also includes a model for the diatomic halogen F2 in
which nonadditive interactions were present to enforce the
correct chemical valency.25 The common observation for all of
these simple liquids at fixed density is that the mean inherent
structure energyæ*a for the liquid state is virtually independent
of temperature. This conclusion covers a wide range of liquid
temperatures, typically from several times the melting temper-
ature down to the moderately or even deeply supercooled
regime.

This statistical invariance of inherent structure samples to
liquid temperature is confirmed by examining pair correlation
functionsg(2)(r) for the states involved. Althoughg(2)’s for the
equilibrated liquids manifest substantial temperature dependence,
those for the corresponding sets of inherent structures,gq

(2), are
virtually identical to one another, exhibiting the same enhanced
image of short-range order. The conclusion is that, for simple
single-component liquids at least, temperature dependence of
properties resides almost exclusively with intrabasin vibrational
excitation.

From the energy landscape viewpoint, this observation
indicates that the depth distribution functionσa for simple liquids
is quite narrow on the energy scale ofkB Tm, the thermal energy
at the melting point for the given density. Although the potential
energy hypersurface is indeed topographically rugged, its
constituent basins do not vary greatly in altitude or in the local
order of their minima. Assuming the same is true for interbasin
transition-state saddle points, this is consistent with the fact that
these simple liquids crystallize relatively easily (both experi-
mentally and in simulations) upon cooling belowTm. There are
few deep, trapping, amorphous basins to inhibit the dynamic
exploration of the energy landscape that is necessary to find
and to settle into crystalline basins.

Good glass formers present a rather different picture. One
notable example is a binary Lennard-Jones system whose
parameters have been selected to imitate the 80% Ni+ 20% P
alloy that exhibits a deep eutectic, and readily forms amorphous
solids.27,28 The potential parameters are the following:8-10

where A and B respectively stand for Ni and P. The reduced
temperature (inεAA/kB units) for the eutectic point is ap-
proximately 1.2, and the total number density (inσAA

-3 units) is
1.20.

Z ) {∏
R

CR
-NR}∫æl

æuexp{N[σ(æ)-âæ-âf(V)(â,æ)]}dæ

(2.12)

exp[-Nâf(V)(â,æ)] ) 〈∫B(µ)
exp[-â∆Φ(X)]dDX〉æ(ε,

∆Φ(X) ) Φ(X)-Φ[X(µ)] (2.13)

0 ) (∂/∂æ)[σ(æ)-âæ-âf(V)(â,æ)] (2.14)

âF(â,V)/N) ∑
R

(NR/N)ln CR (â)-σ(æ*) + âæ* +

âf(V)(â,æ*) (2.15)

âp/F ) -(∂σ(æ*, F)
∂ ln F )

æ*
+ â(∂f(V)(â,æ*, F)

∂ ln F )
â,æ*

+

[-(∂σ(æ*,F)
∂æ* )

F
+ â + â(∂f(V) (â,æ*, F)

∂æ* )
â,F] ∂æ*

∂ ln F
(2.16)

exp[Nσa(æ)] (æ la e æ e æu), σa(æ) e σ(æ) (2.17)

εAB ) 1.50εAA, εBB ) 0.50εAA

σAB ) 0.80σAA, σBB ) 0.88σAA (3.1)
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At high temperatures (above approximately 1.0 reduced units),
æ*a is nearly independent of temperature, in conformity with
the simple-liquid behavior discussed above. But as the temper-
ature of the mixture declines below 1.0,æ*a displays a marked
continuous dropoff, indicating that on account of favorable
Boltzmann weighting the system has discovered and entered
anomalously deep basins.10 The cooling rate used in the
simulation strongly influences the final basin depth: the slower
the cooling, the deeper the basin. In no case has crystal
nucleation been observed. Figure 1 schematically indicates these
results. It remains an open question for this model what depth
would be attained by “infinitely slow” cooling,i.e., the potential
energy of the most stable amorphous inherent structure.

Equation 2.14, applied to the amorphous basin subset to
determineæ*a, can be used to interpret the pattern presented by
Figure 1. Because the vibrational free energy depends only
weakly on depth parameteræ, we have

i.e., a linear function ofæ with slopeâ. Equation 2.14 requires
that this combination andσa(æ) have matching slopes at
æ*a(â). The pattern shown in Figure 1 then demands thatσa be
broadened at least to the low-æside of its maximum, in contrast
to the narrow distribution that obtains for simple liquids. Figure
2 illustrates these distinctive forms. Both cases exhibit high
curvature at their maxima, which creates a nearly-constantæ*a
plateau; the gentler slope for case 2b, the glass-formers,
generates the drop shown in Figure 1.

Evidently the good glass formers enjoy a richer energy
hypersurface topography compared to that of the simple liquids.
Rare but significant regions of the configuration space exist that
are occupied by clusters of anomalously deep amorphous basins.
Their local topography appears to be exceptionally rugged, with
interbasin transition states substantially higher than the minima
they connect in comparison with the commoner basins and
transition states sampled at high temperature. These are very
effective traps for the system configuration pointX(t) at low
temperature, preventing crystal nucleation. The exceptional local
ruggedness around these trapping regions presumably plays a
central role in determining the distinctive non-Arrhenius and
stretched-exponential flow and relaxation behavior of “fragile”
glass formers.28

IV. Sampling in Density

Varying the system volumeV can be expected to influence
the character of the rugged potential energy landscape. In the
event that all molecular interactions were proportional to a
common inverse-power of distances, this influence would be
describable by simple scaling laws, with no change in total
number of basins.29 More generally, each ofσ, f(V), and æ*
(alternatively σa, fa(V), and æ*a) would vary with V in ways
characteristic of the specific substances involved. Recall that,
in eq 2.16, differential changes in these quantities determine
the pressure equation of state.

We have already emphasized that for simple liquids examined
at constant density, the collections of inherent structures
generated by steepest-descent quenching are virtually indepen-
dent of liquid temperature. However it is instructive to examine
how these temperature independent results vary with density.
For this purpose we revisit a recent Monte Carlo simulation
for a single-component fluid of particles (N ) 256 and 1372)
with smoothly truncated Lennard-Jones interactions.20b Figure
3 shows a plot of inherent structure pressure vs number density,
over a moderately wide density range. For this model the critical
and triple point reduced densitiesFσ3 are approximately 0.25
and 0.67, respectively.19 The results shown are continuous and
smooth, but unambiguously nonmonotonic.

Three density intervals have been distinguished in Figure 3.

The first of these (A) has inherent structures at positive pressure;
the dense liquids from which they were generated exhibited even
larger positive pressures. Interval B has inherent structures that
are in a state of tension (i.e., negative pressure) that is largest

Figure 1. Mean inherent structure energy per particle vs initial liquid
temperature for the binary Lennard-Jones system chosen to represent
the Ni80P20 system. The cooling rates indicated differ by factor 324.
Adapted from ref 10.

Figure 2. Characteristic distributions of basin depths (a) for simple
liquids and (b) for liquids easily supercooled to form glasses. The
absolute potential energy minimum (crystalline state) per particle has
been denoted byæcr.

A: 0.99< Fσ3

B: 0.89< Fσ3 < 0.99 (4.1)

C: Fσ3 < 0.89

âæ + âfa
(V)(â,æ) = âæ + C(â) (3.2)
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in magnitude at its lower density endpoint,

Interval C shows monotonic reduction in the inherent structure
tension as density declines even further. This pattern was first
observed by La Violette.20a

Geometric analysis20b of the inherent structures represented
in Figure 3 confers a singular significance on densityFs. It is
the point below which attractive interparticle forces are unable
mechanically to sustain the system as an amorphous, isotropic,
and spatially homogenous medium. Expanding the system to
lower densities fractures, or shreds, the inherent structures so
that they consist of dense amorphous portions threaded by large
pores or cavities. In this fractured state it is not surprising that
less and less tension exists as density decreases.

Although even lower densities than those indicated in Figure
3 have not been examined yet, the rational expectation is that
inherent structure tensions would continue to decline toward
zero, while their structures become more and more tenuous,
like “aerogels”.30

The smooth pressure vs density curve with a well-developed
minimum is reminiscent of the metastable pressure isotherms
within phase coexistence regions that are predicted by the van
der Waals and other approximate equations of state.31 In fact
we argue that this inherent structure curve is the natural zero-
temperature limit of such metastable isotherms, at least for
simple liquids. In particular we claim that the minimum shown
in Figure 3 is the zero-temperature limit of the liquid spinodal
curve.32 This identification receives support from the mean-
field calculations reported in the following section V. One
should note in passing that the negative-compressibility “un-
stable” portion of the van der Waals-like isotherms, convention-
ally described as unattainable,33 possesses tangible form in
interval C because the inherent structures contain no thermal
motion by construction.

An analogous but more elaborate situation arises for good
glass formers. As noted earlier (section III), the mean cohesive
energy for inherent structures in these systems shows a
significant, and characteristic, dependence on the temperature
of the liquids. So too will the mean pressures exhibited by the
inherent structures depend on the liquid temperature. Conse-
quently we can anticipate that the single temperature-indepen-
dent curve of Figure 3 will be replaced by a family of curves,
indexed by temperature, for good glass-forming materials. In
particular the densityFs and its associated negative pressure

should depend on liquid temperature. Although it has not (to
the best of our knowledge) yet been tested experimentally, a
reasonable prediction seems to be that the lower the temperature,
the stronger the inherent structures will be at resisting tension-
induced fracture; consequently, we predict that the most negative
pressures (atFs) will occur for the most deeply supercooled and
equilibrated glass formers.

V. Mean Field Calculations

The venerable van der Waals equation of state,31

containing positive constantsa andb, provides a qualitatively
correct description of vapor, liquid, and critical region behaviors,
as well as the coexistence region connecting them. It does so
by accounting approximately for the effects of repulsive and of
attractive intermolecular forces, respectively, through the first
and second terms in the right member of eq 5.1. One of its
primary shortcomings is failure to account for the existence of
the crystalline solid.

Longuet-Higgins and Widom reactivated the original van der
Waals ideas in a more modern setting.11 They observed that
the repulsive-force term in eq 5.1 could be replaced by an
accurate form appropriate for hard spheres, while retaining the
attractive-force term as a mean-field approximation that is
formally exact in the long-range-attraction limit. The presence
of a first-order melting/freezing transition in the bare hard sphere
system34 then maps into a corresponding transition when
attractions are present; furthermore, an improved description
of dense liquids emerges.

The Longuet-Higgins, Widom approach offers a useful tool
to investigate the connections discussed above (section IV)
between inherent structures and spinodal curves, at least for
simple liquids. It should be emphasized that their important
approach can now be generalized to incorporate other repulsive-
particle models beyond simple hard spheres. Specifically, the
cases of “diatomic” fused spheres35 and of “soft spheres”24,36

are now well-enough studied and characterized in their own
rights to serve as alternate, and possibly more realistic, versions
of the repulsive force model.

For this presentation we will focus on a specific soft-sphere
model as a reasonable representation of interatomic repulsions.
The potential energy of interaction has the following form:

It is well-known that inverse-power potentials such as this
produce classical equations of state (and other thermodynamic
attributes) that depend on a single scaling variable.36 The
relevant variablez for the inverse-ninth-power case, eq 5.2, is

The pressurep0 and energyE0 for this soft-sphere model then
depend on a single function ofz:

Figure 3. Density variation of inherent structure pressure for a fluid
with a smoothly truncated Lennard-Jones pair potential (ref 20b).

Fsσ
3 ) 0.89 (4.2)

â p
F

) 1
1-b F

- âaF (5.1)

Φ0(r1...rN) ) ε∑
i<j

(σ/rij)
9 (5.2)

z ) (âε)1/3 Fσ3 (5.3)

â p0

F
) 1 + u(z) (5.4)

â E0

N
) 3

2
+

u(z)
3

(5.5)
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The function u(z) can be viewed as consisting of two
branches,uf(z) anduc(z), representing fluid and crystal phases
respectively. The former has a convergent power series inz that
generates virial expansions for eqs 5.4 and 5.5. In the large-z
asymptotic regime one can show that

Here dimensionless constantsæa andæc are determined by the
mean inherent structure energies for the amorphous fluid and
periodic crystal phase and are known from molecular dynamics
simulation to have the numerical values:37

Following Longuet-Higgins and Widom,11 the soft-sphere
version of van der Waals eq 5.1 is

The spinodal curves correspond to infinite isothermal compress-
ibility, which for eq 5.8 occurs when

Data from a molecular dynamics simulation for the soft-sphere
model37 permits determination of a smooth fit function foruf,
which approaches eq 5.6a in the large-z limit:

This equation, along with eq 5.8, has been used to find the
spinodal and binodal (liquid-vapor coexistence) curves (Figure
4). For the mean-field coupling parameter choicea ) 5εσ3, the
liquid-branch spinodal approachesFσ3 ) 0.592, pσ3/ε )
-0.8759 asT f 0. Note that the theory defined by eqs 5.2 and
5.8 is a two-parameter theory. The natural choice of parameters
is a and (εσ9). However, if one choosesε and σ as scaling
parameters, as we do in Figures 4 and 5, one is forced to specify
the ratio (a/εσ3) independently. However, the results presented
below in eqs 5.12 and 5.13 are general and do not require
specifying (a/εσ3).

The metastable pressure isotherm in the zero temperature limit
can be extracted from eq 5.8, using eq 5.6a. The result is the
following:

This expression generates curves qualitatively like that shown
earlier in Figure 3 for Monte Carlo simulation. In particular it
leads to a single minimum located at

These are the mean-field estimates for the density and maximum
tensile strength of amorphous packings for inverse-ninth-power
soft spheres with long-range attractions, given an arbitrary
positive value ofa. Other choices for the inverse power would
yield similar, but shifted, expressions.

Comparing results from eq 5.12 with corresponding quantities
at the liquid-vapor critical point (cp) helps to put the mechan-
ical-strength aspect of the energy landscape in a more familiar
context. One finds

These values are similar to those that obtain for the smoothly
truncated Lennard-Jones system19,20b upon which Figure 3 is
based:

The same ratios can also be deduced for the van der Waals
equation of state:

Figure 4. Binodal (solid) and spinodal (dash-dot) curves for the soft-
sphere plus mean-field equation of state eq 5.8. Coupling constanta
) 5εσ3.

uf(z)∼3æa z3 + 9/2 + 0(z-3) (5.6a)

uc(z)∼3æc z3 + 9/2 + 0(z-3) (5.6b)

æa = 2.3784

æc = 2.2084 (5.7)

âp/F ) 1 + u(z)-âaF (5.8)

0 ) 1 + uf(z) + zu′f(z)-2âaF (5.9)

uf(z) ) 7.13524z3 + 1.72138z
3.37366+ z

+ 3.42602z+ 2.77862z2

1.473- 0.857z+ z2

(5.10)

Figure 5. Repeat of the liquid-vapor binodal and spinodal curves of
Figure 4, along with the binodal curves for solid-liquid equilibrium,
for the soft-sphere plus mean-field equation of state, eqs 5.6b, 5.8, 5.10.
Also shown are the Kauzmann curves for the liquid (solid) and the
crystal (dashed). The crystal and liquid phases along the Kauzmann
curves have the same entropy at the given temperature (shown) and
pressure (not shown).

(pσ3/ε)T)0 ) 3æa (Fσ3)4-(a/εσ3)(Fσ3)2 (5.11)

Fsσ
3 ) (a/6æaεσ3)1/2

psσ
3/ε ) -(1/12æa)(a/εσ3)2 (5.12)

Fs/Fcp = 3.13

ps/pcp = -20.75 (5.13)

Fs/Fcp = 3.6

ps/pcp = -30 (5.14)

Fs/Fcp ) 3 (5.15)

ps/pcp ) -27 (5.15)
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Figure 5 once again shows the liquid-vapor binodal and
spinodal curves from Figure 4, the solid-liquid coexistence
curves, and the computed “Kauzmann curve”. This last locus
identifies the metastable liquid states which have the same
entropy as the crystal, when the latter has the same temperature
and pressure as the former. In order to generate this Kauzmann
curve for the soft-sphere plus mean-field-attraction model, it is
necessary to compute the free energy of the liquid and the
crystal, from which the entropy is obtained by differentiation.
The free energy of the reference soft-sphere fluid is obtained
by integrating its equation of state (eqs 5.4 and 5.10) along a
reversible path to the dilute gas phase. Likewise, the free energy
of the soft-sphere crystal is computed by integration of the
equation of state (eqs 5.4 and 5.6b). The integration constant is
computed by requiring equality of chemical potential between
the phases at the liquid-solid transition which has previously
been located by computer simulation.36 Following Longuet-
Higgins and Widom,11 a mean-field attraction term,-aF, is
appended to the free energy of both phases.

The striking feature illustrated by Figure 5 is that, in the limit
of absolute zero temperature, the Kauzmann curve appears to
terminate at the same limit for the liquid spinodal. This is the
mechanical strength limit identified earlier for homogeneous
amorphous deposits, the minimum in the curves of type shown
in Figure 3. The existence of this coincidence adds significance
to the critically stretched glass state. Two further observations
should be noted. First, theT ) 0 stretched crystal corresponding
to the terminus of the Kauzmann curve for this mean-field
calculation is slightly more dense than its equal-entropy
amorphous partner. Second, the qualitative pattern presented
by Figure 5 also appears in the Longuet-Higgins and Widom
hard-sphere and hard-disk plus mean-field-attraction models,11,38

as well as in the analogous hard-dumbell case.38 The presently
available evidence suggests that this may be a generally
applicable behavior, at least within the domain of classical
statistical mechanics.

VI. Energy Landscape for Water

We now turn to consider briefly a case with obvious
importance, namely water. The nonspherical molecules involved,
and their capacity to engage in directional hydrogen bonds
control the unusual properties of this substance, and present
challenges for theoretical interpretation. The existence of many
crystalline ice polymorphs39 and clathrate networks,40 as well
as that of high- and low-density amorphous solids,14 provides
experimental testimony for the great diversity of inherent
structures possible for water.

Yet in spite of the molecular complexity of the condensed
phases of water, the substance shows similarity to the cases
considered above. In particular, it displays (at least in model
calculations) a characteristic densityFs of maximal mechanical
stretch for its amorphous inherent structures. Figure 6 contains
results for inherent structure average pressures, verses density,
for a series of molecular dynamics simulations41 using the well-
tested SPC/E potential model for water.42 Two curves are shown,
corresponding to 400 K and to 260 K as the choices of liquid
temperature from which the inherent structures were identified.
Both pass through negative pressure minima, with density equal
to about 0.88 g/cm3. The fact that the two curves do not
superpose shows that water (in this SPC/E model at least)
exhibits temperature dependence at fixed density for its inherent
structures. Indeed the simulations show that the 260 K inherent
structures (lower curve in Figure 6) have consistently greater
binding energy than the 400 K inherent structures (upper curve).

In this respect water behaves in a manner similar to the good
glass formers discussed in section III above. It is also consistent
with the recent claim43 that in this temperature range liquid water
behaves as a very fragile glass former. From the energy
landscape viewpoint, it indicates that an exceptionally rugged
and diverse topography exists for water.

The data presented in Figure 6 does not extend to low density.
However a quick survey of the inherent structure spatial pattern
at low density has been undertaken.41 This confirms the presence
of large voids or cracks analogous to the behavior mentioned
above for the simpler Lennard-Jones models.

The existence of a Kauzmann curve for water, and its possible
relation to the pressure minimum in Figure 6, remains a
fascinating unexplored subject. Indeed this issue is complicated
somewhat by the existence of several high-pressure ice poly-
morphs.39 Nevertheless one might reasonably postulate that the
Kauzmann curve constructed for the liquid and the familiar
proton-disordered hexagonal iceIh would terminate at the
minimum of the 0 K spinodal curve.

VII. Conclusions and Discussion

Examples cited above demonstrate the deep connections, for
condensed-phase substances, between macroscopic measurables
embodied in the equation of state, and the multidimensional
topography of the potential energy hypersurface that is created
by molecular interactions. These connections are revealed by
systematic application of constant-volume steepest-descent
quenching to both stable and metastable thermal states of the
substance of interest. The resulting collections of inherent
structures (potential energy minima) reveal characteristic topo-
graphical differences between simple liquids, and good (fragile)
glass formers. They also confer tangible form on theT ) 0 K
limit of the metastable pressure isotherm within the liquid-
vapor coexistence region. The minimum in this isotherm locates
the T ) 0 limit of the liquid spinodal and corresponds to the
mechanical stability limit (under isotropic tension) for amor-
phous, isotropic, spatially homogeneous glasses. Furthermore,
this minimum also serves as theT ) 0 K limit of the Kauzmann
curve which locates the pressure-temperature point of entropy
equality between liquid and crystal phases.

Thus, the zero-temperature limit of the liquid spinodal
establishes a cutoff density below which a homogeneous glass
cannot be formed. It also anchors the Kauzmann curve. The
linearity of this curve in the (P,T) plane44 implies simple

Figure 6. Density dependence of inherent structure pressures,pIS, for
the SPC/E model of liquid water. The two curves shown are labeled
by the liquid temperature from which the inherent structures were
prepared by constant-density quenching.
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relations between the glass transition and Kauzmann tempera-
tures. Furthermore, the maximum tension which the amorphous
system can withstand emerges as an important scaling parameter
in determining the slope of theTg(P) curve. The testing of these
predictions against experimental observations for real materials
is underway.

On account of the complexity of this general subject, but
limited space for this presentation, we have confined attention
to static properties of condensed phases. However, examining
selected kinetic features adds additional detail to the topographic
“energy landscape” picture.10 In particular, rates of relaxation
processes can be examined both for prequench and postquench
versions of the system kinetics to probe barrier heights separat-
ing inherent structures.

In spite of the intriguing results obtained so far, many open
issues remain. These include application to long-chain molecules
and polymers, and to liquid crystal materials. Section VI has
pointed out the need to locate and to interpret the Kauzmann
curve for water; it will also be informative to search for
connections to the curve of density maxima for liquid water.
Finally, the role of quantum corrections to classical statistical
mechanics in the energy landscape picture demands clarification.
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