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Mo” ller–Plesset convergence issues in computational quantum chemistry
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~Received 27 December 1999; accepted 15 March 2000!

The Hartree–Fock self-consistent-field approximation has provided an invaluable conceptual
framework and a standard computational procedure for atomic and molecular quantum theory. Its
shortcomings are significant however, and require remediation. Mo” ller–Plesset perturbation theory
offers a popular correction strategy: it formally expands eigenfunctions and eigenvalues as power
series in a coupling parameterl that switches the Hamiltonian continuously between the Hartree–
Fock form (l50) and the electron-correlating ‘‘physical’’ Hamiltonian (l51). Recent high-order
Mo” ller–Plesset numerical expansions indicate that the series can either converge or diverge atl
51 depending on the chemical system under study. The present paper suggests at least for atoms
that series convergence is controlled by the position of a singularity on the negative reall axis that
arises from a collective all-electron dissociation phenomenon. Nonlinear variational calculations for
the two-electron-atom ground state illustrate this proposition, and show that series convergence
depends strongly on oxidation state~least favorable for anions, better for neutrals, better yet for
cations!. © 2000 American Institute of Physics.@S0021-9606~00!30222-7#
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I. BACKGROUND

On account of its conceptual simplicity, computation
convenience, and adequate accuracy, the Hartree–Fock
consistent-field approximation has exerted a dominating
fluence on the evolution of atomic and molecular electro
structure studies. Indeed its single-particle terminology~e.g.,
orbitals, bands, sigma and pi electrons, Fermi surfaces, h
etc.! has permanently entered the general scientific voca
lary. Not surprisingly, the Hartree–Fock approximation oft
serves as the starting point for more ambitious computatio
procedures that attempt to come to grips with electron c
relation phenomena by appending systematic correction
that starting point. One of these procedures was initiated
Mo” ller and Plesset in 1934,1 and forms the subject of thi
paper.

As explained in the following Sec. II, the Mo” ller–Plesset
formalism casts the electronic structure problem into the
mat of Rayleigh–Schro¨dinger perturbation theory.2 The self-
consistent-field Hartree–Fock Hamiltonian serves as the
perturbed problem, and the electronic wave function a
energy are then developed in power series in a perturba
parameterl whose increase from 0 to 1 continuously tran
forms and connects the independent-particle descriptio
the fully correlated electronic structure problem.

Modern advances in computing power have enabled
merical studies to carry out Mo” ller–Plesset expansions t
high order, at least for some atomic and molecular syste
of modest size. Although basis set adequacy always rem
a significant concern, one can safely assume that beha
patterns exhibited by published Mo” ller–Plesset series for en
ergy eigenvalues are at least qualitatively correct. These
terns appear to fall into two categories:~a! convergent~ex-
amples are BH, CH2! and ~b! divergent with even–odd sign
alternation in the high-order series coefficients~observed for
Ne, HF, H2O!.3 In view of the fact that the physical state o
9710021-9606/2000/112(22)/9711/5/$17.00
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interest lies atl51, these cases~a! and ~b!, respectively,
correspond tol series with radii of convergence greater tha
and less than, unity. Specifically, pattern~b! is characteristic
of an energy singularity closest to the origin that lies on
negative reall axis at less than unit distance from the origi
The purpose of the present study is to argue that this sin
larity stems from a multielectron autoionization pheno
enon.

Beside presenting the general formalism required for t
analysis, Sec. II also offers an intuitive description of ho
the eigenvalue problem is expected to evolve along the rel
axis. Section III bolsters this view with results from a set
nonlinear variational calculations for1S ground states of
two-electron atoms; in particular these results show a tw
electron autoionization whose position on the negativel axis
depends strongly on nuclear chargeZ. The final Sec. IV dis-
cusses the potentially most useful next-stage calculations
signed to elucidate Mo” ller–Plesset convergence issues, a
how they might be used to increase the productivity of co
putational quantum chemistry.

II. FORMALISM

In the interest of maximum clarity, the following wil
concentrate on the case of 2n electrons with equal number
of up and down spins, i.e., a spin singlet state. The co
sponding self-consistent-field Hamiltonian, to be denoted
H(0), consists strictly of a sum of 2n identical operators for
the 2n electrons:

H~0!5(
j 51

2n F2~1/2!“ j
22 (

k51

N

Zk /ur j2Rku1V j
~scf!G .

~2.1!

Here k indexes theN nuclei, with chargesZk and positions
Rk . V j

scf is the self-consistent-field operator for electronj,
including both Coulomb and exchange portions. The ‘‘phy
1 © 2000 American Institute of Physics
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cal’’ Hamiltonian,H(1), replaces the sum of self-consisten
field operators with the pairwise sum of all 2n22n electron–
electron Coulomb repulsions. More generally, letH(l) be
the Hermitian operator that linearly interpolates betwe
these two cases:

H~l!5(
j 51

2n F2~1/2!“ j
22 (

k51

N

Zk /ur j2Rku

1~12l!V j
~scf!1l(

j ,1

2n

1/ur j2r l uG . ~2.2!

For each electronic state of interest, twol-dependent
energy functions need to be distinguished. The first is
corresponding eigenvalue ofH(l), to be denoted byE(l),
associated with normalized wave functionc(1,...,2n,l):

H~l!c~1,...,2n,l!5E~l!c~1,..,2n,l!. ~2.3!

The second,W(l), is the expectation value of the physic
HamiltonianH(1) in the state described byc(1,...,2n,l):

W~l!5^c~1,...,2n,l!uH~1!uc~1,...,2n,l!&. ~2.4!

It is this latter quantity whose power series represents
Mo” ller–Plesset expansion:

W~l!5W01W1l1W2l21•••• . ~2.5!

In generalE(l) and W(l) are not equal. The obviou
exception occurs at the physical value of the coupling c
stant,

E~1!5W~1!. ~2.6!

The Rayleigh–Ritz variational principle4 requires for the
ground electronic state~or indeed for the lowest-energy sta
of any given symmetry! that W(l) must pass through its
absolute minimum atl51, an attribute not shared byE(l).

It is traditional to express the wave function atl50 as a
2n32n Slater determinant whose elements are space–
orbitals. However, this is not necessary in view of the f
that HamiltonianH(l) is spin independent for alll. Instead,
we can confine attention to any one spin–space compon
say that for electrons 1,...,n with spins down andn
11,...,2n with spins up, and consider just the position-spa
dependence ofc(l50). Let w1(r )¯wn(r ) be an appropri-
ate orthonormal set of position-space orbitals. Then we
set

c~r1¯r2n ,l50!5D~r1¯rn!D~rn11¯r2n!, ~2.7!

whereD is ann3n determinant

D~r1¯rn!5~n! !21/2det@w i~r j !#. ~2.8!

Self-consistency requires that the orbitalsw i which com-
pose eigenfunctionc(l50) both determine the operato
V j

~scf! and also minimizeW(0). Each of theV j
~scf! resolves

into Coulomb~c! and exchange~e! portions,

V j
~scf!5V j

~c!2V f
~e! . ~2.9!

The first of these is just anr -space-function multiplier,

V j
~c!52(

k51

n E dswk
2~s!/ur j2su, ~2.10!
n

e

e

-

in
t

nt,

e

n

while the second is an integral operator with the property

V j
~e!
• f ~r j !5 (

k51

n

wk~r j !E dswk~s! f ~s!/ur j2su. ~2.11!

The effect of the self-consistent-field essentially is
provide a static negative charge cloud that is spatially d
tributed according to the extension of the orbitals compris
in c(l50). The exchange operators reduce the magnit
of the corresponding repulsion somewhat, but only to a p
tial extent. Asl increases from 0 to 1 inH(l), Eq.~2.2!, this
diffuse repulsion continuously switches off while being r
placed by explicit electron-pair repulsions. Formally exten
ing l to even larger positive values greater than 1 causes
self-consistent field to convert to a diffuse attraction s
rounding the nuclei, while electron pairs become even m
repulsive. For very large positivel we can expect the 2n
electrons to concentrate around configurations that repre
a compromise between these competing strong attractive
repulsive interactions.

As l moves from the origin along the negative real ax
interaction roles are reversed in comparison with thel.1
regime. The self-consistent field becomes ever more re
sive, overcoming the direct nuclear attractions, thereby
minishing the capacity of the electrons to remain bound
the neighborhood of the nuclei. But now the explic
electron–electron pair interactions have become attract
As a result the 2n electrons in isolation from nuclei have th
capacity to form their own bound state whose energy wo
have the form (l,0)

2A~n,n!l2, ~2.12!

whereA is a suitable positive constant. This last express
~2.12! locates an autoionization threshold at which then
electrons spontaneously leave the neighborhood of the
clei, together as a bound composite particle, tunnel
through a repulsive barrier due to the magnified se
consistent field. The negativel value at which this occurs
can be identified by equating eigenvalueE(l) to quadratic
expression~2.12!. Just as an analogous autoionization thre
old for the Z21 expansion of the two-electron-atom groun
state creates a wave function and energy singularity in
context,5,6 so too can we expect the same forc~l!, E(l), and
W(l). Hence we propose that this collective autoionizati
phenomenon determines the Mo” ller–Plesset convergence ra
dius.

III. SIMPLE ILLUSTRATIVE EXAMPLE

In order to provide support for the qualitative ideas e
pressed at the end of Sec. II, we now set up and carry o
simple nonlinear variational calculation. While it is desirab
eventually to use a more sophisticated and precise calc
tion, the following example will suffice for present purpose
Specifically we consider the general two-electron at
~nuclear chargeZ! in its singlet ground state, for which th
spatial wave function is symmetric under electron int
change. Our task is to estimateE(l) andW(l), and for this
purpose we introduce the following two-parameter correla
variational wave function~the nucleus is at the origin!:
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cn~r1 ,r2 ,l!5C~a,b!exp@2a~r 11r 2!2br 12#. ~3.1!

The normalizing constant has the value

C~a,b!5F 8a3~a1b!5

p2~8a215ab1b2!G
1/2

. ~3.2!

Parametersa~l! andb~l! are to be determined by minimiz
ing

^cnuH~l!ucn&>E~l! ~3.3!

at eachl.
Negative reall permits formation of a bound ‘‘dielec

tron.’’ In its free state this composite particle has wave fun
tion (l,0)

~ ulu3/8p!1/2exp~2ulur 12/2! ~3.4!

and binding energy

2ulu2/4. ~3.5!

Accurate numerical solutions are available for t
Hartree–Fock approximation to the two-electron grou
state.7 In principle they could be used to construct the sing
particle operatorsV j

(c) and V j
(e) . However, that would be

‘‘numerical overkill’’ given the modest objective of our e
ementary variational strategy. Instead we exploit two sim
fying approximations. First we use the best effective-char
single-exponential 1s orbital for each nuclear chargeZ:8

w0~r !5~a0
3/p!1/2exp~2a0r !,

~3.6!
a05Z25/16.

In this approximationV j
(c) is a simple closed-formr -space

potential

V j
~c!5~2/r j !@12exp~22a0r j !#22a0 exp~22a0r j !.

~3.7!

The second simplifying assumption involves the followi
modification of the exchange operator:

V j
~e!
• f ~r j !5w0~r j !E dsw~s! f ~s!/ur j2su

→ f ~r j !E dsw0~s!w0~s!/ur j2su

[~1/2!V j
~c!
• f ~r j !. ~3.8!

Note that this is exact whenf 5w0 . Thus we assume

V j
~c!2V j

~e!>~1/2!V j
~c! ~3.9!

for illustrative purposes; this is equivalent to the restric
Hartree approximation.9

Subject to these simplifications, the Appendix conta
the matrix elements needed for theE(l) variational minimi-
zation, each of which has a rational algebraic form. Th
have been used to obtaina~l! and b~l! numerically along
the reall axis. Note that theH(1) matrix element has a
relatively simple form:10
-

d
-

i-
e,

d

s

e

^cnuH~1!ucn&5@~a1b!/~8a215ab1b2!#

3@8a317a2b14ab21b315a2

14ab1b224Za~4a1b!#. ~3.10!

By substituting thea~l! andb~l! variational results into this
expression one obtains the correspondingW(l).

IV. NUMERICAL RESULTS

Figure 1 showsa~l! andb~l! computed for the neutra
helium atom, Z52. The corresponding energy function
E(l) and W(l) appear in Fig. 2, which also contains th
free dielectron binding energy curve, Eq.~3.5!. Numerically
it appears possible to locate normalizable wave function
this approximation for

FIG. 1. Coupling constant~l! dependence of variational parametersa andb
in trial wave functioncn , Eq. ~3.1!, for the helium atom ground state (Z
52).

FIG. 2. Variationally determined energy curvesE(l) and W(l) for the
helium atom ground state. The free dielectron binding energy2l2/4 for
l,0 has been included to locate the dielectron ionization singularity,
intersection withE(l).
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22.10<l ~Z52!. ~4.1!

However, notice in Fig. 2 thatE(l) intersects the curve fo
the dielectron binding energy at the ionization thresh
critical value

lc~Z52!>21.33; ~4.2!

if the variational wave function had been sufficiently flexib
to describe the dielectron ionization explicitly and realis
cally, no normalizable solution would have been found
l,lc . In view of the fact that the predicted magnitud
ulc(Z52)u exceeds unity, the Mo” ller–Plesset series for th
helium atom ground state is predicted to be absolutely c
vergent.

Analogous calculations have been performed forZ53
(Li1) and Z54 (Be11). The critical thresholds for thes
cases are the following:

lc~Z53!>22.52,
~4.3!

lc~Z54!>23.70.

Evidently the ionization singularity moves farther from th
origin as Z increases, which would be reflected as a m
rapid convergence of the Mo” ller–Plesset series.

The situation is drastically different forZ51 (H2). The
corresponding energy curves appear in Fig. 3. TheE(l) and
dielectron binding energy functions intersect very close
the origin:

lc~Z51!>20.08, ~4.4!

indicative of a strongly divergent Mo” ller–Plesset series.

FIG. 3. Variationally determined energy curvesE(l) and W(l) for the
hydride anion ground state (Z51), along with the free dielectron binding
energy2l2/4 for l,0.
d
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V. DISCUSSION

Although the variational calculations presented abo
are admittedly crude and are restricted to two-elect
atomic ground states, it is reasonable to suppose that
present qualitatively correct patterns. In particular they le
to the proposition that the Mo” ller–Plesset series forW(l),
Eq. ~2.4!, has a radius of convergence determined by
presence of a singularity on the negative reall axis. Further-
more this singularity arises from a wave function–distorti
phenomenon whereby the electrons are expelled from
region of the nucleus as a free dielectron complex. The va
tional calculations also indicate that for a fixed number
electrons the singularity position depends strongly on nuc
chargeZ: larger Z moves the singularity farther from th
origin of the complexl plane and improves the convergen
rate of the Mo” ller–Plesset energy power series.

Obviously it is desirable to strengthen the case by
peating the two-electron ground-state calculations in a m
precise manner. One area for improvement involves thl
50 Hartree–Fock orbitals, approximated crudely in t
present study by a single exponential with effective nucl
charge. A result of this approximation is that the variation
calculations atl50 do not quite replicate a product o
simple exponentials; insteadb~0! has a small negative value
anda~0! slightly exceeds effective chargeZ25/16, for allZ
values investigated. These minor discrepancies would
eliminated upon insertion of a correct Hartree–Fock solut
for H(0).

At the same time it is also desirable to employ a mo
flexible, and thus potentially more accurate, variational wa
function. For the two-electron ground state considered ab
it would be advantageous to work with linear combinatio
of Gaussian functions that are appropriately symmetrized

cn~r1 ,r2!5(
i

Ai exp~2air 1
22bir 2

22cir 12
2 !. ~5.1!

The full set of parameters$Ai ,ai ,bi ,ci% could in principle
be treated as independent variables~subject tocn normaliza-
tion!, but for practical reasons might be linked into co
tracted subsets. In any case sufficient flexibility should
main to describe the formation and ionization of t
dielectron complex at negativel.

Using a Gaussian basis would remove another sourc
imprecision in the present calculations, the replacement~3.8!
of exchange operators with their Coulomb operator analo
The result ofV(e) operating on any Gaussian term can be p
into closed form, so approximation~3.8! becomes unneces
sary. It is also clear that more than two electrons should
considered, and polyatomic molecules as well, to provid
more comprehensive view of Mo” ller–Plesset convergence is
sues in quantum chemistry.

Two further matters deserve mention. The first is t
nature of the free ‘‘multelectron’’ in its ground and excite
states. Locating singularity-associated thresholds gene
will require determining the energy of these ‘‘sel
gravitating’’ units composed of given numbers of down-sp
and up-spin electrons. The other matter is the precise m
ematical characterization of theE(l) andW(l) singularities
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themselves; if the analogous 1/Z-expansion threshold singu
larity for two electrons is any indication, this mathematic
problem will require a deep analysis.5 Understanding these
singularities and how they dominate high-order series co
ficients should suggest how best to sum partial series in
closed form, including cases that formally diverge, to p
vide reliable energy estimates for systems of chemical in
est.
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APPENDIX

Owing to the special choice~3.1! of variational wave
function, to the restricted Hartree simplification~3.8!–~3.9!,
and to the fact that only one nucleus is present, all of
matrix elements needed to evaluateE(l) andW(l) can be
expressed as rational algebraic functions of the variatio
parametersa andb. The kinetic energy has the form

^K&5E dr1E dr2 cn~r1 ,r2!@2~“1
21“2

2!/2#cn~r1 ,r2!

5
~a1b!~8a317a2b14ab21b3!

8a215ab1b2 . ~A1!

Nuclear attractions, proportional toZ, lead to the following:

^VN&5E dr1E dr2 cn
2~2Z/r 12Z/r 2!

52
4Za~a1b!~4a1b!

8a215ab1b2 . ~A2!

Direct Coulomb repulsion between the two electrons gen
ates the matrix element:

^Ve&5E dr1E dr2 cn
2/r 125

~a1b!~5a214ab1b2!

8a215ab1b2 .

~A3!

Equation ~3.10! above results from substituting Eqs.~A1!,
~A2!, and~A3! into the expression

^H~1!&5^K&1^VN&1^Ve&. ~A4!

In order to carry out the variational calculation for arb
trary l that leads to evaluation ofa~l!, b~l!, E(l), and
W(l), one also requires a general expression for the Har
self-consistent-field matrix element. The effective-charge
proximation, Eq.~3.6! above, also produces an algebraic m
trix element, though rather more complicated than before

^VH&5E dr1E dr2 cn
2@~V1

~c!1V2
~c!!/2#

5
4a~a1b!~4a1b!

8a215ab1b2 2
16a3~a1b!5

8a215ab1b2

3$R1a0S14a0~a1a0!abT%, ~A5!
l

f-
a

-
r-

-

e

al

r-

ee
-

-

where

R5
a

@~a1a0!22b2#~a22b2!2 1
b

a0~2a1a0!~a22b2!2

2
4a2b

a0~2a1a0!~a22b2!31
4ab2

@~a1a0!22b2#~a22b2!3

1
2a2b

a0
2~2a1a0!

2~a22b2!2
1

2ab2

@~a1a0!
22b2#2~a22b2!2

2
2~a1a0!ab

a0
2~2a1a0!2@~a1a0!22b2#2 , ~A6!

S5
~a1a0!a

@~a1a0!22b2#2~a22b2!2 1
~a1a0!b

a0
2~2a1a0!2~a22b2!2

1
ab

a0
2~2a1a0!2@~a1a0!22b2#2 , ~A7!

T52
a1a0

a0
3~2a1a0!

3@~a1a0!
22b2#2

2
a1a0

a0
2~2a1a0!

2@~a1a0!
22b2#31

a

a0
3~2a1a0!3~a22b2!2

2
a

a0
2~2a1a0!

2~a22b2!3
1

b

@~a1a0!
22b2#3~a22b2!2

1
b

@~a1a0!22b2#2~a22b2!3 . ~A8!

The variational eigenvalue estimateE(l) is obtained as fol-
lows:

E~l!5 min
~a,b!

@^K&1^VN&1l^Ve&1~12l!^VH&#. ~A9!
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