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Equation of state of the rigid disk fluid from its triangle distribution
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The distribution functionf (3) for triplets of mutual nearest neighbors offers a description of local
order for many-particle systems confined to a plane. This paper proposes a self-consistent theory for
f (3) in the case of the classical rigid disk model, using three basic identities for closure. Numerical
analysis of the resulting coupled nonlinear integral equations yields predictions for the pressure, the
boundary tension, and the Kirkwood superposition defect for three disks in mutual contact. The
approximation employed implicitly constrains the disk system to remain in the fluid phase at all
densities up to close packing (ra252/31/2). The pressure and boundary tension agree reasonably
well with the corresponding predictions of the two-dimensional scaled particle theory, but the
former agrees even better with a rational approximant due to Sanchez that reproduces eight virial
coefficients. ©2000 American Institute of Physics.@S0021-9606~00!50346-8#
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I. INTRODUCTION

The two-dimensional rigid disk system possesses va
as a model for planar-surface adsorption phenomena, w
offering conceptual simplicity. But in spite of that simplicit
it continues to provide substantial challenges to theory, p
ticularly regarding its freezing behavior under lateral co
pression. It has yet to be conclusively determined whet
that freezing transition is a simple first-order phase chang
the conventional large-system limit, whether a single high
order transition is involved, or whether an interveni
hexatic phase1 appears between the isotropic fluid and t
triangular crystal. Furthermore, the question of the poss
existence of a well-defined metastable extension for the fl
into the compressed density regime beyond freezing con
tutes another significant theoretical problem.

The purpose of this presentation is to utilize the dis
bution function for nearest-neighbor triangles to investig
the fluid-phase equation of state and local order in the c
sical rigid disk system. As will be seen below, this automa
cally includes a metastable extension into the hig
compression regime. The strategy follows a prior feasibi
study2 that developed earlier ideas advanced by Collins3,4

and which indicated that given a suitable closure approxim
tion, a self-consistent theory could be constructed for
nearest-neighbor triangle distribution function.

Section II defines the nearest-neighbor triangle distri
tion function, and reviews the identities it must satisfy, o
of which connects to the pressure equation of state.2 Section
III introduces a generic form for the distribution that pr
vides the basis for a self-consistent closed theory. Numer
10180021-9606/2000/113(22)/10186/5/$17.00
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results for this self-consistent theory appear in Sec. IV; th
include the pressure, the straight boundary line tension,
the Kirkwood superposition defect for disk triplets in mutu
contact. A concluding Sec. V discusses the results obta
as well as opportunities for extending the present approa

II. TRIANGLE DISTRIBUTION

For any configuration ofN disks in a planar region with
areaA, Voronoi cells can be assigned to each disk by
criterion that all its points lie closer to that disk’s center th
to any other center. These Voronoi cells are convex polyg
that tile the planar region. Any pair of disks whose respect
Voronoi cells share a common~linear! boundary constitute a
nearest-neighbor pair by convention. The resulting netw
of nearest-neighbor pair bonds, the Delaunay tessela
tiles the planar region with nearest-neighbor triangles.3,4 Fig-
ure 1 illustrates the Voronoi–Delaunay construction.

Let r5N/A denote the disk number density. A neare
neighbor triangle distribution functionf (3) can be defined by
the requirement that

r3f ~3!~r 1,r 2,r 3!dr 1dr 2dr 3 ~2.1!

be the probability that differential area elementsdr 1, dr 2,
anddr 3 simultaneously contain the centers of three disks t
are mutual nearest neighbors. Assuming that periodic bou
ary conditions apply toA, f (3) must have translation invari
ance. If the disk system is large and in a fluid phase, rota
and inversion symmetries must also apply tof (3).2
6 © 2000 American Institute of Physics
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10187J. Chem. Phys., Vol. 113, No. 22, 8 December 2000 Equation of state of the rigid disk fluid
Two obvious integral conditions must be obeyed byf (3)

for any two-dimensional many-particle system. The first
that the number of nearest neighbor triangles is exactly 2N,

2N5~r3/3! !E dr 1E dr 2E dr 3 f ~3!. ~2.2!

The second is that the sum of all triangle areasD must total
A,2

A5~r3/3! !E dr 1E dr 2E dr 3 D f ~3!. ~2.3!

The spatial integrations in these last two equations cover
A, and the denominator factors 3! compensate for overco
ing.

On account of the symmetries involved, it is convenie
to use triangle side lengthsr,s,t as spatial variables forf (3).
These lengths are subject to the triangle inequalities,
only determine the shape of a triangle to within an invers
operation. Taking these features into account, and ma
the replacement2

dr 1dr 2dr 3→8pArst@M ~r ,s,t !#21/2drdsdt, ~2.4!

where

M ~r ,s,t !52~r 2s21r 2t21s2t2!2r 42s42t4

5~r 1s1t !~2r 1s1t !~r 2s1t !~r 1s2t !, ~2.5!

the transformed integrations become restricted to the re
M.0. Consequently Eq.~2.2! yields the following condi-
tion:

3/~2pr2!5E drE dsE dt rst@M ~r ,s,t !#21/2f ~3!~r ,s,t !.

~2.6!

Furthermore the expression for triangle area in terms ofr,s,t
is simply

D~r ,s,t !5~1/4!@M ~r ,s,t !#21/2, ~2.7!

so that Eq.~2.3! leads to the second condition,

FIG. 1. The Voronoi–Delaunay construction in the plane. Particle ce
positions have been indicated as small dark circles, their respective Vor
cells have been outlined by dotted lines, and nearest-neighbor pairs
been connected by solid lines.
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3/~pr3!5E drE dsE dt rst f~3!~r ,s,t !. ~2.8!

For the special case of the rigid disk system,f (3) neces-
sarily vanishes if any one ofr, s, t is less thana, the distance
of closest disk approach. From the geometry of disk exc
sion, any three disks that are sufficiently close to one ano
are necessarily nearest neighbors. In particular this is tru
mutual contact, withr, s, andt all equal toa. As a resultf (3)

must equal the conventional triplet correlation functiong(3)

for this configuration,

f ~3!~a,a,a!5g~3!~a,a,a!. ~2.9!

The virial equation of state for virial pressurep involves
g(2)(a), the contact pair correlation function,5

bp5r1~p/2!r2a2g~2!~a!, b51/kBT. ~2.10!

In analogy to Eq. ~2.9! above, g(2)(a) is identical to
f (2)(a), the contact value of the nearest-neighbor pair dis
bution function. Becausef (2)(r ) can be extracted from
f (3)(r ,s,t) by integrating over two triangle sides, it is po
sible to derive a third integral condition onf (3), specifically
for the disk system, that relates it to the pressure,2

1

pr2a2 S bp

r
21D5E dsE dt st@M ~a,s,t !#21/2f ~3!~a,s,t !.

~2.11!

For later use it is relevant to mention that closed-fo
approximations are available for the disk fluid equation
state. One of the simplest of these emerges from the t
dimensional version of the scaled-particle theory,6

bpa25ra2@12~pra2/4!#22. ~2.12!

A more complicated form due to Sanchez,7 a ratio of poly-
nomials in density that reproduces eight virial coefficien
has the following form:

bpa25ra2P~ra2!/Q~ra2!; ~2.13!

P~x!5110.816 508x20.294 1438x210.146 136x3; ~2.14!

Q~x!5120.754 296x21.038 819x2

11.170 521x320.308 969x4. ~2.15!

III. SELF-CONSISTENT APPROXIMATION

The radiusR of the circumscribed circle for a triangl
with sidesr,s,t possesses the following functional form:

R~r ,s,t !5rst@M ~r ,s,t !#21/2. ~3.1!

In order that three particle centers in such a triangular
rangement be mutual nearest neighbors it is necessary
sufficient that no other particle center lie within the triangle
circumscribed circle.2,3 This circumscribed circle forms only
part of the excluded zone for the rigid disk case howev
since the disk repulsions themselves add three circular c
of radiusa centered at the three particles involved. The A
pendix supplies an explicit form forX(r ,s,t), the area of this
composite excluded region for any disk triplet of mutu
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nearest neighbors. The Appendix also provides an exp
expression forL(r ,s,t), the length of the boundary o
X(r ,s,t).

The distribution functionf (3) in principle can be ex-
pressed as a suitably normalized Boltzmann factor for
reversible workW that must be expended to create the e
cluded regionX,

f ~3!~r ,s,t !5C exp@2bW~r ,s,t !#. ~3.2!

Following the strategy used to advantage by the scaled
ticle theory,6 W will now be approximated as a sum o
pressure-area work and line tension-boundary length wo

f ~3!>C exp@2bpX~r ,s,t !2bgL~r ,s,t !#; ~3.3!

hereg is the appropriate line tension. This expression c
tains three unknown scalars,C, p, andg, which exact condi-
tions ~2.6!, ~2.8!, and~2.11! are available to determine sel
consistently. Section IV presents the results of a numer
analysis of these three simultaneous integral equations.

Our earlier feasibility study2 was designed in part to
demonstrate that self-consistent solutions were indeed
sible with this kind of statistical-geometric approach. Th
work invoked a crude, minimal approximation in whichX
andL were replaced merely by the circumscribed circle a
and perimeter, respectively, an approach that is asymp
cally correct in the low density limit. The minimal approx
mation appeared to yield unique numerical solutions t
were qualitatively correct for the fluid phase over the en
density range from dilute to crystalline close-packed, ther
providing motivation for the more detailed and accura
analysis of the present paper.

IV. NUMERICAL RESULTS

The three simultaneous equations that result from sub
tuting f (3) approximation~3.3! into conditions~2.6!, ~2.8!,
and ~2.11! have been solved numerically using th
Levenberg–Marquardt algorithm implemented in a comm
cial software package.8 The density range considered was

0.20<ra2<1.05 ~4.1!

~crystal close-packing occurs atra252/31/251.1547...!. The
form ~3.3! assumed forf (3) becomes asymptotically correc
in the low density limit, wherebg vanishes, andbp obeys
the ideal gas law.2 Consequently, extending the lower lim
in Eq. ~4.1! closer to zero had no intrinsic interest. Als
calculations beyond the upper density limit shown ran
risk of accumulating substantial errors due to the large m
nitudes and the rapid spatial variations of the various qu
tities involved. Only a single solution emerged over the d
sity range investigated; a systematic search failed to unc
an alternate branch that could be identified as belonging
crystalline phase.

Table I shows values of the dimensionless press
bpa2 that emerge from the numerical analysis. Correspo
ing results from the scaled particle theory, Eq.~2.12!, and
from the Sanchez rational approximant, Eq.~2.13!, have also
been included in Table I for comparison. None of the th
it
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exhibit a freezing transition, which a variety of comput
simulations predicts to occur over the approximate den
range,9

0.88<ra2<0.91. ~4.2!

Thus, all three pressure columns in Table I represent fl
phases with metastable extensions into the overcompre
regime. Note that the results of the present approach lie
tween the predictions of the scaled particle theory and
Sanchez rational approximant, though significantly close
the latter than to the former over most of the density ran

Table II reports values obtained forbga, the dimension-

TABLE I. Dimensionless pressuresbpa2 for the self-consistent calculation
based on Eq.~3.3!. For comparison, corresponding results are shown for
scaled particle theory~SPT!, Eq. ~2.12!, and for the Sanchez rational ap
proximant~SA!, Eq. ~2.13!.

ra2 bpa2 bpa2(SPT) bpa2(SA)

0.20 0.281 0.281 0.282
0.25 0.388 0.387 0.389
0.30 0.516 0.513 0.517
0.35 0.671 0.666 0.672
0.40 0.859 0.850 0.861
0.45 1.089 1.076 1.092
0.50 1.376 1.356 1.380
0.55 1.736 1.705 1.741
0.60 2.191 2.146 2.199
0.65 2.777 2.713 2.789
0.70 3.547 3.453 3.563
0.75 4.569 4.441 4.599
0.80 5.968 5.791 6.024
0.85 7.932 7.692 8.052
0.90 10.781 10.473 11.074
0.95 15.149 14.740 15.886
1.00 22.237 21.714 24.380
1.05 35.407 34.156 42.391
2/31/2 1` 133.219 2636.636

TABLE II. Numerically computed values of the line tensionbga, along
with the predictions of the rigid-disk scaled particle theory~SPT!, Eq. ~4.3!.

ra2 bga bga(SPT)

0.20 20.024 20.022
0.25 20.034 20.038
0.30 20.053 20.060
0.35 20.081 20.091
0.40 20.120 20.134
0.45 20.174 20.190
0.50 20.246 20.266
0.55 20.346 20.368
0.60 20.483 20.506
0.65 20.674 20.692
0.70 20.944 20.949
0.75 21.323 21.308
0.80 21.878 21.819
0.85 22.701 22.568
0.90 23.960 23.702
0.95 25.973 25.499
1.00 29.359 28.527
1.05 215.904 214.084
2/31/2 2` 260.408
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less line tension. Scaled particle theory for rigid disks a
provides an explicit prediction for this quantity,6

bga52
2

p S pra2/4

12pra2/4D
2

. ~4.3!

That both approaches yield negative results forbga implies
that disks in the fluid phase tend to cluster at a rigid bou
ary, specifically that of lengthL(r ,s,t) surrounding
X(r ,s,t), suggesting that ‘‘tension’’ would more accurate
be termed ‘‘elongation tendency’’ in the present context.

The Kirkwood superposition approximation10,11 applied
at the particle triplet level assumes thatg(3)(r ,s,t) can be
replaced by the product of the three pair correlation functi
g(2), i.e., it supposes that the ratio

K~r ,s,t !5g~3!~r ,s,t !/g~2!~r !g~2!~s!g~2!~ t ! ~4.4!

is identically unity. In fact, a Mayer cluster expansion r
veals that this Kirkwood superposition defect functionK de-
viates from unity in the low density regime by anO(r)
correction,12

K~r 12,r 13,r 23!511rE dr4f M~r 14! f M~r 24! f M~r 34!

1O~r2!, ~4.5!

where

f M~r i j !5exp@2bv~r i j !#21 ~4.6!

is the Mayer function for pair potentialv. Equations~2.9!
and ~2.10! above show that the Kirkwood superposition d
fect for three disks in mutual contact,K(a,a,a), can be ex-
tracted as a natural by-product of the numerical study. Fig
2 shows a plot of this quantity over the density range~4.1!.
This Fig. 2 also includes the low-density linear estimate fr
Eq. ~4.5!,

K~a,a,a!>120.7048ra21O~r2!. ~4.7!

The graph shows that the predictedK(a,a,a) passes through
a minimum less than unity whenra2>0.77, but rises at

FIG. 2. Calculated values of the Kirkwood superposition defect functi
Eq. ~4.4!, for disk triplets in mutual contact.
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higher density to show closer agreement with the Kirkwo
superposition approximation, particularly in the metasta
overcompressed range.

V. DISCUSSION

Although the scaled particle theory offers an appeal
and useful approximation for the rigid disk fluid phase,6 it
suffers from an obvious shortcoming. Specifically it predic
a finite pressure at and somewhat beyond the close-pa
densityr0a251.1547..., only diverging at the geometrical
unattainable higher densityrSPTa

251.2732... . Furthermore
as Eq.~2.12! above reveals, the pressure divergence of
scaled particle theory is a second-order pole, whereas b
dimensional arguments stemming from the multidimensio
geometry of available configuration space require a simp
pole divergence,13

bpa25s/~12r/r0!1O~1!,
~5.1!

s54/31/252.3094... .

The Sanchez approximant~2.13! possesses a simple-pole d
vergence at a densityrSA only slightly less than that at crys
talline close packing,

rSA>1.146 197; ~5.2!

however the residue at this pole is rather large compare
the expected value shown in Eq.~5.1!,

~bpa2!SA>4.5822/~12r/rSA!1O~1!. ~5.3!

By adapting a previous analysis of the high-compress
limit 2 to the present self-consistent approximation, one fin
that the pressure divergence correctly occurs atr0 as a
simple pole, but with a somewhat magnified residue,

bpa251.5s/~12r/r0!1O~1!. ~5.4!

Evidently thef (3) approximation used in the present se
consistent theory implicitly inhibits crystal nucleation. Yet
permits the metastable fluid phase to approach arbitra
close to the crystalline close-packing densityr0a2, and in
that limit all nearest-neighbor disk triangles are forced in
compact equilateral form, just as in the perfect triangu
lattice. The apparent explanation is that the approximat
used effectively enforces a size limitation for local cryst
line arrangements of disks, but that this size increases c
tinuously to infinity asr approachesr0 . This constraint is
sufficient to inhibit a discrete freezing transition, but perm
the metastable fluid to transform continuously under co
pression ultimately to the well-ordered crystal.

The fact that approximation~3.3! for the basic quantity
f (3) constrains the system to remain in a single fluid phas
all possible densities raises some important issues for fu
consideration. One obviously is what modification of for
~3.3! would be required to describe the freezing transitio
and to reproduce the correct pole residue, Eq.~5.1!, for the
pressure of the ordered crystal. Another issue concerns
values that the present self-consistent approximation ass
to the disk model virial coefficients, and how they compa
with known exact values.7 It would also be useful to inves
tigate whether a straightforward extension of the present

,
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proach for the disk fluid could be constructed for more re
istic interactions, e.g., the Lennard-Jones pair potential.

The corresponding treatment for rigid spheres in th
dimensions would involve a distribution functionf (4) for
nearest-neighbor tetrahedra. As briefly discussed in our
lier paper2 the generalization is conceptually straightforwa
but technically difficult. Unlike the case of compact triangl
in the plane, compact tetrahedra alone cannot tile th
dimensional space. Nevertheless, adapting the presen
proach to the rigid sphere model would be a desirable
vance, particularly in connection with the continuing intere
in the definition and properties of irregular sphe
packings.14
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APPENDIX

Expressions for the excluded areaX and the boundary
lengthL of that area, for an arbitrary configurationr, s, t of
three nearest-neighbor disks, can be derived by straigh
ward means that need not be reproduced here. The form
the results depends upon which of the three disk pairs, if a
have radius-a circular caps that overlap outside the radiusR
circumscribed circle of disk centers. This overlap criteri
depends on comparison of each pair separationr, s, and t
with the following distance:

d~R!52aS 12
a2

4R2D 1/2

. ~A1!

Equation~3.1! provides the explicit form forR(r ,s,t)
The excluded area is found to be

X~r ,s,t !5pR21F~r ,R!1F~s,R!1F~ t,R!, ~A2!

where~asn[arc sin, acs[arc cos!,

F~u,R!5a2 asnS u

2aD1~a22R2!asnS u

2RD
1~uR/2!F S 12

u2

4R2D 1/2

1S a2

R22
u2

4R2D 1/2G ,
@a<u<d~R!#;
l-

e

r-

e-
ap-
d-
t

-

.
f

r-
of
y,

5a2 acsS a

2RD1~a22R2!acsS 12
a2

2R2D
1aRS 12

a2

4R2D 1/2

, @d~R!<u#. ~A3!

The corresponding expressions for the boundary area ar

L~r .s,t !52pR1G~r ,R!1G~s,R!1G~ t,R!, ~A4!

where

G~u,R!522R asnS u

2RD1~2a!acsF S 12
u2

4R2D 1/2

3S 12
u2

4a2D 1/2

2
u2

4aRG , @a<u<d~R!#;

5pa1~a22R!acsS 12
a2

4R2D , @d~R!<u#.

~A5!

As a result of the disk repulsions, the overlap regions
pairs of circular caps remain separate.
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