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Equation of state of the rigid disk fluid from its triangle distribution
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The distribution functiorf® for triplets of mutual nearest neighbors offers a description of local
order for many-particle systems confined to a plane. This paper proposes a self-consistent theory for
(3 in the case of the classical rigid disk model, using three basic identities for closure. Numerical
analysis of the resulting coupled nonlinear integral equations yields predictions for the pressure, the
boundary tension, and the Kirkwood superposition defect for three disks in mutual contact. The
approximation employed implicitly constrains the disk system to remain in the fluid phase at all
densities up to close packingd?=2/3"?). The pressure and boundary tension agree reasonably
well with the corresponding predictions of the two-dimensional scaled particle theory, but the
former agrees even better with a rational approximant due to Sanchez that reproduces eight virial
coefficients. ©2000 American Institute of Physids50021-96080)50346-9

I. INTRODUCTION results for this self-consistent theory appear in Sec. IV; these
) ) L include the pressure, the straight boundary line tension, and

The two-dimensional rigid disk system possesses valug,e Kirkwood superposition defect for disk triplets in mutual
as a model for planar-surface adsorption phenomena, whilgyniact. A concluding Sec. V discusses the results obtained

offering conceptual simplicity. But in spite of that simplicity 5 \vell as opportunities for extending the present approach.
it continues to provide substantial challenges to theory, par-

ticularly regarding its freezing behavior under lateral com-
pression. It has yet to be conclusively determined whether
that freezing transition is a simple first-order phase change iH- TRIANGLE DISTRIBUTION
the conventional large-system limit, whether a single higher-
order transition is involved, or whether an intervening areaA, Voronoi cells can be assigned to each disk by the

ht_axatlc phaseappears between the 'SOterIC fluid ‘and t.hecriterion that all its points lie closer to that disk’s center than
triangular crystal. Furthermore, the question of the posmblt{;

For any configuration oN disks in a planar region with

existence of a well-defined metastable extension for the flui
into the compressed density regime beyond freezing const
tutes another significant theoretical problem.

0 any other center. These Voronoi cells are convex polygons
hat tile the planar region. Any pair of disks whose respective
\_/oronoi cells share a commadiinear) boundary constitute a

nearest-neighbor pair by convention. The resulting network

The purpose of this presentation is to utilize the distri- . ; .
. ; . . . .. of nearest-neighbor pair bonds, the Delaunay tesselation,
bution function for nearest-neighbor triangles to investigate. ; . . ) X
iles the planar region with nearest-neighbor triangtéBig-

the fluid-phase equation of state and local order in the clas-

. . . . ~ure 1 illustrates the Voronoi—Delaunay construction.
sical rigid disk system. As will be seen below, this automati- — . .
: X . . Let p=N/A denote the disk number density. A nearest-
cally includes a metastable extension into the high-

) ; . 2 "neighbor triangle distribution functioff®) can be defined by
compression regime. The strategy follows a prior feaS|b|I|tythe requirement that
study? that developed earlier ideas advanced by Coflihs, q

and which indicated that given a suitable closure approxima- — ,3¢(3)(r, v, r,)dr,dr,dr, (2.2
tion, a self-consistent theory could be constructed for the
nearest-neighbor triangle distribution function. be the probability that differential area elemenits, drs,

Section Il defines the nearest-neighbor triangle distribuanddr 5 simultaneously contain the centers of three disks that
tion function, and reviews the identities it must satisfy, oneare mutual nearest neighbors. Assuming that periodic bound-
of which connects to the pressure equation of st@ection  ary conditions apply ta\, f®) must have translation invari-

[l introduces a generic form for the distribution that pro- ance. If the disk system is large and in a fluid phase, rotation
vides the basis for a self-consistent closed theory. Numericaind inversion symmetries must also applyf{®.2
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3/(7Tp3)=fdl’f dsJ dtrstf®(r,s,t). (2.9

For the special case of the rigid disk systefff) neces-
sarily vanishes if any one of s, tis less thara, the distance
of closest disk approach. From the geometry of disk exclu-
sion, any three disks that are sulfficiently close to one another
are necessarily nearest neighbors. In particular this is true at
mutual contact, with, s, andt all equal toa. As a resultf )
must equal the conventional triplet correlation functigh)
for this configuration,

f®(a,a,a)=9%(a,a,a). (2.9

The virial equation of state for virial pressypenvolves

g®(a), the contact pair correlation functin,
FIG. 1. The Voronoi—Delaunay construction in the plane. Particle center

positions have been indicated as small dark circles, their respective Voronoi ~ Bp=p+ (w/2)p2azg(2)(a), B=1/kgT. (2.10
cells have been outlined by dotted lines, and nearest-neighbor pairs have
been connected by solid lines. In analogy to Eq.(2.9 above, g®(a) is identical to

f()(a), the contact value of the nearest-neighbor pair distri-
bution function. Becausd(®(r) can be extracted from
f®)(r,s,t) by integrating over two triangle sides, it is pos-
sible to derive a third integral condition d%®), specifically
for the disk system, that relates it to the presgure,

Two obvious integral conditions must be obeyedf&})
for any two-dimensional many-particle system. The first is
that the number of nearest neighbor triangles is exadtly 2

1 [Bp 112
— 1= —1/2¢(3)
2N=(p3/3!)f drlf drzf drg . 22 %2\ ) 1) J de dtsfM(a,s,t)]" " (a,s,t).
_ _ (2.11
The second is that the sum of all triangle ardasust total o )
A2 For later use it is relevant to mention that closed-form
approximations are available for the disk fluid equation of
tate. One of the simplest of these emerges from the two-
A= (p¥/3! f d J d f dry A3, 23 A€ - i .
(p*/31) | dry | drz | drs 23 Gimensional version of the scaled-particle thebry,
The spatial integrqtions in these last two equations cover area  gpa?=pa?[1—(mwpa?/4)] 2. (2.12
A, and the denominator factors 3! compensate for overcount-
ing. A more complicated form due to Sanchea,ratio of poly-
On account of the Symmetries invo|ved, itis Convenientnomials in denSity that reprOduceS elght virial CoefﬂCientS,
to use triangle side lengthriss,t as spatial variables foit®). has the following form:
These lengths are subject to the triangle inequalities, an pa’=paZP(pa2)/Q(pa’); (2.13

only determine the shape of a triangle to within an inversio

operation. Taking these features into account, and making(x)=1+0.816 50&—0.294 1438°+0.146 136&>; (2.14
the replacemeft
Q(x)=1-0.754296—1.038 819>

drdr,dr;—8mArsM(r,s,t)]”Y’drdsdt, (2.9

+1.17052%3—0.308 969*. (2.15
where
M(r,s,t)=2(r?s’+r?t?+ %% —r*-s*—t* IIl. SELF-CONSISTENT APPROXIMATION

=(r+s+t)(—r+s+t)(r—s+t)(r+s—-t), (2.9 The radiusR of the circumscribed circle for a triangle

the transformed integrations become restricted to the regioWith sidesr,s,t possesses the following functional form:
M>0. Consequently Eq(2.2) yields the following condi- R(r,s,t)=rst{M(r,s,t)]~ 12 3.1)
tion: " T ' '

In order that three particle centers in such a triangular ar-
3/(27Tp2):f drf dsf dtrsM(r,s,t)]" Y2 @) (r s1). rangement be mutual nearest neighbors it is necessary and
sufficient that no other particle center lie within the triangle’s
(2.6 circumscribed circlé: This circumscribed circle forms only
Furthermore the expression for triangle area in termsf  part of the excluded zone for the rigid disk case however,
is simply since the disk repulsions themselves add three circular caps
_ 1 of radiusa centered at the three particles involved. The Ap-
A(rS,H=(L4IM(r.s,0] 27 pendix supplies an explicit form fof(r,s,t), the area of this
so that Eq(2.3) leads to the second condition, composite excluded region for any disk triplet of mutual
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nearest neighbors. The Appendix also provides an explicifABLE I. Dimensionless pressurgpa? for the self-consistent calculations

expression forL(r,s,t), the length of the boundary of based on Eq.3.3). For comparison, corresponding results are shown for the
P ( ) 9 y scaled particle theorySPT), Eq. (2.12, and for the Sanchez rational ap-

X(I‘,S,t). L . . 3) L proximant(SA), Eq. (2.13.
The distribution functionf® in principle can be ex-
pressed as a suitably normalized Boltzmann factor for the pa? Bpa® Bpa*(SPT) Bpa’(SA)
reversible workW that must be expended to create the ex-— 5, 0281 0281 0282
cluded regionX, 0.25 0.388 0.387 0.389
0.30 0.516 0.513 0.517
3 —
f3(r,s,t)=Cex — BW(r,s,1)]. 3.2 0.35 0.671 0.666 0.672
Following the strategy used to advantage by the scaled par- 8'3(5) 2'323 2'332 2'382
ticle theory® W will now be approximated as a sum of 0.50 1376 1356 1380
pressure-area work and line tension-boundary length work, 055 1.736 1.705 1.741
3 0.60 2.191 2.146 2.199
f*¥=Cexd —BpX(r,s,t)— ByL(r,s,1)]; 3.3 0.65 2.777 2.713 2.789
h is th iate line tension. Thi . 0.70 3.547 3.453 3.563
erey is the appropriate line tension. This expression con- 75 4569 4441 4599
tains three unknown scalarS, p, andy, which exact condi- 0.80 5.968 5791 6.024
tions (2.6), (2.8), and(2.11) are available to determine self- 0.85 7.932 7.692 8.052
consistently. Section IV presents the results of a numerical 0.90 10.781 10.473 11.074
nalvsi f th hr imultan in ral ions. 0.95 15.149 14.740 15.886
analysis of these three simultaneous integral equations 100 9o 237 o1 714 24,380

Our earlier feasibility studywas designed in part to 105 35.407 34156 42391
demonstrate that self-consistent solutions were indeed pos- o/3u2 +oo 133.219 —636.636
sible with this kind of statistical-geometric approach. That
work invoked a crude, minimal approximation in whi¢h
andL were replaced merely by the circumscribed circle area

and perimeter, respectively, an approach that is asymplot pinit 4 freezing transition, which a variety of computer

call)_/ correct in the Iow.densn)_/ limit. The r_n|n|mal approxi~ gimlations predicts to occur over the approximate density
mation appeared to yield unique numerical solutions thaFangeg

were qualitatively correct for the fluid phase over the entire
density range from dilute to crystalline close-packed, thereby ~ 0.88<pa®<0.91. 4.2

providing motivation for the more detailed and accuratery s all three pressure columns in Table | represent fluid

analysis of the present paper. phases with metastable extensions into the overcompressed
regime. Note that the results of the present approach lie be-
tween the predictions of the scaled particle theory and the

IV. NUMERICAL RESULTS Sanchez rational approximant, though significantly closer to
the latter than to the former over most of the density range.

The three simultaneous equations that result from substi-  Taple Il reports values obtained f@rya, the dimension-
tuting f®) approximation(3.3) into conditions(2.6), (2.8),

and (2.11) have been solved numerically using the
Levenberg—Marquardt algorithm implemented in a commer-

. . . TABLE Il. Numerically computed values of the line tensighya, along
cial software paCkag%'The density range considered was with the predictions of the rigid-disk scaled particle the@®@pT), Eq. (4.3).

0.20<pa’<1.05 4.2 o2 5ya 3ya(SPT)
(crystal close-packing occurs pa?=2/3"2=1.1547.). The 0.20 0024 0,022
form (3.3) assumed forf ) becomes asymptotically correct 0.25 —-0.034 —0.038
in the low density limit, wherg3y vanishes, angBp obeys 0.30 —0.053 —0.060
the ideal gas laf.Consequently, extending the lower limit 0.35 —0.081 —0.001
in Eq. (4.1 closer to zero had no intrinsic interest. Also, 8'32 :8'152 :g'igg
calculations beyond the upper density limit shown ran the 0.50 _0.246 0.266
risk of accumulating substantial errors due to the large mag- 0.55 —~0.346 —0.368
nitudes and the rapid spatial variations of the various quan- 0.60 —0.483 —0.506
tities involved. Only a single solution emerged over the den- 0.65 —0.674 —0.692
sity range investigated; a systematic search failed to uncover 8';(5) :(1)'2‘21‘31 :2'232
an alternate branch that could be identified as belonging to a 0.80 1878 _1819
crystalline phase. 0.85 -2.701 —2.568

Table | shows values of the dimensionless pressure 0.90 —3.960 —3.702
Bpa? that emerge from the numerical analysis. Correspond- 0.95 —5.973 —5.499
ing results from the scaled particle theory, £8.12, and i'gg :lg'ggi :13'(5)21
from the Sanchez rational approximant, E2,13), have also o/3l2 e 60408

been included in Table I for comparison. None of the three
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higher density to show closer agreement with the Kirkwood
1 superposition approximation, particularly in the metastable
_ overcompressed range.
1.0 Numerical
\\ Results
09 - V. DISCUSSION
3 08 L Although the scaled particle theory offers an appealing
© . . - . . .
vl and useful approximation for the rigid disk fluid ph&si,
07 suffers from an obvious shortcoming. Specifically it predicts
a finite pressure at and somewhat beyond the close-packed
0.6 |- a densitypoa®=1.1547..., only diverging at the geometrically
EQ.(4.7) pac(f(siﬁg unattainable higher densipspta’=1.2732.... Furthermore,
05 |- l as Eq.(2.12 above reveals, the pressure divergence of the
' ' ‘ ! ’ ‘ scaled particle theory is a second-order pole, whereas basic
00 02 04 06 08 10 12 ) ; . - .
oa? dimensional arguments stemming from the multidimensional

geometry of available configuration space require a simple-
FIG. 2. Calculated values of the Kirkwood superposition defect function,pole divergencé?
Eq. (4.4), for disk triplets in mutual contact. s

Bpa“=al(1—plpg)+0O(1),

o=4/32=2.3094....
less line tension. Scaled partiCle theory for rlgld disks alSO'rhe Sanchez approximam‘la possesses a Simp|e-p0|e di-

(5.9

provides an explicit prediction for this quanty, vergence at a densifys, only slightly less than that at crys-
2 mpa?ld \? talline close packing,
Bra=- ;( R (4.3 pep=1.146 197; (5.2

That both approaches yield negative resultsgem implies ~ however the residue at thi; pole is rather large compared to
that disks in the fluid phase tend to cluster at a rigid boundthe expected value shown in E.1),
ary, specmcally_ that o‘f‘ Ier!gtr],L(r,s,t) surrounding (Bpa®)sy=4.5822(1— p/pep) +O(1). (5.3
X(r,s,t), suggesting that “tension” would more accurately _ _ . _ _
be termed “elongation tendency” in the present context. BY adapting a previous analysis of the high-compression
The Kirkwood superposition approximatirt applied limit? to the present self-consistent approximation, one finds
at the particle triplet level assumes thgif)(r,s,t) can be that the pressure divergence correctly occursp@tas a
replaced by the product of the three pair correlation function$imple pole, but with a somewhat magnified residue,

g, i.e., it supposes that the ratio Bpa®=1.50/(1—plpg) +O(1). (5.9

K(r,s,)=g®(r,s,)/g?(r)g?(s)g?(t) (4.9 Evidently thef®) approximation used in the present self-
is identically unity. In fact, a Mayer cluster expansion re- consistent theory implicitly inhibits crystal nucleation. Yet it
veals that this Kirkwood superposition defect functionle- ~ Permits the metastable fluid phase to approach arbitrarily

viates from unity in the low density regime by #(p) closel tq the crystalllne.close-p:?\ckln'g densipa“, and in
correctiont2 that limit all nearest-neighbor disk triangles are forced into

compact equilateral form, just as in the perfect triangular
lattice. The apparent explanation is that the approximation
used effectively enforces a size limitation for local crystal-
+0(p?) 4.5 Iine arranger_ne_nt.s of disks, but that this gize incregses con-
' ' tinuously to infinity asp approacheg,. This constraint is
where sufficient to inhibit a discrete freezing transition, but permits
_ the metastable fluid to transform continuously under com-
fu(rip)=exd = u(r;))]—1 (4.6 pression ultimately to the well-ordered crystal.
is the Mayer function for pair potential. Equations(2.9) The fact that approximatiofB8.3) for the basic quantity
and (2.10 above show that the Kirkwood superposition de-f(®) constrains the system to remain in a single fluid phase at
fect for three disks in mutual contad{(a,a,a), can be ex- all possible densities raises some important issues for future
tracted as a natural by-product of the numerical study. Figureonsideration. One obviously is what modification of form
2 shows a plot of this quantity over the density rarigel). (3.3) would be required to describe the freezing transition,
This Fig. 2 also includes the low-density linear estimate fromand to reproduce the correct pole residue, &ql), for the
Eqg. (4.5, pressure of the ordered crystal. Another issue concerns the
_ 2 2 values that the present self-consistent approximation assigns
K(a,a,2)=1-0.704%a"+0(p). (4.7 to the disk model virial coefficients, and how they compare
The graph shows that the predicté@a,a,a) passes through with known exact value§.t would also be useful to inves-
a minimum less than unity whepa®=0.77, but rises at tigate whether a straightforward extension of the present ap-

K(r121r137r23):1+pJ' drafm(ria) fm(rag) fu(rss)



10190  J. Chem. Phys., Vol. 113, No. 22, 8 December 2000 Stillinger et al.

proach for the disk fluid could be constructed for more real- a

istic interactions, e.g., the Lennard-Jones pair potential. =a’ aCf(ﬁ
The corresponding treatment for rigid spheres in three

dimensions would involve a distribution functio*) for

nearest-neighbor tetrahedra. As briefly discussed in our ear-

lier papef the generalization is conceptually straightforward

but technically difficult. Unlike the case of compact t_riangles.l.he corresponding expressions for the boundary area are

in the plane, compact tetrahedra alone cannot tile three-

dimensional space. Nevertheless, adapting the present ap-

proach to the rigid sphere model would be a desirable ad- L(7-S:t)=27R+G(r,R)+G(s,R)+G(t,R), (A4)

vance, particularly in connection with the continuing interest

in the definition and properties of irregular spherewhere

packings:*

2

+(a®—R?)acg 1— 2
2R?
a2

4R?

1/2

+aR|1— . [d(R)=<u]. (A3)

2\ 12
u
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the results depends upon which of the three disk pairs, if any,
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