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Inherent structures enumeration for low-density materials
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This paper examines the enumeration of potential energy mitiitharent structuredor attracting particles
at number densities beloyy, the “shredding point” for amorphous deposits. In this low density regime,
typical inherent structures are spatially nonuniform, consisting of dense regions penetrated by irregular void
space. Two distinct arguments are advanced concluding independently that in this regime the(hy(Nbe)
of distinguishable inherent structures féiparticles in volume/ has an exponential rise rate with a(p), that
diverges ap—0. A third argument examines the infinite volume limit and concludes that the asymhitotic
dependence of 1€2,(N,~) is dominated by a term proportional bIn N.
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I. INTRODUCTION InQ1(N,V)~a(p)N,
Rarified, or expanded, solids arise from a wide variety of a>0.

processes. They involve diverse substances, and they have
significant scientific, technological, and commercial applica-The N! factor is the trivial contribution from particle permu-
tions. Well-known examples include low density silica aero-tations that convert any inherent structure ibtb— 1 others
gels[1], polymer foamge.g., styrofoam[2], and radiation-  of identical geometric character. The nontrivial quanfity
damage-expanded and spongy mefdk Even the room- asymptotically displays a simple exponential rise wittior
temperature gases nitrogen and krypton can be deposited & number of geometrically distinguishable inherent struc-
mesoporous solids on low-temperature substrigtesNeed- tures. The exponential rise rateis substance specific, and
less to say, in each of these cases attractive bonding interaits indicated density dependence in the low density regime is
tions at the atomic or molecular length scale provide theone of the subjects of the present investigation.
mechanical stability that is observed macroscopically. Computer-based analyses of the density dependence of
The objective of the present paper is to contribute at leashherent structures for fluids that have been generated by
some qualitative insight into a difficult underlying statistical steepest descent on tdehypersurface from fluid phases in
enumeration problem for low density matter. Specificallyequilibrium have uncovered a common behavior. This is il-
this concerns the counting of the distinguishable “inherentiustrated schematically in Fig. 1, which plots inherent struc-
structures” (i.e., mechanically stable arrangemenfsr a  ture pressure versus density. These analyses have included
given system ofN atoms or molecules in a large volurile  the Lennard-Jones single component sysf8inthe SPC/E
These inherent structures are the minima of the potential ennodel for water[9], a fused salf10], and a set of low-
ergy function®(r4---ry) that describes interactions among molecular-weight hydrocarborj41]. Above a characteristic
the N particles at positions,---ry [5]. Inherent structures number density the inherent structures are spatially homo-
and their basins of attractiofdefined by steepest descent geneous, while belowg they exhibit fractures, voids, or
mapping afford a useful descriptive framework for analyz- pores that can be geometrically irregular, and that grow in
ing a wide range of condensed-matter chemical and physicaglative extent ap declines. The distinguished poing, ps in
properties[6]. Prior work has concentrated mostly on sys-Fig. 1 represents the state of maximum tension that can be
tems at high density; the present analysis extends the rangeistained by amorphous inherent structures before they shred
of applicability to low density in a sense to be explainedinto a mechanically weaker spongy medium. In all cases thus
below. far studied, starting from a fluid state at high enough tem-
For present purposes the constituent particles will be asperature to be in a single phase, is less than the triple-
sumed to be spherical, structureless, and all of one specigsoint density, andp| is 10" to 10° times the critical pres-
This produces an obvious economy of notation and explanasure[11,12.
tion. However, the reader should bear in mind that generali- The analysis below concerns only thesp<p, regime,
zation to molecules with internal degrees of freedom, ango that the inherent structures encompass substantial void
their mixtures, is straightforward. regions. The focus lies in unweighted enumeration of all in-
A previous investigatior{7] has demonstrated that the herent structures, which therefore is dominated by those un-
total number of inherent structur€yN, V) under conditions  derlying the high temperature fluid at the chosen density.
of constant positive number densjiy=N/V has the follow-  Section Il presents the first of two argumertteither of
ing asymptotic behavior in the large system limit: which pretends to be rigoropthat concludex must diverge
as p approaches 0. This first argument is based on an ap-
proximate assignment of the intrabasin motion freedom of
Q(N,V)=N!Q,(N,V), (1.2 particles in the heterogeneous inherent structures. The sec-
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P4 Considering the fact that the overwhelming majority of the
inherent structures gbs are amorphous and spatially uni-
form, it is reasonable to expect théy is comparable to the
nearest neighbor separation.

The next step is to consider the effect of reducing the
Compressed number density to some positive fraction of pg:
0 ‘ P=Xps,
Ps p (2.3
0<x<1,
Stretched o
so that typical inherent structures become “shredded” as
N described above. The mean basin content can continue to be
Ps described by an effective lengtti(x) for all coordinates,
Inhomogeneous l Homogeneous required to satisfy the extension of HQ.2) above:
FIG. 1. Schematic plot of isotropic pressifee tension vs num- a(xpg)=In| —z—/,
ber density for inherent structures obtained by constant-volume Xpsd*(x)
steepest descent mapping on the potential energy hypersurface. The (2.9
point ps, ps represents the maximum mechanical strength of amor- d(1)=ds.

phous structures; at lowerthe structures contain irregular pores or
fractures, and can only sustain less tension as a result. A similafhe behavior ofd(x) over thex interval (2.3) must reflect
curve, also with a minimum, describes the mean binding energy ofhe presence of void space in the inherent structures, with
the inherent structures. corresponding consequences &dp).

For purposes of helpful context, recall the artificial case

ond argument, Sec. IIl, implements a sequential enforcemeri@" Which the system’s potential energy functidncontains

scheme to ensure that inherent structures possess the prog&fy repelling inverse-power pair interactions, but no attrac-
backbone connectivity that must be obtained in the presendéns, and so is immune to shredding of its inherent struc-

of attractive interparticle forces. tures. Elementary scaling argumefit$ establish thatr must
Section IV examines the companion case of filitenu- stnctl_y be independent g, and hence independent xfso
meration of inherent structures in infinite spadé—§=).  for this case

Having established in Secs. Il and Il thatdiverges atp
=0, it is clear that the number of distinguishable inherent

structures must rise faster witt than as a smple EXponen- Thjg simple result reflects the uniform dilation of every in-
tial. Section IV presents an argument to this effect, @ muclygrany structure with increasing linear dimension of the

crudgr version of which has appeared eafigr Section V' volumeV container. Of course this case presents no pressure
considers the crossover behavior between the small-positives: i-mum as shown in Fig. 1, for which attractive interac-

density, and the zero-density, regimes. Section V also COMions are decisive

clu_des the paper with some di;cus_sion, including various An opposing extreme behavior fat(x) hypothetically
points that deserve further examination. might emerge in the presence of attractive interactions. In
this scenario the entire excess volume generated by reducing
Il. LOW POSITIVE DENSITY, FIRST ARGUMENT x below unity appears as a single, simply connected, macro-
scopic void. In the large-system limit of interest, only a neg-
Suppose that the quantity appearing in Eq(1.1) is ligible fraction of theN particles would reside at the surface
known for the number densiy,>0 that has been identified of this void. The remaining majority would occur locally in
in Fig. 1. The mean basin content at this density in the syshigh-density neighborhoods just asmt, and so their free-
tem’s 3N-dimensional configuration space can be expressedom for intrabasin displacement as measured () would
in terms of an effective lengttls applicable to each coordi- be substantially unchanged froxs=1:
nate, i.e., agl.®™. The content of the entire configuration

d(x)=x"3d(1) (inverse power repulsion (2.5

space isvN, so thatd, is determined by d(x)=x%(1) (single macroscopic vojd (2.6)
Simulation-based observations of void-containing, low-
N_ 4 3N ,
VE=d N expla(ps)N], (2.3) density inherent structurg8—12] indicate that the actual

behavior may lie somewhere between extreni2$) and
or equivalently, using Stirling’s formula, (2.6). The void space typically appears as a tortuous laby-
rinth, distributed throughout the entire system, with only a
microscopic persistence length at any givel8]. However,
e X . X .
a(pg)= In(—3> i (2.2  the persistence length and fraction of particles at the compli-
sds cated void surface are expected to grow monotonically as
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declines. Consequently a reductionxishould permit larger p=N/Muvy,

intrabasin displacements, and so it becomes reasonable to (3.2)
interpolate Eqs(2.5 and(2.6) with the following represen- M>N.

tation:

- It may be useful to consider briefly a specific illustrative
d(x)=x"9d(1), example. A realistic macroscopic material sample might con-

(2.7 tain about one mole of particles, so choose
0=qg<1/3.

—n79

The lower limit O for exponent] should be interpreted to N=2
include the possibility of a logarithmic divergence. =6.04x 107 (3.3

Upon inserting Eq(2.7) into Eq. (2.4) one obtains
a(Xps)=a(ps)+ (39— 1)Inx+O(x). (2.9 =Nao
Dispersing this number of particles over the substantially
larger number of cell$! = 287 produces a gas expanded into
a volume #=256 times as large as that required for close
packing.

Returning to the general case, the total number of distin-
ll. LOW POSITIVE DENSITY, SECOND ARGUMENT guishable arrangementy, of empty and filled cells regard-

The volume-spanning porous inherent structures disless of connectivity is given by the elementary combinatorial

cussed above fop<pgs are topologically connected by expression
nearest-neighbor-particle attractive contacts. Indeed without

The coefficient of the negative quantityAns itself negative.
The conclusion is thad(p) must diverge logarithmically gs
approaches 0.

such connecting contacts mechanical stability of the inherent InQy=In L}

structures could not be obtained. This property would appear NI (M —N)!

even if the starting configuration for the steepest descent M M M—N M—N
mapping to an inherent structure were that of a dilute gas. In = N[ _> In _> _< )m( ) (3.9
that case, early stages of the mapping would successively N/ N N N

draw close pairs, triplets, quadruplets. , into contact, thus . - . . .
P P d e JHsing Stirling’s asymptotic formula. In view of strong in-

producing an increase in mean cluster size. But the end res litv(3.2) Tavior ion th h leadi der si
cannot be two or more disconnected particle subsets. Rea”g_qualy( -2), Taylor's expansion through leading order sim-

tic interactions always include attractive forces operating aPI'f'es (34 to
arbitrary distance, however weakly. These attractions inevi-
tably would bring disconnected subsets together to produce a InQy=N
connected whole, leaving much of the system volume va-
cant. The entire aggregation process, driven b_y the steepest In the present coarse-grained context, connectivity will be
descent mapping by construction, proceeds without anneal- . : .
) : interpreted in terms of face-sharing between pairs of occu-
ing, so the expected outcome virtually always should be an. ; :
) pied neighbor cells. Overall, at least one uninterrupted path
irregular, poorly packed, porous structure. . ) i
The emphasis of this second arqument is how the conneé)f such contacts must exist between each pair of occupied
. ph i g ; Cells within a connected system configuratigimherent
tivity constraint on the final aggregate influences the enu- . X .
; o structure. Edge and vertex sharing will not be considered as
meration of low-density inherent structures. In order to ex- o S
. . . ontributing to the connectivity. Although the full set of sys-
amine the effect of overall connectivity at a coarse-graine , : :
L : . : . em configurations counted By, contains connected con-
level, it is useful to introduce a simple cubic lattice of .. ; :
. figurations, these are but a small fraction of the total. A pro-
molecular-scale cells, each of which has a volumethat . . - . L
- : . . . __cedure is required to eliminate the disconnected majority.
can be empty or filled by a single particle. This cell-lattice ., . = ". X .
This will be accomplished, at least approximately, by sys-

description of connected inherent structures is crude; it o Fematically applying a set of attrition factors €.

viously suppresses fine details of local particle arrangements On account of the choice ofl, Eq. (3.1), the entire cubic

in favor of the global connectivity attribute. But since the I be divided i ' ?c e | alt .
qualitative character of the low-densityfp) behavior should ;:neto errr:y Scirf] nc?nol\\//(lerl?a l?nanlgroersi\lljir:s aegéﬂaclgﬁt:iﬁ% s
be correctly conveyed, a more fine-grained descriptiorb3j cellsythe number ofF\)/t)high isgﬁ“‘” whére O<j<m 9

should not be required for the present analysis. For the specific illustrative example cited above, a relativel
An inessential but expedient simplification will be to sup- P P ’ y

pose that the cells are arranged in a macroscopic clbe Zd”me systemj W.OU|d span ‘h? range<0j <87/3=29. Th's. :
cells on a side. The total number of cells is procedure permits a sequential enforcement of connectivity

among these sets of larger cubes, starting With0 and
M =23m (3.1)  ascending to its upper limih. At each intermediate stage
one will suppose that the328 (j—1)-level groupings,
which will substantially exceedll in the low-density regime which will compose the next-larger cubic grouping, inter-
of interest: nally and individually possess occupation configurations that

In

. (3.5

M+l
N
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VALID part of a larger connected cluster through external contacts.
None of the three “invalid” examples in the figure possess
this possibility, and so must suffer attrition.

It is reasonable to invoke a “mean field” approximation
to estimate the higher-level attrition factots in Eq. (3.6).
For eachj>1 it is required that the newly considered cell
contacts involve occupancy states that are consistent with the
connectivity constraint. The number of cell-pair contacts
brought into play upon assembling?%S (j—1)-level
groupings into g-level grouping is 3 22. The logarithm of
attrition factorA; should be proportional to this number, but
also to the low number density under consideration, to ac-
count for filled interfacial cells needing connection to a large
cluster at this next higher level, but failing to find it. There-

FIG. 2. Typical configurations at the=2 level (in two dimen-  fore set
siong, composed of valig =1 subsetgsolid outlines, considered _
during the enforcement of connectivity constraints in Sec. IlI. Filled InAj=-3C(pvg)x2% (j>1), 3.7
cells are gray, empty cells are white. Those patterns labeled . . "
“valid” have no necessary disconnections when embedded in th&vhereC is an appropriate positive constant.
full system, while those labeled “invalid” do. Isolated filled cellsat  Taking logarithms in Eq(3.6) and substituting from Egs.
an outer boundary can connect to surrounding portions of the full{3.5 and(3.7), one finds
system connected configuration.
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are consistent with overall system connectivity. The objec- a(p)==In(pvo) +1 BCEZ 20 (38

tive then is to assign an attrition factdy; to eachj-level
cube expressing the chance that random assembly of thog®r the large system limit of interesty approaches infinity;
eight smaller cubic groupings, when brought together toeven for the illustrative example cited aboMeg. (3.3 and
form a larger cube, continue to be consistent with overalthe following], m could have reasonably been taken to infin-
system connectivity. That they might fail this requirementity because of rapidity of convergence of the sum in Eg.
would stem from absence of necessary connecting particle3.8). In either event Eq(3.8) is equivalent to

bridges across faces brought into contact.

Because th¢-level cubes by construction do not overlap, a(p)=—In(pvo)+1-3C/2. 3.9
their attrition factorsA; are independent of one another. Af-
ter accounting for these factors and for the numbers of cubi
groupings at each levglthe final tally of properly connected
configurations takes the form

Just as was the conclusion for €8.8) of Sec. Il, the impli-
cation again is that(p) diverges logarithmically in the low
density limit. It should be noted in passing that if both Egs.
(2.8) and(3.9) were qualitatively accurate descriptions of the

m , low density enumeration problem, then consistency would
exd a(p)N+0(1)]=0Q,[] (Aj)23‘m’”_ (3.6)  require the following pair of approximate identifications:
j=o0
g=0 (3.10

Inclusion of the upper limi =m in this expression corre-
sponds to imposition of periodic boundary conditions. Thisand
use of multiple length scales to analyze a statistical mechani-
cal problem is similar to that introduced by the “renormal-

ization group” approach to critical phenomefs, 14. However both lines of argument admittedly are relatively
the that at the single-cell levgk 0, both th_e empty and crude, so Eqs3.10 and(3.11 can only be viewed as rough

the filled states are acceptable, so no attrition occurs. Thgstimates so far as numerical coefficients are concerned. One

next level j=1, comprising eight contiguous cells in a might note in passing that E¢3.10) is nominally consistent

2X2X2 arrangement, presents several distinct possibilitiegjth the logarithmic interpretation mentioned in connection
for cell filling, but again none manifestly violate connectivity \yith Eq. (2.7 of Sec. II.

at this level. Consequentlx,=A;=1. The following level
j=2 however presents 44X 4 arrangements of 64 cells
that can either be compatible, or incompatible, with connec-
tivity, so that 0<A,<1. Figure 2 illustrates the kinds of Enumerating distinguishable inherent structures for a fi-
possibilities that arise, using the simpler two-dimensionahite number of attracting particles in unbounded space con-
version for ease of visualization, where gray and white, restitutes a related, but logically independent, problem to that
spectively, identify filled and empty cells. Although the first just considered. The qualitatively consistent res(#@t8) and

two “valid” examples in the figure are not internally con- (3.9 imply that the unbounded-space number must rise
nected through shared faces of occupied cells, they could bfaster than as a simple exponential functior\ofHowever,

a(ps)=—In(psvg) +1—3C/2. (3.11

IV. FINITE N, INFINITE V
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it is not possible without further analysis to infer what the INQ(N,%)=In[(N)1""]+O(N). (4.5
corresponding rise rate should be. An argument will now be
presented to resolve this question. It modifies, extends, anthe sign of the real integration constdntemains undeter-
strengthens a nee version that has been published previ-mined by the present analysis. In any event @) verifies
ously [7]. that the infinite-space enumeration rises faster Withan as
The experimental observation of many kinds of rarifieda simple exponential, and so is consistent with conclusions
solids as mentioned in the opening paragraph suggests thagached in Secs. Il and Il above.
when sufficient space is present to allow it, attractive inter-
particle interactions tend to lead to tenuous inherent struc-
tures that are mostly empty space. This view is strengthened
by calculations with simple model interactions that demon- The qualitative conclusion, jointly reached in Secs. Il and
strate the existence of vividly noncompact, but mechanicallyill, that inherent structures tend to be more numerous at low
stable, structureg8—12]. WhenN particles aggregate during density than at high density, has precedents in the published
steepest-descent mapping from random and dispersed initiiderature. A special one-dimensional model solved exactly
positions without the interference of finite boundaries, it isby Haner and Schilling17] indeed shows just this property.
reasonable to expect the typical result to resemble the fract®urthermore, the Gaussian core model in three dimensions
structures generated by diffusion-limited aggregation propossesses an exact convolution property that forces a decline
cessegDLA) [15,1€6. Because so much empty space per-in the number of inherent structures as the system is com-
vades the expected fractal patterns, one is led to anticipatepressed 18]. Finally, volume dependence of inherent struc-
far greater set of distinguishable restructuring possibilities irture appearances and disappearances has been monitored by
comparison with the high density situation. Malandro and Lacks for a Lennard-Jones-type system, with
Imagine assembling in unbounded space khparticle  results that exhibit the same trefitB]. The reader should be
inherent structures one particle at a time. At some intermeaware, however, that each of these three cases did not in-
diate stage £ N’'<N, the number of distinct inherent struc- volve void-containing configurations of the type considered
tures is given by2;(N’,%), the majority of which are open in the present paper. Nevertheless, it is worth noting that the
and geometrically irregular. Addition of the next particle trend toward larger numbers of inherent structures as density
could occur anywhere along the contorted surface of theleclines arises even in spatially uniform particle media.
N’-particle cluster. In view of the fractal character expected A crossover range can be identified between the low-
for the latter, this implies that the number of distinct sites forpositive-density regime examined in Secs. Il and I, and the

V. DISCUSSION

addition of particleN’ +1 should scale withtN'" asK(N')", infinite-volume, finiteN regime of Sec. IV. The middle of
whereK>0. Here exponent is related to the fractal dimen- this crossover range is located formally by equatir(@)N
sion involved, and should be subject to the limits from the leading two terms of E¢3.9), to the leading two
terms of InQ); in Eq. (4.4). Let N* andV* stand for arN,V
2/3<r=1, (4.1)  pair satisfying this equality. One finds
thereby interpolating between compd@3) and fully ex- N* = e(V*/Kpg) Y+, (5.1)

tended(1) forms. Consequently one expects

QN +12)=K(N')' Q (N’ ). 4.2 and from Eq.(4.1

This relation asserts that each addition has a nonzero chance 12<1(1+r)<3/5. (5.2)

of spawning a new family tree of larger inherent structuresC N nilv. av* incr toward infinity in this cross-
while still acknowledging that distinct ancestral roots could 0 setqltje yi a q d‘s;eabs?l, owa il TZ' f ts cro
converge to a common inherent structure. The validity of Eq_over staté so 100 do€s”, but [ess rapidly. This feature Is a

(4.4) should not be undermined by the fact that each additiofFonsequence of the tenuous fractal nature of the dominating

of an attracting particle will produce small local elastic de_lnh_?kr]ent_ s,ft.rqtcturels that are mvolt\_/ed. ¢ inherent structur
formations of the prior structure. e infinite-volume enumeration o erent structures

Because interest centers on the laNjy@symptotic re- examined in Sec. IV roughly resembles the enumeration

gime, it is appropriate to take logarithms in 4.4, and to problems for certain _families of chemi_cal co_mpounds. A
treatN’ as a continuous variable. Therefore ' well-known example involves the acyclic family of paraf-

finic hydrocarbongalkaneg with the generic chemical for-

dInQ,(N’,%)/dN’=r InN’ +InK (4.3 mula GH,,,,. The number of structural isomers without
’ regard to the presence of chiral carbon centers was enumer-

and integrating with respect f8' yields the result ated ton=40 many years ago by Henze and BIg20]. For
the present context, the more relevant case involves chiral
INQ1(N,e)=rNInN+(InK—r)N+L, (4.4 distinctions. These were considered subsequently in a review

by Read[21], with numerical results through=25. Let
wherelL is the integration constant. Thus the full enumera-l(n) stand for the number of chirality-distinguished isomers
tion of inherent structures, including permutations and parwith n carbon atoms. The three highest-order resufis (
ticle symmetries, involves a power bl that exceeds unity: =23, 24, and 2bfrom Ref.[21] fit the following form:
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Inl(n)=Aninn+Bn+C,
with
A=0.1033,
B=0.6549,

C=—-4.2525,

PHYSICAL REVIEW E63 011110

(5.3  validity of the conclusion of Sec. IV, E¢4.4), by computer-
implemented direct enumeration of connected clusters on a
regular lattice. The simple cubic lattice invoked in Sec. Il
for the fixed volume case would again be appropriate. Full
enumeration of connected clusters up to an omderl5
[with fitting to an expression of typel.4)] seems nominally

(5.4 attainable, though not a trivial task.

One might question whether the free-space count

Q(N,2) of all inherent structures could rise even faster with
N than just as a positive power b, say roughly as expf)

which also well approximates results for ai-10. ThatAis  wijth s>1. While this possibility cannot yet be rigorously

positive is not too surprising, because the dominant molecugiscounted, it seems to lead to an uncomfortable conclusion:
lar form expected for larga is highly branched and tenuous, |arge fractal inherent structures could be interconverted in
just as anticipated in Sec. IV for infinite-volume inherent many independent ways by arbitrarily small distortions. Fur-

structures in systems & attracting particles.

ther study of this aspect of the enumeration problem is

It should be feasible to check at least partially on theclearly warranted.

[1] J. Fricke, Sci. Am258 92 (1988.

[10] R. A. LaViolette, J. L. Budzien, and F. H. Stillinger, J. Chem.

[2] J. A. Brydson,Plastics Materials 5th ed.(Butterworths, Lon- Phys.112 8072(2000.

don, 1989, pp. 426-430.

[11] M. Utz, P. G. Debenedetti, and F. H. Stillingempublishegl

[3] Radiation Effects Metallurgical Society Conferences, edited [12] P. G. Debenedetti, F. H. Stillinger, T. M. Truskett, and C. J.
by W. F. Sheely(Gordon and Breach, New York, 196%o0l. Roberts, J. Phys. Chem. B3 7390(1999.
37; T. A. Engh,Principals of Metal RefiningOxford Univer-  [13] L. p. Kadanoff, Physic§Long Island City, N.Y) 2, 263

sity Press, Oxford, 1992p. 154.

[4] V. Kiryukhin, B. Keimer, R. E. Boltnev, V. V. Khmelenko,
and E. B. Gordon, Phys. Rev. Left9, 1774(1997).

[5] F. H. Stillinger and T. A. Weber, Phys. Rev. 28, 2408
(1983; F. Sciortino, W. Kob, and P. Tartaglia, Phys. Rev.

Lett. 83, 3214(1999.

[6] F. H. Stillinger and T. A. Weber, J. Chem. Phy&l, 5095
(1984); Phys. Rev. B31, 5262(1985; J. Phys. Chend1, 4899

(1966.

[14] M. E. Fisher, Rev. Mod. Phyg.0, 653(1998.

[15] T. A. Witten and L. M. Sander, Phys. Rev. Lett7, 1400
(198)).

[16] P. Meakin, inPhase Transitions and Critical Phenomereal-
ited by C. Domb and J. L. Lebowit¢ZAcademic, New York,
1988, Vol. 12.

(1987: L. J. Root, J. Chem. Phy83, 4364(1990; H. Tanaka 17| P- Haner and R. Schilling, Europhys. Lef.129 (1989).
and K. Nakanishiibid. 95, 3719(1991): F. L. Somer, Jr., G. S. [18] F. H. Stillinger and D. K. Stillinger, Physica R44, 358
Canright, T. Kaplan, K. Chen, and M. Mosteller, Phys. Rev. (1997.

Lett. 79, 3431(1997); D. J. Wales and H. A. Scheraga, Science [19] D. L. Malandro and D. J. Lacks, J. Chem. Phy€7, 5804

285, 2210(1999.

[7] F. H. Stillinger, Phys. Rev. B9, 48 (1999.

(1997.
[20] H. R. Henze and C. M. Blair, J. Am. Chem. Sd&3, 3077

[8] S. Sastry, P. G. Debenedetti, and F. H. Stillinger, Phys. Rev. E  (193D.

56, 5533(1997).

[21] R. C. Read, irChemical Applications of Graph Thegrgdited

[9] C. J. Roberts, P. G. Debenedetti, and F. H. Stillinger, J. Phys. by A. T. Balaban(Academic, New York, 1976 Chap. 4, pp.

Chem. B103 10 258(1999.

44-45, Table 1.

011110-6



