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Inherent structures enumeration for low-density materials

Frank H. Stillinger
Bell Laboratories, Lucent Technologies, Inc., Murray Hill, New Jersey 07974

and Princeton Materials Institute, Princeton University, Princeton, New Jersey 08544
~Received 14 July 2000; published 27 December 2000!

This paper examines the enumeration of potential energy minima~inherent structures! for attracting particles
at number densities belowrs , the ‘‘shredding point’’ for amorphous deposits. In this low density regime,
typical inherent structures are spatially nonuniform, consisting of dense regions penetrated by irregular void
space. Two distinct arguments are advanced concluding independently that in this regime the numberV1(N,V)
of distinguishable inherent structures forN particles in volumeV has an exponential rise rate withN, a~r!, that
diverges asr→0. A third argument examines the infinite volume limit and concludes that the asymptoticN
dependence of lnV1(N,`) is dominated by a term proportional toN ln N.
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I. INTRODUCTION

Rarified, or expanded, solids arise from a wide variety
processes. They involve diverse substances, and they
significant scientific, technological, and commercial appli
tions. Well-known examples include low density silica ae
gels @1#, polymer foams~e.g., styrofoam! @2#, and radiation-
damage-expanded and spongy metals@3#. Even the room-
temperature gases nitrogen and krypton can be deposite
mesoporous solids on low-temperature substrates@4#. Need-
less to say, in each of these cases attractive bonding inte
tions at the atomic or molecular length scale provide
mechanical stability that is observed macroscopically.

The objective of the present paper is to contribute at le
some qualitative insight into a difficult underlying statistic
enumeration problem for low density matter. Specifica
this concerns the counting of the distinguishable ‘‘inher
structures’’ ~i.e., mechanically stable arrangements! for a
given system ofN atoms or molecules in a large volumeV.
These inherent structures are the minima of the potential
ergy functionF(r1¯rN) that describes interactions amon
the N particles at positionsr1¯rN @5#. Inherent structures
and their basins of attraction~defined by steepest desce
mapping! afford a useful descriptive framework for analy
ing a wide range of condensed-matter chemical and phys
properties@6#. Prior work has concentrated mostly on sy
tems at high density; the present analysis extends the r
of applicability to low density in a sense to be explain
below.

For present purposes the constituent particles will be
sumed to be spherical, structureless, and all of one spe
This produces an obvious economy of notation and expla
tion. However, the reader should bear in mind that gener
zation to molecules with internal degrees of freedom, a
their mixtures, is straightforward.

A previous investigation@7# has demonstrated that th
total number of inherent structuresV(N,V) under conditions
of constant positive number densityr5N/V has the follow-
ing asymptotic behavior in the large system limit:

V~N,V!5N!V1~N,V!, ~1.1!
1063-651X/2000/63~1!/011110~6!/$15.00 63 0111
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ln V1~N,V!;a~r!N,

a.0.

TheN! factor is the trivial contribution from particle permu
tations that convert any inherent structure intoN! 21 others
of identical geometric character. The nontrivial quantityV1
asymptotically displays a simple exponential rise withN for
the number of geometrically distinguishable inherent str
tures. The exponential rise ratea is substance specific, an
its indicated density dependence in the low density regim
one of the subjects of the present investigation.

Computer-based analyses of the density dependenc
inherent structures for fluids that have been generated
steepest descent on theF hypersurface from fluid phases i
equilibrium have uncovered a common behavior. This is
lustrated schematically in Fig. 1, which plots inherent stru
ture pressure versus density. These analyses have incl
the Lennard-Jones single component system@8#, the SPC/E
model for water@9#, a fused salt@10#, and a set of low-
molecular-weight hydrocarbons@11#. Above a characteristic
number densityrs the inherent structures are spatially hom
geneous, while belowrs they exhibit fractures, voids, o
pores that can be geometrically irregular, and that grow
relative extent asr declines. The distinguished pointrs ,ps in
Fig. 1 represents the state of maximum tension that can
sustained by amorphous inherent structures before they s
into a mechanically weaker spongy medium. In all cases t
far studied, starting from a fluid state at high enough te
perature to be in a single phase,rs is less than the triple-
point density, andupsu is 101 to 102 times the critical pres-
sure@11,12#.

The analysis below concerns only the 0<r,rs regime,
so that the inherent structures encompass substantial
regions. The focus lies in unweighted enumeration of all
herent structures, which therefore is dominated by those
derlying the high temperature fluid at the chosen dens
Section II presents the first of two arguments~neither of
which pretends to be rigorous! that concludea must diverge
as r approaches 0. This first argument is based on an
proximate assignment of the intrabasin motion freedom
particles in the heterogeneous inherent structures. The
©2000 The American Physical Society10-1
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ond argument, Sec. III, implements a sequential enforcem
scheme to ensure that inherent structures possess the p
backbone connectivity that must be obtained in the prese
of attractive interparticle forces.

Section IV examines the companion case of finite-N enu-
meration of inherent structures in infinite space (V→`).
Having established in Secs. II and III thata diverges atr
50, it is clear that the number of distinguishable inhere
structures must rise faster withN than as a simple exponen
tial. Section IV presents an argument to this effect, a m
cruder version of which has appeared earlier@7#. Section V
considers the crossover behavior between the small-posi
density, and the zero-density, regimes. Section V also c
cludes the paper with some discussion, including vari
points that deserve further examination.

II. LOW POSITIVE DENSITY, FIRST ARGUMENT

Suppose that the quantitya appearing in Eq.~1.1! is
known for the number densityrs.0 that has been identifie
in Fig. 1. The mean basin content at this density in the s
tem’s 3N-dimensional configuration space can be expres
in terms of an effective lengthds applicable to each coordi
nate, i.e., asds

3N . The content of the entire configuratio
space isVN, so thatds is determined by

VN5ds
3NN! exp@a~rs!N#, ~2.1!

or equivalently, using Stirling’s formula,

a~rs!5 lnS e

rsds
3D . ~2.2!

FIG. 1. Schematic plot of isotropic pressure~or tension! vs num-
ber density for inherent structures obtained by constant-volu
steepest descent mapping on the potential energy hypersurface
point rs , ps represents the maximum mechanical strength of am
phous structures; at lowerr the structures contain irregular pores
fractures, and can only sustain less tension as a result. A sim
curve, also with a minimum, describes the mean binding energ
the inherent structures.
01111
nt
per
ce

t

h

e-
n-
s

s-
d

Considering the fact that the overwhelming majority of t
inherent structures atrs are amorphous and spatially un
form, it is reasonable to expect thatds is comparable to the
nearest neighbor separation.

The next step is to consider the effect of reducing
number densityr to some positive fractionx of rs :

r5xrs ,
~2.3!

0,x,1,

so that typical inherent structures become ‘‘shredded’’
described above. The mean basin content can continue t
described by an effective lengthd(x) for all coordinates,
required to satisfy the extension of Eq.~2.2! above:

a~xrs!5 lnF e

xrsd
3~x!G ,

~2.4!
d~1!5ds .

The behavior ofd(x) over thex interval ~2.3! must reflect
the presence of void space in the inherent structures, w
corresponding consequences fora~r!.

For purposes of helpful context, recall the artificial ca
for which the system’s potential energy functionF contains
only repelling inverse-power pair interactions, but no attra
tions, and so is immune to shredding of its inherent str
tures. Elementary scaling arguments@7# establish thata must
strictly be independent ofr, and hence independent ofx, so
for this case

d~x!5x21/3d~1! ~ inverse power repulsion!. ~2.5!

This simple result reflects the uniform dilation of every i
herent structure with increasing linear dimension of t
volume-V container. Of course this case presents no pres
minimum as shown in Fig. 1, for which attractive intera
tions are decisive.

An opposing extreme behavior ford(x) hypothetically
might emerge in the presence of attractive interactions
this scenario the entire excess volume generated by redu
x below unity appears as a single, simply connected, ma
scopic void. In the large-system limit of interest, only a ne
ligible fraction of theN particles would reside at the surfac
of this void. The remaining majority would occur locally i
high-density neighborhoods just as atrs , and so their free-
dom for intrabasin displacement as measured byd(x) would
be substantially unchanged fromx51:

d~x!>x0d~1! ~single macroscopic void!. ~2.6!

Simulation-based observations of void-containing, lo
density inherent structures@8–12# indicate that the actua
behavior may lie somewhere between extremes~2.5! and
~2.6!. The void space typically appears as a tortuous la
rinth, distributed throughout the entire system, with only
microscopic persistence length at any givenx @8#. However,
the persistence length and fraction of particles at the com
cated void surface are expected to grow monotonically ax
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INHERENT STRUCTURES ENUMERATION FOR LOW- . . . PHYSICAL REVIEW E 63 011110
declines. Consequently a reduction inx should permit larger
intrabasin displacements, and so it becomes reasonab
interpolate Eqs.~2.5! and ~2.6! with the following represen-
tation:

d~x!>x2qd~1!,
~2.7!

0<q,1/3.

The lower limit 0 for exponentq should be interpreted to
include the possibility of a logarithmic divergence.

Upon inserting Eq.~2.7! into Eq. ~2.4! one obtains

a~xrs!>a~rs!1~3q21!ln x1O~x!. ~2.8!

The coefficient of the negative quantity lnx is itself negative.
The conclusion is thata~r! must diverge logarithmically asr
approaches 0.

III. LOW POSITIVE DENSITY, SECOND ARGUMENT

The volume-spanning porous inherent structures
cussed above forr,rs are topologically connected b
nearest-neighbor-particle attractive contacts. Indeed with
such connecting contacts mechanical stability of the inhe
structures could not be obtained. This property would app
even if the starting configuration for the steepest desc
mapping to an inherent structure were that of a dilute gas
that case, early stages of the mapping would successi
draw close pairs, triplets, quadruplets, . . . , into contact, thus
producing an increase in mean cluster size. But the end re
cannot be two or more disconnected particle subsets. Re
tic interactions always include attractive forces operating
arbitrary distance, however weakly. These attractions in
tably would bring disconnected subsets together to produ
connected whole, leaving much of the system volume
cant. The entire aggregation process, driven by the stee
descent mapping by construction, proceeds without ann
ing, so the expected outcome virtually always should be
irregular, poorly packed, porous structure.

The emphasis of this second argument is how the con
tivity constraint on the final aggregate influences the e
meration of low-density inherent structures. In order to e
amine the effect of overall connectivity at a coarse-grain
level, it is useful to introduce a simple cubic lattice
molecular-scale cells, each of which has a volumev0 that
can be empty or filled by a single particle. This cell-latti
description of connected inherent structures is crude; it
viously suppresses fine details of local particle arrangem
in favor of the global connectivity attribute. But since th
qualitative character of the low-densitya~r! behavior should
be correctly conveyed, a more fine-grained descript
should not be required for the present analysis.

An inessential but expedient simplification will be to su
pose that the cells are arranged in a macroscopic cubem

cells on a side. The total number of cells is

M523m, ~3.1!

which will substantially exceedN in the low-density regime
of interest:
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r5N/Mv0 ,
~3.2!

M@N.

It may be useful to consider briefly a specific illustrativ
example. A realistic macroscopic material sample might c
tain about one mole of particles, so choose

N5279

>6.0431023 ~3.3!

>NAv .

Dispersing this number of particles over the substantia
larger number of cellsM5287 produces a gas expanded in
a volume 285256 times as large as that required for clo
packing.

Returning to the general case, the total number of dis
guishable arrangementsV0 of empty and filled cells regard
less of connectivity is given by the elementary combinato
expression

ln V05 lnF M !

N! ~M2N!! G
5NF S M

N D lnS M

N D2S M2N

N D lnS M2N

N D G ~3.4!

using Stirling’s asymptotic formula. In view of strong in
equality~3.2!, Taylor’s expansion through leading order sim
plifies ~3.4! to

ln V05NF lnS M

N D11G . ~3.5!

In the present coarse-grained context, connectivity will
interpreted in terms of face-sharing between pairs of oc
pied neighbor cells. Overall, at least one uninterrupted p
of such contacts must exist between each pair of occup
cells within a connected system configuration~inherent
structure!. Edge and vertex sharing will not be considered
contributing to the connectivity. Although the full set of sy
tem configurations counted byV0 contains connected con
figurations, these are but a small fraction of the total. A p
cedure is required to eliminate the disconnected major
This will be accomplished, at least approximately, by s
tematically applying a set of attrition factors toV0 .

On account of the choice ofM, Eq. ~3.1!, the entire cubic
cell array can be divided in any of several alternative wa
into arrays of nonoverlapping larger cubes, each contain
23 j cells, the number of which is 23(m2 j ), where 0< j <m.
For the specific illustrative example cited above, a relativ
dilute system,j would span the range 0< j <87/3529. This
procedure permits a sequential enforcement of connecti
among these sets of larger cubes, starting withj 50 and
ascending to its upper limitm. At each intermediate stagej
one will suppose that the 2358 ( j 21)-level groupings,
which will compose the next-larger cubic grouping, inte
nally and individually possess occupation configurations t
0-3
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FRANK H. STILLINGER PHYSICAL REVIEW E63 011110
are consistent with overall system connectivity. The obj
tive then is to assign an attrition factorAj to eachj-level
cube expressing the chance that random assembly of t
eight smaller cubic groupings, when brought together
form a larger cube, continue to be consistent with ove
system connectivity. That they might fail this requireme
would stem from absence of necessary connecting par
bridges across faces brought into contact.

Because thej-level cubes by construction do not overla
their attrition factorsAj are independent of one another. A
ter accounting for these factors and for the numbers of cu
groupings at each levelj, the final tally of properly connected
configurations takes the form

exp@a~r!N1O~1!#5V0)
j 50

m

~Aj !
23~m2 j !

. ~3.6!

Inclusion of the upper limitj 5m in this expression corre
sponds to imposition of periodic boundary conditions. T
use of multiple length scales to analyze a statistical mech
cal problem is similar to that introduced by the ‘‘renorma
ization group’’ approach to critical phenomena@13,14#.

Note that at the single-cell levelj 50, both the empty and
the filled states are acceptable, so no attrition occurs.
next level j 51, comprising eight contiguous cells in
23232 arrangement, presents several distinct possibili
for cell filling, but again none manifestly violate connectivi
at this level. ConsequentlyA05A151. The following level
j 52 however presents 43434 arrangements of 64 cell
that can either be compatible, or incompatible, with conn
tivity, so that 0,A2,1. Figure 2 illustrates the kinds o
possibilities that arise, using the simpler two-dimensio
version for ease of visualization, where gray and white,
spectively, identify filled and empty cells. Although the fir
two ‘‘valid’’ examples in the figure are not internally con
nected through shared faces of occupied cells, they coul

FIG. 2. Typical configurations at thej 52 level ~in two dimen-
sions!, composed of validj 51 subsets~solid outlines!, considered
during the enforcement of connectivity constraints in Sec. III. Fil
cells are gray, empty cells are white. Those patterns lab
‘‘valid’’ have no necessary disconnections when embedded in
full system, while those labeled ‘‘invalid’’ do. Isolated filled cells
an outer boundary can connect to surrounding portions of the
system connected configuration.
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part of a larger connected cluster through external conta
None of the three ‘‘invalid’’ examples in the figure posse
this possibility, and so must suffer attrition.

It is reasonable to invoke a ‘‘mean field’’ approximatio
to estimate the higher-level attrition factorsAj in Eq. ~3.6!.
For eachj .1 it is required that the newly considered ce
contacts involve occupancy states that are consistent with
connectivity constraint. The number of cell-pair contac
brought into play upon assembling 2358 ( j 21)-level
groupings into aj-level grouping is 3322 j . The logarithm of
attrition factorAj should be proportional to this number, b
also to the low number density under consideration, to
count for filled interfacial cells needing connection to a lar
cluster at this next higher level, but failing to find it. Ther
fore set

ln Aj>23C~rv0!322 j ~ j .1!, ~3.7!

whereC is an appropriate positive constant.
Taking logarithms in Eq.~3.6! and substituting from Eqs

~3.5! and ~3.7!, one finds

a~r!>2 ln~rv0!1123C(
j 52

m

22 j . ~3.8!

For the large system limit of interest,m approaches infinity;
even for the illustrative example cited above@Eq. ~3.3! and
the following#, m could have reasonably been taken to infi
ity because of rapidity of convergence of the sum in E
~3.8!. In either event Eq.~3.8! is equivalent to

a~r!>2 ln~rv0!1123C/2. ~3.9!

Just as was the conclusion for Eq.~2.8! of Sec. II, the impli-
cation again is thata~r! diverges logarithmically in the low
density limit. It should be noted in passing that if both Eq
~2.8! and~3.9! were qualitatively accurate descriptions of th
low density enumeration problem, then consistency wo
require the following pair of approximate identifications:

q>0 ~3.10!

and

a~rs!>2 ln~rsv0!1123C/2. ~3.11!

However both lines of argument admittedly are relative
crude, so Eqs.~3.10! and~3.11! can only be viewed as roug
estimates so far as numerical coefficients are concerned.
might note in passing that Eq.~3.10! is nominally consistent
with the logarithmic interpretation mentioned in connecti
with Eq. ~2.7! of Sec. II.

IV. FINITE N, INFINITE V

Enumerating distinguishable inherent structures for a
nite number of attracting particles in unbounded space c
stitutes a related, but logically independent, problem to t
just considered. The qualitatively consistent results~2.8! and
~3.9! imply that the unbounded-space number must r
faster than as a simple exponential function ofN. However,
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INHERENT STRUCTURES ENUMERATION FOR LOW- . . . PHYSICAL REVIEW E 63 011110
it is not possible without further analysis to infer what t
corresponding rise rate should be. An argument will now
presented to resolve this question. It modifies, extends,
strengthens a naı¨ve version that has been published pre
ously @7#.

The experimental observation of many kinds of rarifi
solids as mentioned in the opening paragraph suggests
when sufficient space is present to allow it, attractive int
particle interactions tend to lead to tenuous inherent st
tures that are mostly empty space. This view is strengthe
by calculations with simple model interactions that demo
strate the existence of vividly noncompact, but mechanic
stable, structures@8–12#. WhenN particles aggregate durin
steepest-descent mapping from random and dispersed i
positions without the interference of finite boundaries, it
reasonable to expect the typical result to resemble the fra
structures generated by diffusion-limited aggregation p
cesses~DLA ! @15,16#. Because so much empty space p
vades the expected fractal patterns, one is led to anticipa
far greater set of distinguishable restructuring possibilities
comparison with the high density situation.

Imagine assembling in unbounded space theN-particle
inherent structures one particle at a time. At some interm
diate stage 1,N8,N, the number of distinct inherent struc
tures is given byV1(N8,`), the majority of which are open
and geometrically irregular. Addition of the next partic
could occur anywhere along the contorted surface of
N8-particle cluster. In view of the fractal character expec
for the latter, this implies that the number of distinct sites
addition of particleN811 should scale withN8 asK(N8) r ,
whereK.0. Here exponentr is related to the fractal dimen
sion involved, and should be subject to the limits

2/3,r<1, ~4.1!

thereby interpolating between compact~2/3! and fully ex-
tended~1! forms. Consequently one expects

V1~N811,̀ !>K~N8!rV1~N8,`!. ~4.2!

This relation asserts that each addition has a nonzero ch
of spawning a new family tree of larger inherent structur
while still acknowledging that distinct ancestral roots cou
converge to a common inherent structure. The validity of
~4.4! should not be undermined by the fact that each addi
of an attracting particle will produce small local elastic d
formations of the prior structure.

Because interest centers on the large-N asymptotic re-
gime, it is appropriate to take logarithms in Eq.~4.4!, and to
treatN8 as a continuous variable. Therefore

d ln V1~N8,`!/dN8>r ln N81 ln K, ~4.3!

and integrating with respect toN8 yields the result

ln V1~N,`!>rN ln N1~ ln K2r !N1L, ~4.4!

whereL is the integration constant. Thus the full enume
tion of inherent structures, including permutations and p
ticle symmetries, involves a power ofN! that exceeds unity:
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The sign of the real integration constantL remains undeter-
mined by the present analysis. In any event Eq.~4.4! verifies
that the infinite-space enumeration rises faster withN than as
a simple exponential, and so is consistent with conclusi
reached in Secs. II and III above.

V. DISCUSSION

The qualitative conclusion, jointly reached in Secs. II a
III, that inherent structures tend to be more numerous at
density than at high density, has precedents in the publis
literature. A special one-dimensional model solved exac
by Haner and Schilling@17# indeed shows just this property
Furthermore, the Gaussian core model in three dimens
possesses an exact convolution property that forces a de
in the number of inherent structures as the system is c
pressed@18#. Finally, volume dependence of inherent stru
ture appearances and disappearances has been monitor
Malandro and Lacks for a Lennard-Jones-type system, w
results that exhibit the same trend@19#. The reader should be
aware, however, that each of these three cases did no
volve void-containing configurations of the type consider
in the present paper. Nevertheless, it is worth noting that
trend toward larger numbers of inherent structures as den
declines arises even in spatially uniform particle media.

A crossover range can be identified between the lo
positive-density regime examined in Secs. II and III, and
infinite-volume, finite-N regime of Sec. IV. The middle o
this crossover range is located formally by equatinga(r)N
from the leading two terms of Eq.~3.9!, to the leading two
terms of lnV1 in Eq. ~4.4!. Let N* andV* stand for anN,V
pair satisfying this equality. One finds

N* 5e~V* /Kv0!1/~11r !, ~5.1!

and from Eq.~4.1!

1/2<1/~11r !,3/5. ~5.2!

Consequently, asV* increases toward infinity in this cross
over state so too doesN* , but less rapidly. This feature is
consequence of the tenuous fractal nature of the domina
inherent structures that are involved.

The infinite-volume enumeration of inherent structur
examined in Sec. IV roughly resembles the enumerat
problems for certain families of chemical compounds.
well-known example involves the acyclic family of para
finic hydrocarbons~alkanes! with the generic chemical for-
mula CnH2n12 . The number of structural isomers withou
regard to the presence of chiral carbon centers was enu
ated ton540 many years ago by Henze and Blair@20#. For
the present context, the more relevant case involves ch
distinctions. These were considered subsequently in a rev
by Read @21#, with numerical results throughn525. Let
I (n) stand for the number of chirality-distinguished isome
with n carbon atoms. The three highest-order resultsn
523, 24, and 25! from Ref. @21# fit the following form:
0-5



c
s,
n

he

n a
III
ull

unt
ith

y
ion:

in
ur-

is

FRANK H. STILLINGER PHYSICAL REVIEW E63 011110
ln I ~n!5An ln n1Bn1C, ~5.3!

with

A50.1033,

B50.6549, ~5.4!

C524.2525,

which also well approximates results for alln.10. ThatA is
positive is not too surprising, because the dominant mole
lar form expected for largen is highly branched and tenuou
just as anticipated in Sec. IV for infinite-volume inhere
structures in systems ofN attracting particles.

It should be feasible to check at least partially on t
d

,

v.

v
ce

v.

y
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validity of the conclusion of Sec. IV, Eq.~4.4!, by computer-
implemented direct enumeration of connected clusters o
regular lattice. The simple cubic lattice invoked in Sec.
for the fixed volume case would again be appropriate. F
enumeration of connected clusters up to an ordern>15
@with fitting to an expression of type~4.4!# seems nominally
attainable, though not a trivial task.

One might question whether the free-space co
V(N,`) of all inherent structures could rise even faster w
N than just as a positive power ofN!, say roughly as exp(Ns)
with s.1. While this possibility cannot yet be rigorousl
discounted, it seems to lead to an uncomfortable conclus
large fractal inherent structures could be interconverted
many independent ways by arbitrarily small distortions. F
ther study of this aspect of the enumeration problem
clearly warranted.
.
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