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The pair correlation functiong(2)(r) in a classical many-body system depends in a nontrivial way both on the
number densityF and on the pair interactionsν(r), and a long-standing goal of statistical mechanics has been
to predict these effects quantitatively. The present investigation focuses on a restricted circumstance whereby
simultaneous isothermal changes inF and ν(r) have exactly canceling effects ong(2). By appealing to the
isothermal compressibility relation, we establish that an upper limit for density increase exists for this
“iso-g(2)” process, and at this limit in three dimensions the correspondingly modified pair interaction develops
a long-ranged Coulombic character. Using both the standard hypernetted chain and Percus-Yevick
approximations, we have examined the iso-g(2) process for rigid rods in one dimension that starts at zero
density, and maintains the simple step-function pair correlation during density increase, a process that necessarily
terminates at a covering fraction of one-half. These results have been checked with detailed Monte Carlo
simulations. We have also estimated the effective pair potentials that are required for the corresponding rigid-
sphere model in three dimensions, for which the simple step-function pair correlation can be maintained up
to a covering fraction of one-eighth.

I. Introduction

At any given temperature, the thermodynamic and transport
properties of a material system are controlled by the interactions
operating between the constituent particles of that system. These
interactions are specific to each substance, and give rise to wide
variations in crystal structures,1 and in the short-range order
that X-ray and neutron diffraction experiments reveal to be
present in liquids and amorphous solids.2 One of the most basic
challenges perennially facing statistical mechanics is to provide
logical and quantitative connections between interactions on the
one hand, to long-range and short-range order in material
systems on the other hand. Computer simulation has been used
aggressively and productively for this purpose, while suffering
obvious system-size and time scale limitations. More analytic
approaches in statistical mechanics that are designed to attain
the same goals have a long history, marked by substantial but
still incomplete success.

The present paper intends to illuminate a small aspect of the
general problem of interaction-order connections. In particular,
attention focuses on the existence and nature of a family of
continuous isothermal processes that simultaneously change the
system density, as well as the interactions, in such a way that
pair correlations remain invariant. The resulting theoretical
analysis leads inevitably to conclusions about particle arrange-
ments in space, and the way in which they can be produced,
that in our opinion seem less than obvious. In particular, this
line of investigation offers novel insights into the subject of

hard-particle packings, e.g. for hard rods, disks, and spheres in
one, two, and three dimensions, respectively.

The following section II includes a precise definition of the
processes at issue, the “iso-g(2)” processes. Section II also
illustrates these processes by exact low-density results, connects
them to the well-known isothermal compressibility and Orn-
stein-Zernike relations, and stresses the relevance of the
venerable HNC and PY approximate closures. For the purpose
of providing a tangible example, Section III reports results for
the one-dimensional rigid rod system, including calculation of
an approximate effective pair potential that supplements the
hard-core interaction during the iso-g(2) process, and presents a
Monte Carlo test of the accuracy of that effective potential.
Section IV exhibits the corresponding effective pair potential
for hard spheres in three dimensions. A final section V presents
discussion of several issues that extend beyond the scope of
this initial investigation, but which represent natural research
directions for further development of the concepts introduced
and explored here.

II. Iso-g (2) Processes

In the interests of completeness we begin with the definition
of equilibrium correlation functionsg(n) of arbitrary ordern for
a single-component system, assuming that the classical canonical
ensemble at inverse temperature parameterâ ) (kBT)-1 provides
a proper representation.3

where Z is the configurational partition function for theN
particles inside volumeV:
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g(n)(r1, ..., rn) ) [VnN!/Nn(N - n)!Z] ∫V
drn+1, ...,

∫V
drN exp[-âΦ(r1, ..., rN)] (2.1)
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In these equationsΦ stands for the interaction potential for the
N particles, and periodic boundary conditions apply at the
boundary of container volumeV, so that free translation of the
entire system is possible.

The functionsg(n) are respectively proportional to the prob-
abilities that infinitesimal volume elements dr1, ..., drn are
simultaneously occupied by particle centers. The large-system
limit will be of primary interest in the following, whereby both
N andV pass to infinity at constant number densityF ) N/V.

The isothermal compressibilityκT ) -(∂lnV/∂p)N,T has a
representation as a spatial integral of the pair correlation
function, which in fluid phases depends spatially only on scalar
distancer:4

This relation between short-range order at the molecular level
and a macroscopic thermodynamic property is very general. It
is true regardless of the presence of nonadditive interactions in
Φ, and is valid in the quantum-statistical, as well as classical-
statistical, regime. It can even be used for the isothermal
isotropic compressibility of an equilibrium crystal phase if the
angle-averaged pair correlation function for that phase is inserted
in (2.3). Note that for a pure phase in equilibriumFâ-1κT is
never negative, but can range from a very small positive value
(cold dense liquids and solids) to arbitrarily large positive values
(neighborhood of a critical point). The corresponding values of
the spatial integral in (2.3) range from negative through zero to
positive.

For the remainder of this paperΦ will be restricted to a
pairwise additive form, involving only spherically symmetric
pair potentials:

This is not an essential restriction, but suffices for present
purposes to demonstrate the basic principles involved in
iso-g(2) processes.

We now inquire about the possibility of changing the density
isothermally from some initial valueF0 to a displaced valueF1,
while requiring that the short-range order measured byg(2)

remain unchanged. This requirement can only be satisfied if at
the same time the interactions change in such a way that the
normal density variation ofg(2) is exactly canceled. To establish
that this may indeed be possible, consider first the special case
where F0 vanishes, andF1 is small enough that a density
expansion through first-order suffices. The invariant pair cor-
relation function at issue then is just the Boltzmann factor for
pair potentialν:

while the same function must emerge from the joint influence
of a small density increase toF1 > 0 and a change in pair
interaction toν(r) + δν(r). By drawing upon the known density
series forg(2),5 one finds that in this leading density order the
change in the pair interaction must satisfy the following relation:

This invariance criterion can in principle be carried explicitly
to higher orders in the final densityF1, although the subsequent
terms rapidly become complicated.

One might note in passing that the reverse process withF0 >
0 andF1 ) 0 is trivial. The combinationν + δν must simply
be the pair potential of mean force at the starting density:3,6

However, this alone does not guarantee the existence of a
δν(r) over the entire intermediate density interval 0< F1 < F0.

Although (2.6) is suggestive, it does not establish how farF1

could be increased above zero, or even if (2.6) involves a
convergent series inF1. Further insight requires that we return
for the moment to the more general case where bothF0 andF1

might be arbitrary nonnegative number densities. Consider how
the isothermal compressibility (at fixedν + δν) behaves as a
continuous function of the final densityF1 along an iso-g(2) path:

If the g(2)(r,F0) - 1 integral is negative (crystal or cold liquid),
then an increase inF1 aboveF0 would cause the right member
of (2.7) to decline, reaching zero at

As a result

indicating thatF1* is a singular end point of the iso-g(2) process,
at which the system becomes completely incompressible, i.e.,
infinitely rigid with respect to volume change. No singular
density limit would arise if theg(2)(r,F0) - 1 integral were to
vanish, or were positive as would certainly be the case in the
neighborhood of the critical point.

Further understanding of the singular density limit requires
consideration of the supplemental pair interactionδν generated
by the iso-g(2) process. Aside from the (possibly convergent)
density series (2.6), and the special case (2.7), no exact results
for δν are currently available. However we can use well-known
statistical-mechanical approximations for guidance. For this
purpose we need first to recall the definition of the direct
correlation functionc(r,F), provided by the Ornstein-Zernike
integral equation:7

The hypernetted chain (HNC)8 and Percus-Yevick (PY)9

approximations then connectg(2) and its relativec to the pair
potential that produces them in the thermal equilibrium setting:

The following sections III and IV will examine effective
interactionsν + δν that are applicable to the rigid-rod and rigid-
sphere systems.

Let G(k) andC(k) respectively stand for theD-dimensional
Fourier transforms ofg(2)(r) - 1 andc(r), the generic forms of
which are

Z(N,â)) ∫V
dr1, ...,∫V

drN exp[-âΦ(r1, ..., rN)] (2.2)

Fâ-1
κT ) 1 + F∫[g(2)(r) - 1]dr (2.3)

Φ(r 1, ..., rN) ) ∑
i)2

N

∑
j)1

i-1

ν(rij) (2.4)

g(2)(r,F0)0) ) exp[-âν(r)] (2.5)

âδν(rij) ) F1∫{exp[-âν(rik)] - 1}{exp[-âν(rkj)] -

1}drk + O(F1
2) (2.6)

ν(r) + δν(r) ) -â-1 ln g(2)(r,F0), (F0 > 0,F1 ) 0) (2.7)

F1â
-1

κT(F1) ) 1 + F1∫[g(2)(r,F0) - 1]dr (2.8)

F1*(F 0) ) {-∫[g(2)(r,F0) - 1]dr}-1 (2.9)

κT(F1*) ) 0 (2.10)

c(r12,F) ) g(2)(r12,F) - 1 - F∫c(r13,F)[g(2)(r32,F) - 1]dr3
(2.11)

âν(r) ) g(2)(r) - 1 - ln g(2)(r) - c(r) (HNC) (2.12)

âν(r) ) ln[1 -
c(r)

g(2)(r)] (PY) (2.13)
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Then application of the Ornstein-Zernike relation (2.11) to the
iso-g(2) process leads to the following:

For small values ofk we will have the expansion

where normallyG2 will have a sign opposite to that ofG0 [e.g.,
(4.2) below]. The denominator of eq 2.15 atk ) 0 is just the
right member of the compressibility expression (2.8), which
vanishes at the singular densityF1*. Consequently the small-k
behavior ofC at the singular density must be

In three dimensions this form corresponds to anr -space function
that possesses a Coulombic tail asymptotically at larger:

Thus, the direct correlation function at the singular density is
very long-ranged, far exceeding the range of the deviation from
unity of the pair correlation function itself (assuming that the
starting state was not a critical point). Appealing next to the
HNC and PY approximations (2.12) and (2.13), one concludes
for F1* that the effective pair interaction must itself display a
positive Coulombic form at large separations. This must arise
from the supplementary contributionδν itself (G0/G2 < 0)),

Evidently it is this long-ranged repulsive Coulomb interaction
that confers upon the system infinite resistance to volume change
in the limit of the singular densityF1*.

A more detailed analysis of the continuous approach to
singular densityF1* shows that the Coulombic effective
interaction appears first in an exponentially damped (“Yukawa”)
form, and that this damping or shielding diminishes to zero at
the singularity with a decay length proportional to the inverse
square root of the density deficit.

The pressurep can be obtained from the isothermal com-
pressibility by performing an isothermal density integration:

and with the proper choices forκT this applies both to the
conventional situation as well as to an iso-g(2) path.

Alternatively, the pressure can be obtained from the virial
relation.10 As a result of carrying out an iso-g(2) process from
F0 to F1 with an attendant supplementary pair interactionδν,
the pressure atF1 will possess the following integral representa-
tion:

where subscriptsr andF denote partial derivatives with respect
to those variables. Under proper circumstances, comparison of
these two pressure expressions can yield a useful integral
constraint on the supplementary interactionδν.

III. Rigid Rod System

One of the simplest models for interacting particles is the
one-dimensional system of rigid rods of lengtha. The Tonks
equation of state provides an exact description of its equilibrium
pressure,11

diverging at the close-packed density 1/a. Note that, in this one-
dimensional system, the dimensionless quantityFa is just the
“covering fraction”φ, i.e., the fraction of the available space
covered by the rigid rods. The corresponding expression for
the isothermal compressibility is

This permits evaluation of the isothermal compressibility along
an iso-g(2) path, starting at densityF0, and proceeding to the
displaced densityF1.

This last expression vanishes at the upper singular density

Consequently, if the starting densityF0 is very low, the iso-g(2)

process can only extend up toφ1 ≡ F1a ) 1/2, half of the close-
packed density, but higher starting density permits closer
approach to the close-packed limit.

We now analyze more fully theF0 f 0 situation, for which
the pair correlation function is just a simple unit step function
U;

We thus have

and consequently

Although this integral is not a standard form, apparently, with
due attention to convergence issues it can be evaluated numeri-
cally providedF1a < 1/2. However it appears to diverge to+∞
for all x upon approach to the singular upper limit.

The HNC and PY approximations, (2.12) and (2.13), applied
to the presentF0 ) 0 case give particularly simple connections
between the direct correlation function and the effective pair
potential (x> a):

Figures 1-3 present numerical results for these approximate
δν at the final densitiesF1a ) 0.1, 0.3, and 0.45.

F(k) ) ∫ exp(ik‚r)f(k)dk,

f(r) ) (2π)-D ∫ exp(-ir‚k)F(k)dk (2.14)

C(k,F1) )
G(k,F0)

1 + F1G(k,F0)
(2.15)

G(k) ) G0 + G2k
2 + G4k

4 +, ... (2.16)

C(k,F1*) ) (G0/F1*G2k
2) + O(k0) (2.17)

c(r,F1*) ∼ G0/(4πF1*G2r) (2.18)

δν(r) ∼ -G0/(4πâF1*G2r) (2.19)

âp ) ∫0

F dF′
F′â-1

κT(F′)
(2.20)

âp(F1) ) F1 - (2πr1
2â/3)∫0

∞
r3[νr(r) +

δνr(r,F1)]g
(2)(r,F0)dr + 2πâF1

3 ∫0

∞
r2νF(r,F1)g

(2)(r,F0)dr

(2.21)

âp ) F/(1 - Fa) (3.1)

Fâ-1
κT ) (1 - Fa)2 ≡ 1 + FG(0,F) (3.2)

F1â
-1

κT(F1|F0) ) 1 + F1G(0,F0) ) 1 + (F1/F0)[(1 - F0a)2 -
1] (3.3)

F1*(F 0)a ) (2 - F0a)-1 (3.4)

g(2)(x,F0 ) 0) ) U(x - a) (3.5)

G(k,F0 ) 0) ) -(2/k) sin(ka) (3.6)

c(x,F1) ) - 2
π ∫0

∞ sin(ka) cos(kx)

k - 2F1 sin(ka)
dk (3.7)

âδν(x,F1) ) -c(x,F1) (HNC)

âδν(x,F1) ) ln[1 - c(x,F1)] (PY) (3.8)
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It is important to carry out a consistency test of the HNC
and PY approximations in the present context. For this reason
we have performed 500-particle Monte Carlo simulations for
the rigid rod system, with and without the supplemental pair
interactions eq 3.8 in place. If no approximation errors were
present, the computed pair correlation functions for the former
should replicate the unit step function, while deviation from
that ideal result would indicate the level of inaccuracy of the
HNC and PY approximations. Figures 1-3 also present pair
correlation functions forF1a ) 0.10, 0.30, and 0.45, to indicate
the extent to which the additional interaction succeeds in
suppressing local order beyond the rigid rod diameter. To stress
that the process involved actually removes short-range order
beyond the rigid rod collision distance, exact pair correlation
functions for the conventional system at the given density have
also been included in these figures.11 As one can easily see, the
PY approximation performs better than the HNC approximation
at the densities considered, though both lead to increasing
deviations from the ideal step-functiong(2) as F1a increases
toward the upper limit 0.50. In particular, for the highest density
that we have studied (F1a ) 0.45), the calculated pair correlation

functions deviate appreciably from the step function, especially
close to contact. To check that there indeed exists a potential
with the desired features at this density, we have modified the
HNC potential by decreasing the slope in the nearly linear
portion fromr/a ) 1 to r/a ) 2 while keeping the value atr/a
) 2 fixed. This modified potential is plotted in Figure 3 and
results in a pair correlation function that produces the best
agreement with the step function. No doubt further small
changes in the interaction could reduce the discrepancy even
further.

Figure 4 presents a pair of configurations forF1a ) 0.45,
both for the conventional “bare” rigid rods, and for the iso-g(2)

variant. Our experience suggests that these are roughly typical.
The visual impact suggests a pattern difference, with a more
uniform distribution of nearest-neighbor separations in the
iso-g(2) case. This observation is consistent with the expectation
that the mean nearest-neighbor distance between the particles

Figure 1. Characteristics of the rigid-rod iso-g(2) process atF1a ) 0.1,
which begins at zero density. (a) The exact conventional pair correlation
function11(a) (solid curve) and the Monte Carlo results for the HNC
(dashed curve) and PY (dotted curves). (b) The approximate interactions
used for the Monte Carlo simulation.

Figure 2. Characteristics of the rigid-rod iso-g(2) process atF1a ) 0.3,
which begins at zero density. The legends are the same as in Figure 1.

Figure 3. Characteristics of the rigid-rod iso-g(2) process atF1a ) 0.45,
which begins at zero density. The legends are the same as in Figures
1 and 2, augmented with curves (dotted-dashed) referring to an
empirical interpolation interaction, a modification of the HNC ap-
proximation as described in the text.

Figure 4. Representative samples of rigid-rod configurations, extracted
from 500-particle simulations atF1a ) 0.45, indicating the influence
of the supplementary interaction required to enforce the iso-g(2)

constraint. The upper portion shows the conventional “bare” rigid rods;
the lower portion shows the iso-g(2) case. The rods have been stretched
vertically to enhance ease of pattern visualization.
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λ for the step-functiong(2) system should generally be larger
than the corresponding quantity for the standard equilibrium
hard-rod system, with the difference increasing with increasing
density. Indeed, our simulations show that this is the case. For
example, atF1a ≡ φ ) 0.45,λ/a = 1.75 for the step-function
g(2) system, compared toλ/a = 1.61 for the equilibrium system
as obtained from the analytical expression12

IV. Rigid Spheres

An obvious shortcoming of the rigid rod model examined in
the preceding section III is that it has no freezing transition.
The corresponding three-dimensional rigid sphere case however
has been known for many years to have just that property,
preferring to form a face-centered cubic crystal when the density
is sufficiently high.13

The coexistence interval for this first-order phase change is
approximately the following:14

Pressure isotherms for both the fluid phase (Carnahan-
Starling15) and the crystal phase (Speedy16) are available, and
can be used to calculate the isothermal compressibilities. The
general relation (2.3) then suppliesG(0,F0) for each phase, and
subsequently (2.9) becomes applicable for evaluation of
F1*(F 0).

Numerical results for these singular upper density limits of
the iso-g(2) process have been plotted in Figure 5.

One sees from Figure that, asF0 increases, a shrinking density
interval for compression is available before the singular upper
limit is encountered, although passing through the freezing
transition relieves this situation somewhat.

The F0 ) 0 pair correlation function, again a unit step
function, leads to the expression:

Following the now familiar procedure, this can be used as the
starting point to evaluate the direct correlation function at 0<

F1 < F1*(0):

Once again a nonstandard integral arises, but numerical evalu-
ation is feasible. The HNC and PY approximations, (2.12) and
(2.13), indicate that-âδν(r,F1) is equal respectively toc(r,F1)
and to-ln[1 - c(r,F1)], just as in the rigid rod case of section
III. Figure 6 graphically presents results for this supplemental
pair interaction at several densities. While both the HNC and
PY approximations may be qualitatively correct for this rigid
sphere application, we suspect that an improvement in perfor-
mance may again require an interpolation of some sort analogous
to that used above for rigid rods.

It is easy to see from (4.2) that the singular upper-limit density
F1*(F0)0) for the rigid sphere iso-g(2) process that starts at zero
density must be

which corresponds exactly to a covering densityφ of one-eighth.
We note in passing, that Markov and Willis, using a different
approach, have also observed thatφ ) 1/8 is a singular limit for
locally uncorrelated arrangements of rigid spheres.17 The result
in (4.4), and the corresponding upper limit for rigid rods are
two examples of a simple but more general result for rigid
D-dimensional “spheres”, for which the covering fraction has
the form

here VD(a) is the volume of a radius-a hypersphere inD-
dimensional space. Owing to the obvious fact that the “volume”
of exclusion measured byG(k)0,F0)0) has a radius equal to
twice the “sphere” radius, the covered volume fractionφ1* at
F1*(F 0)0) must be exactly 2-D.

V. Discussion

Moving a many-body system along an iso-g(2) path does not
constrain correlation functionsg(n) for n > 2 to remain invariant.
However in the reversed situation, where ann-body supple-

Figure 5. Dependence of the upper singular densityφ1* upon the initial
densityφ0, for the rigid sphere model. The calculations were based on
the Carnahan-Starling pressure equation for the fluid,14 and the Speedy
pressure equation for the face-centered cubic crystal.15

Figure 6. Effective pair interactionsδν(r,F1) for the rigid sphere model
in the HNC and PY approximations. The iso-g(2) process involved starts
at vanishing number density, and maintains the corresponding step-
function pair correlation as density increases to final values ofF1 for
which the covering fractionsφ are 1/16 and 1/10.

λ/a ) 1 + (1 - φ)/2φ (3.9)

0.943< Fa3 < 1.041 (4.1)

G(k,F0 ) 0) ) (4π/k3)[(ka) cos(ka)- sin(ka)])

-(4πa3/3){1 - (ka)2/10 + (ka)4/280- O[(ka)6]} (4.2)

c(r,F1) ) 2
πr ∫0

∞ k sin(kr)[(ka) cos(ka)- sin(ka)]

k3 + 4πF1[(ka) cos(ka)- sin(ka)]
dk

(4.3)

F1*(F 0 ) 0)a3 ) 3/(4π) (4.4)

φ ) FVD(a) (4.5)
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mentary potential were used to carry out the iso-g(n) generaliza-
tion, all lower-order correlation functions would necessarily
exhibit invariance during that process. This follows from the
definitions in (2.1). One might note in passing that the venerable
Kirkwood superposition approximation18 which expressesg(3)

as a product ofg(2)’s suggests that at least an approximate
invariance automatically carries upward in order from the pair
to the triplet level. Nevertheless, some level of error in this
Kirkwood approximation must be expected, and it will eventu-
ally be illuminating to determine how this error behaves upon
approach to the upper density limitF1*.

If one were to implement an iso-g(3) process, starting at low
density in a rigid sphere system, it should be expected that an
upper singular density would again be encountered as in the
iso-g(2) case considered above. But because this generalization
involves a more powerful constraint, its singular density
presumably could not be higher than for the pair case that starts
at the same low density. But whether the iso-g(3) singular density
is actually less than that of the pair case is not obvious, and at
the moment must be regarded as a legitimate object for future
research.

An unambiguous theoretical procedure has recently been
advocated for separating the isothermal compressibilityκT into
two parts, structural and vibrational.19 This separation is based
upon a mapping of all system configurations onto “inherent
structures” (potential energy minima), using a steepest-descent
connection on the multidimensional potential energy hyper-
surface. In particular, the pair correlation functions before and
after this mapping differ, and the difference reflects the
anharmonic vibrational effects. A significant extension of the
analysis presented herein would be to monitor, perhaps best by
computer simulation, the way that inherent structures and their
pair correlations evolve during the course of an iso-g(2) process,
and how the balance shifts between inherent structural and
vibrational contributions toκT. One should not expect the post-
mappingg(2)’s to display invariance.

The spherically averaged pair correlation function for a crystal
phase will exhibit relatively long-ranged fluctuations about the
limiting value unity, owing to the presence of periodic order.20

If F0 were selected to correspond to a stable crystal state at the
prevailing temperature, andF1 were then taken to zero, (2.7)
above would indicate that the supplementary interaction required
to effect an iso-g(2) process would itself be relatively long-
ranged. Specifically this supplementary interaction would have
to maintain an image of the coordination shells of the crystal
(with vibrational smearing), which is certainly an unnatural
situation for a dilute gas. We speculate that no phase transition
would exist along this iso-g(2) path, in contrast to the conven-
tional situation for isothermal reduction in density to zero. If
this speculation is correct, such an iso-g(2) process might qualify
as a convenient thermodynamic path for calculating the absolute
entropy of the crystal.

Although it has been mentioned above, for three-dimensional
systems, that the upper density limitF1* entails Coulombic
supplementary pair potentials, it would be inappropriate to view

that state as corresponding to a conventional electrolyte. First,
all particles bear the same electrostatic charge (though one could
imagine that a uniform neutralizing background charge density
were present). Second, and more significantly, the fixed short-
range pair correlation order is not obviously subject to the exact
zeroth and second moment conditions that apply to conducting
media.21 In fact this upper-density-limit state appears to be
incapable of electrolytic conduction, though it evidently can
support local stirring motions. The one qualitative attribute that
the F1* state shares with conventional electrolytes is that the
interaction range far exceeds that of the correlation length, owing
apparently to an intrinsic shielding phenomenon.

It was noted above [following (2.10)] that if the spatial
integral ofg(2) - 1 vanished or were positive, no singular density
associated with a vanishing isothermal compressibility would
occur. This situation would arise in the presence of attractive
interparticle interactions, and in particular would develop in the
critical region of such systems. This alternative scenario, an
obvious candidate for future investigation, may well involve
divergence of the direct correlation function Fourier transform
C(k,F1*) at some|k| > 0, which in turn suggests that long-
range oscillatory interactions would have to be present atF1*.
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