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Many glass-forming substances display heat capacities for their supercooled liquids that substantially exceed
those of the corresponding crystals. Reasonable extrapolation below the kinetic glass transition temperature
indicates that the molar entropies of the supercooled liquid and crystal phases would become equal at a
“Kauzmann temperature”TK > 0. Furthermore, continuing such extrapolation belowTK to absolute zero
suggests that the disordered liquid attains lower entropy than the crystal, in conflict with the third law of
thermodynamics (hence the “Kauzmann paradox”). The present study cites data for real substances and results
from numerical simulation and theoretical modeling in the temperature-pressure plane to demonstrate that
a Kauzmann locusTK(p) can indeed occur, though not necessarily for all materials. No third-law conflict
arises. Also, the analysis provides no support for the concept of an “ideal glass transition” at positive
temperature, often mentioned in connection with glass formers. In the event that classical statistical mechanics
is applicable to a substance of interest, the low-temperature endpoint of the Kauzmann locus involves the
maximum isotropic tension sustainable by spatially uniform amorphous deposits, a state which coincides in
pressure and density with the minimum of theT ) 0 liquid spinodal.

I. Background

Among all of their fundamental properties, the phase transi-
tion characteristics of materials occupy a particularly prominent
position. Furthermore, those characteristics are often decisive
in determining the scientific and technological significance of
materials. The first-order melting/freezing transition is perhaps
the clearest example, and great importance attaches to how it
occurs and how it can be kinetically encouraged or inhibited.
The common occurrence of liquid supercooling below the
thermodynamic freezing temperature illustrates the latter of these
features, and its implications for glass formation and related
phenomena form the subject of this paper.

Although the latent heat of fusion causes a liquid at its
equilibrium melting/freezing point to inherit a larger entropy
than the crystal from which it came, subsequent supercooling
reduces that entropy difference on account of the typically larger
heat capacity of the liquid compared to the crystal. Simon1 was
perhaps the first to consider in depth the thermodynamic
consequences of this situation, in particular surmising what
would in principle transpire if kinetic arrest at an experimental
glass transition did not intervene during supercooling to absolute
zero. However, it was not until more accurate and comprehen-
sive supercooling data later became available to the scientific
community that a decisive analysis became possible. The classic
and frequently cited review by Kauzmann2 perhaps can be
viewed as the beginning of the present era of the subject. In
particular, that work clearly stated the apparently paradoxical

implication of extrapolated heat capacities for supercooled liquid
and crystal, namely that approach to absolute zero would have
the higher enthalpy former possessing lower entropy than the
latter. Were this behavior to continue at sufficiently low
temperatures, it would result in a liquid with negative entropy,
in contradiction to the third law of thermodynamics.3 Kauz-
mann’s resolution to this apparent paradox was to stress that
experiment would always be frustrated either by spontaneous
nucleation of the crystal, or by the kinetic arrest of a positive-
temperature glass transition, in attempting to carry “equilibrated”
supercooled liquids to absolute zero.2 In any event, one must
always be concerned about the intrinsic danger in extrapolating
properties into a regime that is forever beyond direct observation.

Nevertheless, the temptation has been strong to declare the
outcome of such an in-principle extrapolation. This has been
particularly true for theoretical modeling that is not constrained
by the reality of experimental kinetic barriers. One class of
theoretical models proposes that a higher order “ideal glass
transition” should occur at (or close to) the Kauzmann temper-
atureTK > 0, where the isobaric molar entropy difference∆S(T)
) Sliq(T) - Scrys(T) vanishes, and below which the system
remains in a minimal-enthalpy amorphous state.4 This proposi-
tion would appear to receive support from measurements of
supercooled-liquid shear viscositiesη and mean relaxation times
τ that can often be fitted well to the non-Arrhenius VTF
(Vogel-Tamman-Fulcher) form5

whereA and B are suitable constants, and where indeed the
divergence temperatureT0 turns out to be close to the calori-
metric TK.6
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η, τ ≈ A exp( B
T - T0

) (1.1)
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Although experiments on supercooled liquids and their glass
transitions are usually performed at atmospheric pressure,
exceptions involving elevated pressurep are also available in
the scientific literature.7 This suggests that a “Kauzmann curve”
TK(p), or equivalentlypK(T), of vanishing∆S(T,p) should exist
for at least some substances. If the presumption is correct that
an ideal glass transition is involved in theT,p plane, this curve
should be its locus.

Gibbs and DiMarzio8 produced a theory for polymer melts,
based on the Flory-Huggins treatment of chain statistics,9 that
exhibited a vanishing configurational entropy at a positive
temperature. This development has often been taken as support
for the ideal glass transition concept, not only for polymers,
but for low-molecular-weight substances as well. Adam and
Gibbs10 subsequently extended the Gibbs-DiMarzio concepts
to advance a connection between calorimetric measurements
and various relaxation timesτ (often approximately proportional
to the shear viscosityη), by introducing the idea of a temper-
ature-dependent cooperatively rearranging molecular region in
the supercooled liquid. Specifically, they proposed

whereC andD would be pressure-dependent constants for each
substance of interest, andSconfig is a “configurational entropy”.
The original view was thatSconfig ≈ ∆S, so that the Adam-
Gibbs expression could provide a divergence at an ideal glass
transition in agreement with the VFT expression (1.1). However,
in addition, it offered a suggestive picture of how flow and
relaxation processes occur in deeply supercooled liquids by
virtue of localized molecular rearrangements within a static
surrounding medium. A limitation of the Adam-Gibbs theory
is that it provides no information on the size of the cooperatively
rearranging regions.

Although the precise definition of “configurational entropy”
was lacking in the original Adam-Gibbs treatment, more recent
developments usually have associated this concept with the
energy-dependent degeneracy of “inherent structures”.11-13

These are mechanically stable configurations of all of the
system’s particles, or equivalently the local minima of the many-
particle potential energy function. The full entropy function in
this representation then consists of two parts:

where Svib arises from motions that displace the many-body
system away from inherent structures, but which are confined
to the basins of attraction of those inherent structures.

A theoretical argument has been advanced14 indicating that,
for substances of low molecular weight,Sconfig alone cannot
produce an ideal glass transition as defined above. Furthermore,
it is difficult to construct a scenario in which intrabasin
vibrational entropySvib could induce such a transition. However,
the argument presented was not sufficiently powerful to cover
the cases involving polymeric substances with unbounded
molecular weights. Furthermore, it did not exclude the possibility
that ∆S, the difference in total entropies between supercooled
liquid and crystal phases, could go to zero and become negative
over a temperature range, on the way toward absolute zero.

Other approaches have appeared in the literature developing
the thesis that no underlying phase transition should occur on
equilibrated supercooling to absolute zero. One of these, due
to Kivelson and co-workers,15 postulates a central role played
by frustration in the molecular interactions within the amorphous

phase. Another, due to Johari,16 provides smooth extrapolations
to absolute zero of measured heat capacities in such a way that
a positive Kauzmann temperatureTK is avoided, in a manner
similar to Simon’s early suggestion.1

The present paper is structured as follows. Section II examines
the cases of the helium isotopes at low temperature, concluding
that indeed this substance possesses a Kauzmann curveTK(p).
Section II also considers a polymeric material for which the
available melting curve data also strongly suggest that it
possesses a Kauzmann curve as well. Section III discusses two
simple classical statistical models (hard and soft spheres), for
both of which Kauzmann curves can be calculated. Section IV
extends the analysis to the metastable negative-pressure (tension)
regime, and establishes a nonobvious connection between the
limiting low-temperature spinodal curve and the Kauzmann
locus. Section V contains a summary of our conclusions and a
discussion of several open scientific questions.

II. Kauzmann Curves for Selected Materials

A natural starting point for a discussion of Kauzmann curves
involves consideration of real-substance examples that exhibit
discrete Kauzmann points in their equilibrium phase diagrams.
Metastable extensions of the phases involved serve then to
connect those points with a curvilinear Kauzmann locus. The
discrete points at issue occur at maxima or minima of the
melting curvepm(T) in theT,p plane. The Clapeyron equation17

requires that if the volume change∆V for the transition is
nonzero at apm(T) extremum, then the entropy change∆Smust
vanish there; i.e., it must perforce be a Kauzmann point.

The phase diagrams of the helium isotopes He3 and He4

provide a clear-cut pair of examples. Admittedly these are
substances whose properties are dominated by quantum effects,
hence they show no obvious tendency to form solid glasses,
and in this respect they differ from the conventionally discussed
glass formers. However, all substances exhibit quantum effects
to some extent, which in the case of polyatomic molecules may
most strongly be manifest as quantized high-frequency intramo-
lecular vibrations. It should also be kept in mind that all
amorphous solids apparently contain a small positive concentra-
tion of two-level localized degrees of freedom, whose quantized
low-temperature behavior dominates heat capacity and contrib-
utes to thermal conduction and ultrasound absorption.18 The
helium examples thus fit into the larger quantum context for
all materials, and form a relevant and illuminating part of the
full Kauzmann curve picture.

Figure 1 schematically illustrates the melting curves for both
isotopes.19 Although there are significant quantitative differences
between the two cases, their respectivepm(T) show single
relative minima at a positive temperature (approximately 0.3 K
and 29.8 bar for He3, 0.8 K and 26.2 bar for He4).19 Furthermore,
both melting curves have zero-slope positive-pressure local
maxima atT ) 0, where the respective systems are necessarily
in their ground states at all pressures. Throughout the entire
melting range considered, the melting volume is positive:

Consequently, the Clapeyron equation (2.1) demands that∆S
) 0 at bothT ) 0 and at the melting curve minima; i.e., these
are legitimate Kauzmann points. TheT ) 0 maxima obviously
possess this property, because they represent structural shifts
in the pure ground states, for which entropy vanishes. For both

η(T), τ(T) ≈ C exp( D
TSconfig

) (1.2)

S) Sconfig + Svib (1.3)

dpm/dT ) ∆S/∆V (2.1)

∆V ) Vliq - Vcrys > 0 (2.2)
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isotopes, the temperature range betweenT ) 0 and the melting-
curve minimum atTmin has

and over this range freezing of the liquid occurs by absorbing
heat, the reverse of the usual situation. Consequently, the crystal
in equilibrium with the liquid along this portion of the melting
curve has higher entropy than the liquid.

The physical explanation for inequality (2.3) and the reverse-
melting phenomenon rests with the spectra of low-lying
excitations present in the liquid and crystal phases at low
temperature. In He4 these are just phonons, i.e., quantized sound
waves. The crystal phase of He4 is an elastic solid, and
consequently it can support both longitudinal and transverse
phonons.20 However, the liquid can only support longitudinal
phonons.21 Consequently, the crystal has a substantially larger
phonon density of states than does the liquid, and this is reflected
in the magnitudes of the low-T heat capacities:

where

The corresponding entropies are the following:

These, in connection with inequalities (2.5), indicate that
between absolute zero andTmin entropy increases upon freezing
liquid He4. The same phonon density-of-states consideration
applies to He3 as well, but it is believed that differences in
nuclear spin couplings in the two phases of this lighter isotope
also contribute to development of its melting-curve minimum.19b

If the two Kauzmann points on the melting curve are to be
incorporated in a Kauzmann curvepK(T), this curve must deviate
from pm(T) away from those points, and therefore must require
one of the two phases to be in a metastable state. It is easy to
convince oneself that, belowTmin, this deviation must takepK-
(T) into the equilibrium liquid-phase region and require a
metastable undercompressed (or supercooled) crystal. Above
Tmin the situation is reversed, with equilibrium crystal and
supercooled (or overcompressed) liquid. The inferredpK(T)
position appears in Figure 1b. Insufficient data are currently
available to trace out the continuation of this Kauzmann curve
to high T andp.

The second relevant example is an organic polymer, isotactic
poly(4-methylpentene-1), P4MP1. Extensive experimental work
has been devoted to establishing the physical properties of this
material.22-25 The average molecular weightMw reported in the
studies of refs 22-25 is 250 000.24 Although significant breadth
of the molecular weight distribution was present (Mw/Mn )
4.024), such a small fraction of the monomer units occur at or
near the chain ends of this high polymer that the measured phase
behavior should be very close to that of the hypothetical zero-
breadth-distribution polymer. It might be stressed in passing
that P4MP1 contains a high density of covalent C-H bonds
(12 per monomer unit), for which the vibrational stretch
frequencies typically fall in the range 2500-3500 cm-1. By
contrast, thermal energykBT at room temperature is only about
200 cm-1, so indeed these degrees of freedom would be strongly
quantized at, and well above, room temperature.

Figure 2 shows the relevant part of the P4MP1 phase diagram.
It exhibits an unusual shape for the region occupied by the
equilibrium crystal (tetragonal). In particular, the melting curve
pm(T) is a multiple-valued function at high temperature, with a
maximum melting/freezing temperature occurring at about 300
°C and 3 kbar. At this point the volume of melting∆V passes
through zero, changing from the usual positive sign at low

Figure 1. (a) Schematic diagram illustrating the melting curves for
the isotopes He3 and He4 in the T,p plane. Although significant
quantitative differences between the two cases exist, both display
maxima atT ) 0 and single minima atT > 0. (b) Same as (a), but
with inclusion of the inferred Kauzmann curvepK(T), denoted by “K”.

dpm(T)/dT < 0 (2.3)

Cp
(liq)(T,p) ) γ(liq)(p)T3 + O(T4)

Cp
(crys)(T,p) ) γ(crys)(p)T3 + O(T4) (2.4)

0 < γ(liq)(p) < γ(crys)(p) (2.5)

S(liq)(T,p) ) 1
3
γ(liq)(p)T3 + O(T4)

S(crys)(T,p) ) 1
3
γ(crys)(p)T3 + O(T4) (2.6)

Figure 2. Melting curve in the T,p plane for isotactic poly(4-
methylpentene-1), “P4MP1”, adapted from refs 22-25.
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pressure to the unusual (but not unprecedented) negative sign
at high pressure. Otherwise, the phase transition remains first
order along this portion of the melting curve, with a positive
latent heat. This kind of melting-temperature maximum has been
reported for other materials, one example of which is phos-
phorus.26 It is also known to appear in the phase diagrams of
some theoretical models.27

The focus of interest here is the point of maximum pressure
along the melting curve. This occurs at about 150°C and 6.5
kbar. Because the melting volume∆V does not vanish there,
the Clapeyron equation (2.1) requires that the entropy of melting
∆S) 0. Consequently this meets our definition of a Kauzmann
point, and has been so labeled (“K”) in Figure 2. The reader
should be warned, however, that direct experimental observation
of this point is hindered and obscured by the tendency of the
P4MP1 system to enter another crystal phase (with hexagonal
symmetry).22-25 Nevertheless, one can legitimately imagine
circumstances for which nucleation of that distracting transition
has been inhibited, leaving just the liquid and tetragonal phases
to compete for relative thermodynamic stability. It is this
conceptually simplified circumstance for which we identify a
Kauzmann point.

Figure 2 indicates qualitatively how a Kauzmann curve
(dashed) must presumably be placed, passing through the point
just located, but also entering the stability regions for each of
the two phases. The situation is analogous to that of the heliums,
with the curve residing in the crystal region when melting is
“normal”, but residing in the liquid region when “inverse
melting” occurs. For temperatures above that of the Kauzmann
point at the maximum melting pressure, the liquid must be
isobarically supercooled to attain the lower entropy of the solid.
Contrarily, for temperatures below that of the Kauzmann point
where the crystal in equilibrium with the liquid has the higher
entropy (and presumably the higher heat capacity as for the
helium isotopes), the crystal must be metastably overcompressed
to have its entropy brought into equality with that of the liquid.

Evidently, the reason for existence of the melting-pressure
maximum for P4MP1 lies in its molecular structure, and the
ability of its isotactic chains to pack next to one another. The
negative values of∆V around that maximum, the Kauzmann
point, indicate that the ordered chains in the crystal enjoy extra
room for motion of at least a portion of the molecule in
comparison with the disordered, and denser, liquid. Yet both
are at the same pressure at the Kauzmann curve, by definition.
This strongly suggests that crystalline P4MP1 in this region of
the p,T plane has significantly higher vibrational entropy than
that of the liquid, perhaps mostly associated with motions of
the side chains.

Historical accuracy and completeness requires mentioning that
Tammann in 1903 anticipated the possibility that some sub-
stances might indeed displaypm(T) maxima of the sort just
described.28

In closing this section, we wish to stress that the possibility
of a Kauzmann locus along which∆S ) 0 and the possible
existence of an ideal glass transition are logically disconnected.
The rationales that have been outlined here for the presence of
Kauzmann curves for the helium isotopes and for P4MP1 carry
no implication for a positive-temperature (T0 > 0) singularity
at which configurational entropy of the supercooled liquid
vanishes and at which relaxation times and shear viscosity
diverge. In this respect the present analysis is consistent with
those offered in refs 14-16.

III. Theoretical Models

Theoretical many-body models offer a view of Kauzmann
curves complementary to that of the experimental examples
discussed in the preceding section II. The first to be considered
is the classical rigid-sphere model, which has been the object
of many analytical and simulational studies. It is an appropriate
starting point for the present section on account of the
elementary way that temperature and pressure are related,
namely direct proportionality.

Under conditions of thermal equilibrium, the rigid-sphere
model under compression from the dilute gas limit is known to
exhibit a first-order freezing transition to a face-centered cubic
crystal. This crystal persists up to the close-packed limit, at
which the reduced density attains the value

HereF is the number densityN/V, anda is the rigid-sphere
distance of closest approach. The values of the coexisting-phase
reduced densities at the melting/freezing transition are the
following:29

while the reduced pressure in this state of coexistence is

and the melting entropy at this transition, on a per-particle basis,
is

Provided that caution is exercised to avoid crystal nucleation,
the rigid-sphere fluid can be compressed metastably beyond the
equilibrium freezing density, with rapidly rising pressure and
rapidly decreasing rate of self-diffusion.30,31 It is legitimate to
inquire about the quantitative properties of an equilibrated fluid
subject to constraints which in principle, at least, prevent
nucleation and subsequent crystal growth.32,33It is in that spirit
that we now investigate the possibility of a Kauzmann point
linking the overcompressed metastable fluid and the fcc crystal
above the transition pressure. If indeed such a point could be
located, it would lie in thep,T plane on a linear Kauzmann
curve of the form

whereC is the appropriate positive constant.
Closed-form pressure equations of state are available for both

the fluid and crystal phases of the classical rigid-sphere model.
For our present purposes of illustration, we have chosen the
Carnahan-Starling equation34 to represent the equilibrium and
metastable fluid (y ) πFa3/6):

while Speedy’s equation35 serves the equivalent role for the
crystal (z ) 2-1/2Fa3 ) 3 × 21/2y/π):

Fa3 ) 21/2 (3.1)

(Fa3)fluid = 0.943

(Fa3)fcc = 1.04 (3.2)

pa3/kBT = 14.3 (3.3)

∆S/NkB = 1.16 (3.4)

pK(T) ) CT (3.5)

p/FkBT ) 1 + y + y2 - y3

(1 - y)3
(3.6)

p/FkBT ) 3
1 - z

-
0.5921(z - 0.7072)

z - 0.601
(3.7)
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By using the thermodynamic identity

along with the ideal-gas entropy expression, one finds that the
Carnahan-Starling fluid entropy is

in which the mean thermal deBroglie wavelength has been
denoted by λT. Speedy has supplied the crystal entropy
expression corresponding to his pressure equation (3.7):35

With these closed-form estimates for the rigid-sphere ther-
modynamic functions, it is a straightforward numerical task to
search for a Kauzmann point, at fixed temperature, where the
pressure and entropy of the two phases are simultaneously
equal.36 In fact, these equations do lead to such a solution. Figure
3 shows the predicted values of (Sfluid - Scrys)/NkB plotted against
the common reduced pressure for the two phases.

Although this relative entropy is close to its maximum at the
predicted coexistence point, further compression causes it to
decline and to change sign at the Kauzmann point:

The reduced densities of the metastable fluid and the crystal
that yield this point are found to be

Although the numerical results (3.11) and (3.12) depend on
the choice of fluid and crystal equations of state, available
evidence36 suggests that reasonable alternative choices would
lead to the same qualitative conclusion. One then must consider
the question of how such an isobaric equality of entropies can

arise between an “ordered” crystal and a “disordered” metastable
fluid. Evidently the explanation resides with the motional
freedom available to the spheres in the two types of environ-
ment. The geometric packing inefficiency of the disorganized
amorphous fluid leaves relatively little room for local free
motion (both individual and collective). By contrast, the more
efficient periodic crystal packing permits substantially more such
motions. Consequently, the crystal receives a significant positive
entropy contribution relative to the fluid, a distinction that
magnifies under increasing compression. However, this rationale
is not a simple and straightforward argument, because the
comparisons refer to a condition of equal pressures but unequal
densities (eq 3.12) for the two phases.

Although it probably has no decisive implication for the
present investigation, an important open question regarding the
rigid-sphere model deserves mention in passing. This concerns
the location of the density at which the pressure of the metastable
fluid should diverge to+∞. The divergence density cannot
exceed the close-packed value shown in eq 3.1 above, of course
(but note that the Carnahan-Starling approximation does!).
However, it remains unresolved whether in principle the
divergence occurs at a lower-than-close-packed density corre-
sponding to some kind of irregular packing, or alternatively
whether the “fluid” constraint permits continuous approach to
close packing via a sequence of structures containing larger and
larger crystalline domains.

The rigid-sphere model may be viewed as a limiting case
for the “soft-sphere” family of models. This family is distin-
guished by pair interactions of the generic formε(a/rij)n, where
ε anda are energy and length units, andn > 3 is required to
ensure the existence of proper extensive thermodynamics.
Allowing n f +∞ generates the rigid-sphere case. For any real
n satisfying the inequality above, the intensive thermodynamic
quantities can be expressed simply as functions of a single
scaling variable:37

In particular, the pressure and energy per particle have the
following forms:

whereun(z) is analytic at the origin, with a power series that
generates gas-phase virial coefficients for the model. Notice that,
in the rigid-sphere limit,z reduces simply toFa3. The fluid and
crystal phases for the soft-sphere models correspond to distinct
branches of the functionun(z); a short third branch spans the
coexistence region for the first-order phase transition between
fluid and crystal. Using either of eqs 3.14 as a starting point,
thermodynamic integration leads to an expression for the
entropy:

The pressure and entropy expressions (3.14) and (3.15) for
the soft-sphere models can be used to search for the existence
of Kauzmann curves, provided that sufficient information is
available to specify theun(z) fluid and crystal branches. In fact,
these models have been carefully investigated by computer
simulation,37-39 with sufficient information now available to

Figure 3. Entropy difference between the rigid-sphere fluid and fcc
crystal phases, plotted vs the common reduced pressure. Calculations
were based on the Carnahan-Starling34 and Speedy35 equations of state.
The point (K) at which this entropy difference vanishes is identified
as a Kauzmann point.

- 1

F2(∂p
∂T)F

) (∂S/N
∂F )T

(3.8)

S/NkB ) ln(ea3

λT
3) + ln(πe3

6 ) - ln y - 2
1 - y

- 1

(1 - y)2

(3.9)

S/NkB ) ln(ea3

λT
3) - 2.8776- 2.3033 lnz + 3 ln(1 - z) -

0.10463 ln(z - 0.601) (3.10)

pK(T)a3/kBT ≡ Ca3/kB = 39.69 (3.11)

(Fa3)K,fluid = 1.192

(Fa3)K,crys = 1.279 (3.12)

z ) (âε)3/nFa3 (3.13)

p/FkBT ) 1 + un(z)

E/NkBT ) 3
2

+
3un(z)

n
(3.14)

S/NkB ) 5/2 - ln(FλT
3) + (3/n)un(z) - ∫0

z
[un(y)/y] dy

(3.15)
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approximate theun branches with reasonable accuracy. For the
specific casen ) 9, we have found that a semi-infinite
Kauzmann curve indeed does exist in theT,p plane, passing
continuously from the origin to infinity in the first quadrant.36

Figure 4 shows our result. In contrast to the linear Kauzmann
locus (3.5) for the rigid-sphere limit, then ) 9 locus has positive
curvature. The densities of both phases increase monotonically
from zero to+∞ along this Kauzmann curve, passing from the
origin upward and to the right. As one might reasonably expect,
the density of the crystal along the Kauzmann locus is always
slightly larger than that of the equal-entropy metastable fluid,
a conclusion similar to that of eqs 3.12 for rigid spheres.

Evidently the vibrational entropy for then ) 9 case is
sufficiently lower in the fluid than in the crystal along the
Kauzmann curve that it overcomes the configurational disorder
discrepancy. By itself the latter would certainly place the fluid
at higher entropy than the crystal. Although we have not
specifically investigated the existence and nature of Kauzmann
curves for other values of the interaction exponentn, it is natural
to suppose that semi-infinite curves in the firstp,T quadrant,
emanating from the origin, would be found for alln > 3. If
this is the case, then the same comment about the contrasting
roles of vibrational and configurational entropy apply in this
wider context. In this context it must always be understood that
the rigid-sphere model is a very singular limit, for which the
basic concepts of “inherent structure”, “basin of attraction”, and
“intrabasin vibrational motion” require very careful interpreta-
tion.40

IV. T ) 0 Limiting Spinodal

Although they are nontrivial, the simple theoretical models
considered in section III suffer from the obvious failure to
include realistic attractive forces that operate in all real materials.
In particular, attractions cause real material systems to remain
in a condensed state at absolute zero temperature and vanishing
pressure, and to have the capacity to enter metastable states of
isotropic tension (negative pressure). These features raise
obvious questions about how the presence of attractive inter-
particle interactions might influence the existence and shapes
of Kauzmann curves in theT,p space, extended to include
negative pressures.

Simulational studies (within the classical statistical mechanical
regime) of several models that incorporate both repulsive and
attractive interparticle forces reveal that isochoric mapping of
liquid configurations onto inherent structures, when carried out

over a wide density range, produces a pressure curve vs density
that is essentially equivalent to the absolute-zero limiting
isotherm for the supercooled liquid,pliq(F,Tf0). This limiting
isotherm passes through a deep minimum at a distinguished
densityFS that is virtually coincident with theT f 0 endpoint
of the spinodal curve.39,41-43 For inherent structure mappings
carried out from the liquid atF g FS, the resulting amorphous
inherent structures are spatially uniform; mappings atF < FS

are spatially nonuniform, exhibiting irregular cracks, voids, or
tunnels. Consequently,FS locates amorphous particle packings
of maximal mechanical strength with respect to isotropic tension.
Equivalently,FS is a natural lower density limit, below which
the substance of interest cannot exist as a homogeneous glass
or amorphous deposit. The maximal tensionspliq(FS,Tf0) are
material specific, but in magnitude tend to be many times the
critical pressure. Because points on a Kauzmann curve require
equality of pressure for crystal and amorphous phases,pliq-
(FS,Tf0) necessarily sets a lower limit on the pressure of that
curve. However, without further analysis it is not clear that the
Kauzmann curve actually could attain that limit.

Within the context of theoretical modeling, the mean-field
approximation affords a useful way to append attractions to a
dense many-particle system with repelling interactions. This
approximation formally becomes exact if those attractions are
long-ranged but everywhere weak. However, even for relatively
short-ranged and moderately strong attractions (such as disper-
sion interactions), the repulsive portion of the total potential
dominates the short-range particle packing order, and the mean-
field estimate of attractive interaction effects continues to be
relatively reliable for thermodynamic properties.44

In the presence of additional mean-field attractions, the soft-
sphere pressure and energy expressions shown above in eqs 3.14
become modified to the following:

where theun branches andz are defined as before, andR > 0
measures the strength of mean-field coupling. With such
attractions present, the system can now exhibit vapor-liquid
condensation and a critical point. The former entropy expression
(3.15) continues to apply in the presence of mean-field attrac-
tions. IncreasingR continuously from zero will cause Kauzmann
pairs of metastable fluid and crystal states that share the same
pressure and entropy to shift continuously in density. Among
the shifted pairs will be one exhibiting the lowest (most
negative) pressure. An obvious issue is how this pair relates to
the T ) 0 liquid spinodal that develops in the presence of the
appended attractions.

A previous publication39 has examined exactly that issue for
the n ) 9 soft-sphere model with mean-field attractions. A
striking conclusion, illustrated schematically in Figure 5, was
that theT ) 0 terminus of the Kauzmann curve was coincident
with the spinodal minimum point atpspn(FS); however, no
explanation for this coincidence was offered in ref 39. It has
also been pointed out that the same phenomenon occurs more
widely, specifically when mean-field attractions are added to
the rigid-sphere and the hard-dumbbell (rigid diatomic) mod-
els.36,39By implication, we expect the same behavior to obtain
for other soft-spheren values as well, at least with mean-field
attractions.

This naturally leads to the question of whether the zero-
temperature spinodal minimum also serves as the Kauzmann

Figure 4. Kauzmann curve calculated for then ) 9 soft-sphere model
(reduced temperature and pressure units). The densities of the fluid
and crystal pairs (with equal pressures and entropies) increase
monotonically along the curve moving away from the origin.

p/FkBT ) 1 + un(z) - RF/kBT

E/NkBT ) 3
2

+
3un(z)

n
- RF

2kBT
(4.1)
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curve terminus when more realistic short-range and possibly
direction-dependent and nonadditive attractions are present. The
following argument suggests that indeed this is the case. First
observe that the maximally strong amorphous deposits present
at the spinodal minimum must be devoid of weak spots (e.g.,
low-density, poorly bonded regions), at least to the extent that
the noncrystalline constraint permits. Such weak spots would
be the initiating points of mechanical failure. Thus, approach
to the spinodal minimum entails a new constraint on the
available inherent structures. This may involve elimination of
regions within the glassy medium that near the glass transition
temperature can be identified experimentally as dynamic
heterogeneities;45,46such weak spots would naturally exhibit an
enhanced mobility under thermal agitation, and appear to
underlie the low-temperature failure of the Stokes-Einstein
relation.47 By limiting the number of qualifying inherent
structures, the configurational entropySconfig is necessarily
reduced, and since the constraint selects that inherent structure
uniquely qualified to resist fracture, this suggests thatSconfig =
0, the same as for the crystal atT ) 0. Following a recent
argument due to Martinez and Angell that configurational and
vibrational entropies are proportional to one another,48 we can
assume that the vibrational entropies for the two phases become
virtually equal as they approach their respective states of
isotropic tensionpmin. This implies that thisT ) 0 pair
constitutes a Kauzmann pair. No pair can exist in a greater state
of tension, so this must locate the terminus of the Kauzmann
curve in theT,p plane.

V. Conclusions and Discussion

By citing a combination of experimental phase diagrams,
mean-field model calculations, and theoretical arguments, this
paper proposes that many substances display “Kauzmann
curves” in theirT,p planes, locating crystal-liquid phase pairs
with equal pressures and entropies. We do not claim here that
such curves exist for all substances and models, but the available
evidence suggests that this may not be a rare occurrence. Within
the context of classical statistical mechanics, models with
particles that exert simple repelling forces (e.g., rigid and soft

spheres, hard dumbbells) appear to possess Kauzmann curves
that involve equilibrium crystal and metastable fluid pairs as
contributing states. Furthermore, appending attractive forces to
those simple models continues to produce Kauzmann curves.
In these latter circumstances of repelling and attracting inter-
actions, theT ) 0 terminus of the Kauzmann curve involves
an amorphous inherent structure in a state of maximal isotropic
tension, which is a minimum in theT ) 0 liquid spinodal curve,
and the lowest density state at which a spatially uniform glass
can exist.

The helium isotopes have been cited as examples with discrete
points on their melting curves that satisfy the Kauzmann criteria.
Furthermore, these discrete points can credibly be connected
by a continuous Kauzmann locus that penetrates the stable liquid
region of theT,p phase plane at low temperature, but crosses
over into the stable crystal region at higher temperature. The
crossing point, consistent with the Clapeyron relation (2.1), is
a local minimum of the melting curve. On account of the
extreme quantum characters both of He3 and He4, neither of
these substances is able to participate in the classical statistical
coincidence of the Kauzmann terminus and the liquid spinodal
minimum; rapidity of tunneling processes eliminates the pos-
sibility of creating solid amorphous deposits (glasses) of helium
that could be put in a state of tension. It would be very
illuminating to pursue a future theoretical project that determines
how the phase diagrams and Kauzmann curves of the boson
and fermion “heliums” evolve as the particle masses are
continuously increased to large values, at which point classical
statistical mechanics becomes applicable and solid amorphous
particle packings have operational significance.

It is important to understand (as stressed above) that the
existence of a Kauzmann locus is not equivalent to the existence
of an ideal glass transition. This logical disconnection applies
whether quantum or classical statistical mechanics is the
appropriate representation. In fact, none of the experimental,
simulational, or theoretical evidence cited in this paper points
to the presence of any ideal glass transition in any substance at
positive temperature.

A recent paper by Sastry49 has presented simulational results
for a frequently used classical model glass former that consists
of an approximately 80-20 binary mixture of inequivalent
Lennard-Jones particles.50 The numerical results obtained in that
Sastry study included determination of liquid-phase spinodal
curves, and free energies over wide ranges of temperature and
density. These results were interpreted so as to seemingly
contradict the proposition advanced here and in ref 39 that the
T ) 0 Kauzmann terminus and theT ) 0 spinodal minimum
involve the same amorphous state. However, it must be pointed
out that the crystal structure or structures for this binary mixture
have never been determined, to the best of our knowledge; in
fact, the composition examined may not correspond closely to
a stoichiometric crystal at all, but rather to a eutectic
composition.50aConsequently, it is not yet possible to apply the
Kauzmann criteria of equal pressure and entropy to crystal and
liquid phases as required in our approach. Instead, Sastry
employs a “glass transition” criterion based solely on the liquid
free energy. The result of this alternative requirement generates
novel and valuable information about the binary glass-forming
model. However, it is an independent analysis that does not
contradict the approach presented above in section IV.

The phase pairs that have been considered above for the
presence of Kauzmann loci have all involved crystals on the
one hand, and isotropic fluids (liquids) on the other hand. Of
course this has been the traditional emphasis. However, such

Figure 5. Schematic plot in the temperature-pressure plane of the
equilibrium coexistence curves (solid lines), spinodals (dot-dashed
lines), and the Kauzmann curve (dashed line) for ther-9 soft-sphere
model with additional mean-field attractions (ref 39).
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investigations can in principle be widened to encompass other
phase pairs, one of which is metastable, but both of which have
identical pressure and entropy. Examples of such phase pairs
that may possess Kauzmann loci might be (a) crystal, liquid
crystal; (b) liquid crystal, isotropic liquid; (c) crystal polymorph
pairs that interconvert by a first-order phase transition; and (d)
phase pairs involving at least one quasicrystal. At present little
or no attention seems to have been devoted to these possibilities,
but they may be worthy objects for future research.
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