J. Phys. Chem. B001,105,11809-11816 11809

The Kauzmann Paradox Revisited

Frank H. Stillinger,* +8 Pablo G. Debenedettl, and Thomas M. Truskett”

Agere Systems, Murray Hill, New Jersey 07974, Princeton Materials Institute, Princetorrsity,
Princeton, New Jersey 08544, Department of Chemical Engineering, Princeteersity,

Princeton, New Jersey 08544, and Department of Pharmaceutical Chemistmyersity of California—
San Francisco, San Francisco, California 94118

Receied: May 14, 2001; In Final Form: July 23, 2001

Many glass-forming substances display heat capacities for their supercooled liquids that substantially exceed
those of the corresponding crystals. Reasonable extrapolation below the kinetic glass transition temperature
indicates that the molar entropies of the supercooled liquid and crystal phases would become equal at a
“Kauzmann temperatureTx > 0. Furthermore, continuing such extrapolation beldwto absolute zero
suggests that the disordered liquid attains lower entropy than the crystal, in conflict with the third law of
thermodynamics (hence the “Kauzmann paradox”). The present study cites data for real substances and results
from numerical simulation and theoretical modeling in the temperatoiressure plane to demonstrate that

a Kauzmann locudk(p) can indeed occur, though not necessarily for all materials. No third-law conflict
arises. Also, the analysis provides no support for the concept of an “ideal glass transition” at positive
temperature, often mentioned in connection with glass formers. In the event that classical statistical mechanics
is applicable to a substance of interest, the low-temperature endpoint of the Kauzmann locus involves the
maximum isotropic tension sustainable by spatially uniform amorphous deposits, a state which coincides in
pressure and density with the minimum of the= 0 liquid spinodal.

I. Background implication of extrapolated heat capacities for supercooled liquid
and crystal, namely that approach to absolute zero would have
the higher enthalpy former possessing lower entropy than the
latter. Were this behavior to continue at sufficiently low
temperatures, it would result in a liquid with negative entropy,
in contradiction to the third law of thermodynamit«auz-
.mann’s resolution to this apparent paradox was to stress that
texperiment would always be frustrated either by spontaneous
nucleation of the crystal, or by the kinetic arrest of a positive-
temperature glass transition, in attempting to carry “equilibrated”
supercooled liquids to absolute zértn any event, one must
always be concerned about the intrinsic danger in extrapolating
properties into a regime that is forever beyond direct observation.
Nevertheless, the temptation has been strong to declare the
tcome of such an in-principle extrapolation. This has been
particularly true for theoretical modeling that is not constrained
by the reality of experimental kinetic barriers. One class of
theoretical models proposes that a higher order “ideal glass
transition” should occur at (or close to) the Kauzmann temper-
atureTk > 0, where the isobaric molar entropy differencg(T)

= Sig(T) — SndT) vanishes, and below which the system

Among all of their fundamental properties, the phase transi-
tion characteristics of materials occupy a particularly prominent
position. Furthermore, those characteristics are often decisive
in determining the scientific and technological significance of
materials. The first-order melting/freezing transition is perhaps

occurs and how it can be kinetically encouraged or inhibited.
The common occurrence of liquid supercooling below the
thermodynamic freezing temperature illustrates the latter of these
features, and its implications for glass formation and related
phenomena form the subject of this paper.

Although the latent heat of fusion causes a liquid at its
equilibrium melting/freezing point to inherit a larger entropy

LY 7 ou

than the crystal from which it came, subsequent supercooling
reduces that entropy difference on account of the typically larger
heat capacity of the liquid compared to the crystal. Sitvoas
perhaps the first to consider in depth the thermodynamic
consequences of this situation, in particular surmising what
would in principle transpire if kinetic arrest at an experimental
glass transition djd not intervene during supercooling to absolute remains in a minimal-enthalpy amorphous staTéis proposi-
zero. However, it was not until more accurate and comprehen-

) lina data later b ilable to th entfi tion would appear to receive support from measurements of
sive sup(_erct(?]o;ngd ata fater lec_arrtl)e available %l grﬁmeln e supercooled-liquid shear viscositiggand mean relaxation times
community that a decisive analysis became possible. The ClassiC. 1ot can often be fitted well to the non-Arrhenius VTF
and frequently cited review by Kauzmanperhaps can be -

) - . (Vogel-Tamman-Fulcher) forn?
viewed as the beginning of the present era of the subject. In

particular, that work clearly stated the apparently paradoxical

B
n,rwAexp(T_T (1.2)
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Although experiments on supercooled liquids and their glass phase. Another, due to Johétiprovides smooth extrapolations
transitions are usually performed at atmospheric pressure,to absolute zero of measured heat capacities in such a way that
exceptions involving elevated pressyrare also available in  a positive Kauzmann temperatufg is avoided, in a manner
the scientific literaturé.This suggests that a “Kauzmann curve” similar to Simon'’s early suggestidn.

Tk(p), or equivalentlypk(T), of vanishingAS(T,p) should exist The present paper is structured as follows. Section Il examines
for at least some substances. If the presumption is correct thatthe cases of the helium isotopes at low temperature, concluding
an ideal glass transition is involved in tfigp plane, this curve  that indeed this substance possesses a Kauzmann T(p)e

should be its locus. Section Il also considers a polymeric material for which the
Gibbs and DiMarzi® produced a theory for polymer melts, available melting curve data also strongly suggest that it
based on the FloryHuggins treatment of chain statistitthat possesses a Kauzmann curve as well. Section Ill discusses two

exhibited a vanishing configurational entropy at a positive simple classical statistical models (hard and soft spheres), for
temperature. This development has often been taken as supporboth of which Kauzmann curves can be calculated. Section IV
for the ideal glass transition concept, not only for polymers, extends the analysis to the metastable negative-pressure (tension)
but for low-molecular-weight substances as well. Adam and regime, and establishes a nonobvious connection between the
Gibbs% subsequently extended the GibtisiMarzio concepts limiting low-temperature spinodal curve and the Kauzmann
to advance a connection between calorimetric measurementdocus. Section V contains a summary of our conclusions and a
and various relaxation timegoften approximately proportional  discussion of several open scientific questions.

to the shear viscosity), by introducing the idea of a temper-

ature-dependent cooperatively rearranging molecular region inll. Kauzmann Curves for Selected Materials

the supercooled liquid. Specifically, they proposed A natural starting point for a discussion of Kauzmann curves

g) involves consideration of real-substance examples that exhibit

(1.2) discrete Kauzmann points in their equilibrium phase diagrams.
Metastable extensions of the phases involved serve then to

TS:onfi
connect those points with a curvilinear Kauzmann locus. The
whereC andD would be pressure-dependent constants for each yis.rete points at issue occur at maxima or minima of the

substance of interest, aBhnrig is @ “configurational entropy”.
The original view was tha&onig &~ AS so that the Adam

Gibbs expression could provide a divergence at an ideal glass dp,/dT = ASAV (2.1)

transition in agreement with the VFT expression (1.1). However,

in addition, it offered a suggestive picture of how flow and requires that if the volume changsV for the transition is
relaxation processes occur in deeply supercooled liquids by nonzero at a@m(T) extremum, then the entropy charty& must
virtue of localized molecular rearrangements within a static vanish there; i.e., it must perforce be a Kauzmann point.

2D, 1) ~ C exp(

melting curvepm(T) in the T,p plane. The Clapeyron equatign

surrounding medium. A limitation of the AdanGibbs theory The phase diagrams of the helium isotopes® Hed Hé
is that it provides no information on the size of the cooperatively provide a clear-cut pair of examples. Admittedly these are
rearranging regions. substances whose properties are dominated by quantum effects,

Although the precise definition of “configurational entropy”  hence they show no obvious tendency to form solid glasses,
was lacking in the original AdamGibbs treatment, more recent  and in this respect they differ from the conventionally discussed
developments usually have associated this concept with theglass formers. However, all substances exhibit quantum effects
energy-dependent degeneracy of “inherent structufes®. to some extent, which in the case of polyatomic molecules may
These are mechanically stable configurations of all of the most strongly be manifest as quantized high-frequency intramo-
system’s particles, or equivalently the local minima of the many- |ecular vibrations. It should also be kept in mind that all
particle potential energy function. The full entropy function in - amorphous solids apparently contain a small positive concentra-

this representation then consists of two parts: tion of two-level localized degrees of freedom, whose quantized
_ low-temperature behavior dominates heat capacity and contrib-
S= Sonfig T Sib (1.3) utes to thermal conduction and ultrasound absorgfichhe

. ) . helium examples thus fit into the larger quantum context for
where S;ip arises from motions that displace the many-body a|| materials, and form a relevant and illuminating part of the
system away from inherent structures, but which are confined f,|| kauzmann curve picture.
to the basins of attraction of those inherent structures. Figure 1 schematically illustrates the melting curves for both

A theoretical argument has been advarééutiicating that,  jsotoped? Although there are significant quantitative differences
for substances of low molecular weigl&onfig alone cannot between the two cases, their respectiygT) show single
produce an ideal glass transition as defined above. Furthermoreg|ative minima at a positive temperature (approximately 0.3 K
it is difficult to construct a scenario in which intrabasin  and 29.8 bar for H2 0.8 K and 26.2 bar for H1° Furthermore,
vibrational entropy&,i, could induce such a transition. However, poth melting curves have zero-slope positive-pressure local
the argument presented was not sufficiently powerful to cover maxima afT = 0, where the respective systems are necessarily
the cases involving polymeric substances with unbounded i their ground states at all pressures. Throughout the entire

that AS the difference in total entropies between supercooled

liquid and crystal phases, could go to zero and become negative AV =Vjq = Vgys> 0 (2.2)
over a temperature range, on the way toward absolute zero.

Other approaches have appeared in the literature developingConsequently, the Clapeyron equation (2.1) demands/ABat
the thesis that no underlying phase transition should occur on= 0 at bothT = 0 and at the melting curve minima; i.e., these
equilibrated supercooling to absolute zero. One of these, dueare legitimate Kauzmann points. Tlie= 0 maxima obviously
to Kivelson and co-worker¥, postulates a central role played possess this property, because they represent structural shifts
by frustration in the molecular interactions within the amorphous in the pure ground states, for which entropy vanishes. For both
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o Figure 2. Melting curve in theT,p plane for isotactic poly(4-
Liquid methylpentene-1), “P4MP1”, adapted from refs—25.
00 T These, in connection with inequalities (2.5), indicate that

) - ] ) _ between absolute zero aifigli, entropy increases upon freezing
Flgu_re 1. (a) Schematic d_|agram illustrating the meltlng_ curves for liquid He®. The same phonon density-of-states consideration
the isotopes Heand He in the Tp plane. Although significant — 5nhjies t9 Ha as well, but it is believed that differences in

guantitative differences between the two cases exist, both display . . . - .
maxima atT = 0 and single minima &t > 0. (b) Same as (), but nuclear spin couplings in the two phases of this lighter isotope

with inclusion of the inferred Kauzmann curpg(T), denoted by “K”. also contribute to development of its melting-curve mininidpn.

If the two Kauzmann points on the melting curve are to be
isotopes, the temperature range betw&en0 and the melting- incorporated in a Kauzmann curpg(T), this curve must deviate
curve minimum afTyin has from pm(T) away from those points, and therefore must require

one of the two phases to be in a metastable state. It is easy to
dpy(T)/dT < 0 (2.3) convince oneself that, beloWyn, this deviation must takpk-

(T) into the equilibrium liquid-phase region and require a
and over this range freezing of the liquid occurs by absorbing metastable undercompressed (or supercooled) crystal. Above
heat, the reverse of the usual situation. Consequently, the crystalf .. the situation is reversed, with equilibrium crystal and
in equilibrium with the liquid along this portion of the melting supercooled (or overcompressed) liquid. The inferpadr)
curve has higher entropy than the liquid. position appears in Figure 1b. Insufficient data are currently

The physical explanation for inequality (2.3) and the reverse- ayailable to trace out the continuation of this Kauzmann curve
melting phenomenon rests with the spectra of low-lying tq high T andp.
excitations present in the liquid and crystal phases at low  The second relevant example is an organic polymer, isotactic
temperature. In Hethese are just phonons, i.e., quantized sound poly(4-methylpentene-1), PAMP1. Extensive experimental work
waves. The crystal phase of Hés an elastic solid, and  has been devoted to establishing the physical properties of this
consequently it can support both longitudinal and transverse material22-25 The average molecular weight, reported in the
phonons® However, the liquid can only support longitudinal  stydies of refs 2225 is 250 0034 Although significant breadth
phonong? Consequently, the crystal has a substantially larger of the molecular weight distribution was preseM, (M, =
phonon density of states than does the liquid, and this is reflected4_oz4), such a small fraction of the monomer units occur at or
in the magnitudes of the low-heat capacities: near the chain ends of this high polymer that the measured phase
(i) (i) 3 behavior should be very close to that of the hypothetical zero-
C,'(T.p) = y" ()T + O(T? breadth-distribution polymer. It might be stressed in passing
(crys) s that P4AMP1 contains a high density of covalerti bonds
C,MT.p) = ¥ p)T° + O(T?) (2.4) (12 per monomer unit), for which the vibrational stretch
frequencies typically fall in the range 2568500 cntl. By
where contrast, thermal enerdgT at room temperature is only about
(i) €ys) 200 cn1?, so indeed these degrees of freedom would be strongly
0 <y™(p) <7y™p) (2.5) quantized at, and well above, room temperature.
Figure 2 shows the relevant part of the PAMP1 phase diagram.
It exhibits an unusual shape for the region occupied by the
equilibrium crystal (tetragonal). In particular, the melting curve

The corresponding entropies are the following:

g(Tp) = §V(l'q)(P)T3 +0(T pm(T) is @ multiple-valued function at high temperature, with a
maximum melting/freezing temperature occurring at about 300
crys) 1 cysy18 °C and 3 kbar. At this point the volume of meltidgV passes
s (T.p) 3’ P)T+ O(TA) (2.6) through zero, changing from the usual positive sign at low
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pressure to the unusual (but not unprecedented) negative sigrll. Theoretical Models
at high pressure. Otherwise, the ph_ase transitiqn remain_s_ first Theoretical many-body models offer a view of Kauzmann
order along th_'s porﬂon of _the melting curve, W_'th a positive o, eg complementary to that of the experimental examples
latent heat. This kind of melting-temperature maximum has been iscssed in the preceding section II. The first to be considered
reported for other materials, one example of which is phos- ig the classical rigid-sphere model, which has been the object
phorusz® It is also known to appear in the phase diagrams of ot many analytical and simulational studies. It is an appropriate
some theoretical modefs. starting point for the present section on account of the
The focus of interest here is the point of maximum pressure elementary way that temperature and pressure are related,
along the melting curve. This occurs at about 2&80and 6.5 namely direct proportionality.
kbar. Because the melting volunfe/ does not vanish there, Under conditions of thermal equilibrium, the rigid-sphere
the Clapeyron equation (2.1) requires that the entropy of melting model under compression from the dilute gas limit is known to
AS= 0. Consequently this meets our definition of a Kauzmann exhibit a first-order freezing transition to a face-centered cubic
point, and has been so labeled (“K”) in Figure 2. The reader crystal. This crystal persists up to the close-packed limit, at
should be warned, however, that direct experimental observationwhich the reduced density attains the value
of this point is hindered and obscured by the tendency of the 3 "
P4MP1 system to enter another crystal phase (with hexagonal pa” =2 (3.1)
symmetry)?2-25 Nevertheless, one can legitimately imagine
circumstances for which nucleation of that distracting transition
has been inhibited, leaving just the liquid and tetragonal phases
to compete for relative thermodynamic stability. It is this

Herep is the number densiti/V, anda is the rigid-sphere
distance of closest approach. The values of the coexisting-phase
reduced densities at the melting/freezing transition are the

following:?°
conceptually simplified circumstance for which we identify a oflowing
Kaqzmann p_om.t. . (paa)ﬂum ~0.943
Figure 2 indicates qualitatively how a Kauzmann curve
(dashed) must presumably be placed, passing through the point (,oa3)fCC =1.04 (3.2)

just located, but also entering the stability regions for each of
the two phases. The situation is analogous to that of the heliums,while the reduced pressure in this state of coexistence is
with the curve residing in the crystal region when melting is 5

“normal”, but residing in the liquid region when “inverse pal/ksT = 14.3 (3.3)
melting” occurs. For temperatures above that of the Kauzmann

point at the maximum melting pressure, the liquid must be gnd the melting entropy at this transition, on a per-particle basis,
isobarically supercooled to attain the lower entropy of the solid. 1S
Contrarily, for temperatures below that of the Kauzmann point
where the crystal in equilibrium with the liquid has the higher
entropy (and presumably the higher heat capacity as for the

helium |§otopes), the crystallmust be njetagtably overcom.pre.sseqhe rigid-sphere fluid can be compressed metastably beyond the
to have its entropy brought into equality with that of the liquid. equilibrium freezing density, with rapidly rising pressure and
Evidently, the reason for existence of the melting-pressure rapidly decreasing rate of self-diffusi@h3! It is legitimate to
maximum for PAMP1 lies in its molecular structure, and the inquire about the quantitative properties of an equilibrated fluid
ability of its isotactic chains to pack next to one another. The subject to constraints which in principle, at least, prevent
negative values oAV around that maximum, the Kauzmann nucleation and subsequent crystal gro##P2It is in that spirit
point, indicate that the ordered chains in the crystal enjoy extra that we now investigate the possibility of a Kauzmann point
room for motion of at least a portion of the molecule in linking the overcompressed metastable fluid and the fcc crystal
comparison with the disordered, and denser, liquid. Yet both above the transition pressure. If indeed such a point could be
are at the same pressure at the Kauzmann curve, by definitionlocated, it would lie in thep, T plane on a linear Kauzmann
This strongly suggests that crystalline P4MP1 in this region of curve of the form
the p,T plane has significantly higher vibrational entropy than
that of the liquid, perhaps mostly associated with motions of pc(T) =CT (3.5)
the side chains.

Historical accuracy and completeness requires mentioning that
Tammann in 1903 anticipated the possibility that some sub-

ASNK; = 1.16 (3.4)

Provided that caution is exercised to avoid crystal nucleation,

whereC is the appropriate positive constant.

Closed-form pressure equations of state are available for both
. . . . ) the fluid and crystal phases of the classical rigid-sphere model.
stances r’ryght indeed display(T) maxima of the sort just  £qr oy present purposes of illustration, we have chosen the
described Carnahan-Starling equatioff to represent the equilibrium and

In closing this section, we wish to stress that the possibility metastable fluidy = wpa36):
of a Kauzmann locus along whichS = 0 and the possible
existence of an ideal glass transition are logically disconnected. _1lt+y+y
The rationales that have been outlined here for the presence of PlokgT = 1- y)3 (3.6)
Kauzmann curves for the helium isotopes and for P4AMPL1 carry
no implication for a positive-temperatur@y(> 0) singularity while Speedy’s equatiéh serves the equivalent role for the
at which configurational entropy of the supercooled liquid crystal ¢ = 22028 = 3 x 2Y%y/x):
vanishes and at which relaxation times and shear viscosity
diverge. In this respect the present analysis is consistent with olok, T = 3 0.5921¢—0.7072) (3.7)
those offered in refs 1416. 1-z z—0.601 '
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arise between an “ordered” crystal and a “disordered” metastable

2| Coexistence fluid. Evidently the explanation resides with the motional
freedom available to the spheres in the two types of environ-

e ment. The geometric packing inefficiency of the disorganized

amorphous fluid leaves relatively little room for local free

azc“’ o /\ motion (both individual and collective). By contrast, the more
Q T efficient periodic crystal packing permits substantially more such

motions. Consequently, the crystal receives a significant positive

r K entropy contribution relative to the fluid, a distinction that
magnifies under increasing compression. However, this rationale
2L is not a simple and straightforward argument, because the
| ! | ! | ! comparisons refer to a condition of equal pressures but unequal
0 10 20 3 40 50 60 70 densities (eq 3.12) for the two phases.
pa®kgT Although it probably has no decisive implication for the

Figure 3. Entropy difference between the rigid-sphere fluid and fcc present investigation, an important open question regarding the
crystal phases, plotted vs the common reduced pressure. Calculationsigid-sphere model deserves mention in passing. This concerns
were based on the Carnahestarling and Speedy equations of state.  the location of the density at which the pressure of the metastable
The point (K) at which this entropy difference vanishes is identified f|yid should diverge to+w. The divergence density cannot

as a Kauzmann point. exceed the close-packed value shown in eq 3.1 above, of course

By using the thermodynamic identity (but note that the CarnahaiStarling approximation does!).
However, it remains unresolved whether in principle the
1(dp\ _ (89N divergence occurs at a lower-than-close-packed density corre-
h p_Z(a_T)p _( ap )T (3.8) sponding to some kind of irregular packing, or alternatively

whether the “fluid” constraint permits continuous approach to
along with the ideal-gas entropy expression, one finds that the close packing via a sequence of structures containing larger and

Carnahar-Starling fluid entropy is larger crystalline domains. . o
The rigid-sphere model may be viewed as a limiting case
ed e 2 1 for the “soft-sphere” family of models. This family is distin-
SNk =1In F +1In B Iny— -y ?2 guished by pair interactions of the generic fos(a/r;j)", where
T ( y) € anda are energy and length units, and> 3 is required to

(3.9) ensure the existence of proper extensive thermodynamics.
Allowing n — o0 generates the rigid-sphere case. For any real
n satisfying the inequality above, the intensive thermodynamic
guantities can be expressed simply as functions of a single
scaling variable”

in which the mean thermal deBroglie wavelength has been
denoted byAr. Speedy has supplied the crystal entropy
expression corresponding to his pressure equation $3.7):

3
SINkg = In(%) —2.8776— 2.3033Inz+ 3In(1—2) — 7= (Be)¥"pa’ (3.13)
T 0.10463 Ing — 0.601) (3.10) In particular, the pressure and energy per particle have the

following forms:
With these closed-form estimates for the rigid-sphere ther-

modynamic functions, it is a straightforward numerical task to PloksT =1+ uy(2)

search for a Kauzmann point, at fixed temperature, where the 3u(2)

pressure and entropy of the two phases are simultaneously E/N|<B-|-=§+ n (3.14)
equal® In fact, these equations do lead to such a solution. Figure 2 n

3 shows the predicted values &ifa — Sryg/Nks plotted against
the common reduced pressure for the two phases.

Although this relative entropy is close to its maximum at the
predicted coexistence point, further compression causes it to
decline and to change sign at the Kauzmann point:

whereun(2) is analytic at the origin, with a power series that
generates gas-phase virial coefficients for the model. Notice that,
in the rigid-sphere limitz reduces simply t@a3. The fluid and
crystal phases for the soft-sphere models correspond to distinct
branches of the functionn(2); a short third branch spans the

3 — 3 coexistence region for the first-order phase transition between
P(MNakgT = Cafkg = 39.69 (3.11) fluid and crystal. Using either of eqs 3.14 as a starting point,
Ithermodynamic integration leads to an expression for the

The reduced densities of the metastable fluid and the crysta 3
entropy:

that yield this point are found to be

Z,
(P2 g = 1.192 SINkg = 5/2— In(pA") + (3IMu, @ — f;Tu(y)y] dy
3 (3.15)
(P orys = 1.279 (3.12)
The pressure and entropy expressions (3.14) and (3.15) for

Although the numerical results (3.11) and (3.12) depend on the soft-sphere models can be used to search for the existence
the choice of fluid and crystal equations of state, available of Kauzmann curves, provided that sufficient information is
evidenceé® suggests that reasonable alternative choices would available to specify than(2) fluid and crystal branches. In fact,
lead to the same qualitative conclusion. One then must considerthese models have been carefully investigated by computer
the question of how such an isobaric equality of entropies can simulation37~3% with sufficient information now available to
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1000 ; ‘ ‘ over a wide density range, produces a pressure curve vs density
L i that is essentially equivalent to the absolute-zero limiting
isotherm for the supercooled liquigiq(p, T—0). This limiting
isotherm passes through a deep minimum at a distinguished
r 1 densityps that is virtually coincident with thd — 0 endpoint

600 . of the spinodal curvé®**43 For inherent structure mappings
carried out from the liquid gb > ps, the resulting amorphous

800 - b

P i inherent structures are spatially uniform; mappingg &t ps
400 - 7 are spatially nonuniform, exhibiting irregular cracks, voids, or
- 1 tunnels. Consequentlyg locates amorphous particle packings
200 - 4 of maximal mechanical strength with respect to isotropic tension.

Equivalently,ps is a natural lower density limit, below which
the substance of interest cannot exist as a homogeneous glass
002 os o6 o8 1 or amorphous deposit. The maximal tensippgpes, T—0) are

T material specific, but in magnitude tend to be many times the
Figure 4. Kauzmann curve calculated for the= 9 soft-sphere model ~ Critical pressure. Because points on a Kauzmann curve require
(reduced temperature and pressure units). The densities of the fluidequality of pressure for crystal and amorphous phaggs,
and crystal pairs (with equal pressures and entropies) increase(ps, T—0) necessarily sets a lower limit on the pressure of that
monotonically along the curve moving away from the origin. curve. However, without further analysis it is not clear that the
Kauzmann curve actually could attain that limit.

Within the context of theoretical modeling, the mean-field
approximation affords a useful way to append attractions to a
dense many-particle system with repelling interactions. This
: . approximation formally becomes exact if those attractions are
Figure 4 shows our result. In contrast to the linear Kauzmann | i

ong-ranged but everywhere weak. However, even for relatively

locus (3.5) for the rigid-sphere limit, the= 9 locus has positive . .
g ; ; short-ranged and moderately strong attractions (such as disper-
curvature. The densities of both phases increase monotonically

from zero to-s alond this Kauzmann curve. passing from the sion interactions), the repulsive portion of the total potential
- g this Ve, p 9 dominates the short-range particle packing order, and the mean-
origin upward and to the right. As one might reasonably expect

X ; ' field estimate of attractive interaction effects continues to be
the density of the crystal along the Kauzmann locus is always . ) . .
relatively reliable for thermodynamic propertis.

slightly larger than that of the equal-entropy metastable fluid, In the presence of additional mean-field attractions, the soft-

a conclusmn S'm"?‘r to that of eqs 3.12 for ”gld spheres: sphere pressure and energy expressions shown above in egs 3.14
Evidently the vibrational entropy for the = 9 case is o R
become modified to the following:

sufficiently lower in the fluid than in the crystal along the
(}}auzmann curve that it overcomes the conf]guratlonal dlsorQer plpksT = 1+ U (2) — aplkeT
iscrepancy. By itself the latter would certainly place the fluid
at higher entropy than the crystal. Although we have not 3 3u,(2 op
specifically investigated the existence and nature of Kauzmann E/NkT = > + “n ﬁ—
curves for other values of the interaction exporretit is natural
to suppose that semi-infinite curves in the filsT quadrant, here theu, branches and are defined as before, and> 0
emanating from the origin, would be found for @l> 3. I oqqres the strength of mean-field coupling. With such
this is the. case, then the same comment about the contrastingractions present, the system can now exhibit vafiquid
rqles of V|brat|onaI. and conf!guratlonal entropy apply in this ., qensation and a critical point. The former entropy expression
wider context. In this context it must always be understood that (3 35y continues to apply in the presence of mean-field attrac-
the _r|g|d-sphere rr:_odel IS a very sm"gljlar !|m|t, for Wh'cr,} the fions. Increasingt continuously from zero will cause Kauzmann
Easm concepts Of, mheren'.[ st,r,uctur(.e , “basin of attraction”, and pairs of metastable fluid and crystal states that share the same
!ntr?(l)oasm vibrational motion” require very careful interpreta- pressure and entropy to shift continuously in density. Among
tion. the shifted pairs will be one exhibiting the lowest (most
_ N . negative) pressure. An obvious issue is how this pair relates to
IV. T = 0 Limiting Spinodal the T = 0 liquid spinodal that develops in the presence of the
Although they are nontrivial, the simple theoretical models appended attractions.
considered in section Il suffer from the obvious failure to A previous publicatiof? has examined exactly that issue for
include realistic attractive forces that operate in all real materials. the n = 9 soft-sphere model with mean-field attractions. A
In particular, attractions cause real material systems to remainstriking conclusion, illustrated schematically in Figure 5, was
in a condensed state at absolute zero temperature and vanishinthat theT = 0 terminus of the Kauzmann curve was coincident
pressure, and to have the capacity to enter metastable states ofith the spinodal minimum point apspps); however, no
isotropic tension (negative pressure). These features raiseexplanation for this coincidence was offered in ref 39. It has
obvious questions about how the presence of attractive inter-also been pointed out that the same phenomenon occurs more
particle interactions might influence the existence and shapeswidely, specifically when mean-field attractions are added to
of Kauzmann curves in th&,p space, extended to include the rigid-sphere and the hard-dumbbell (rigid diatomic) mod-
negative pressures. els36:39 By implication, we expect the same behavior to obtain
Simulational studies (within the classical statistical mechanical for other soft-sphera values as well, at least with mean-field
regime) of several models that incorporate both repulsive and attractions.
attractive interparticle forces reveal that isochoric mapping of  This naturally leads to the question of whether the zero-
liquid configurations onto inherent structures, when carried out temperature spinodal minimum also serves as the Kauzmann

approximate thei, branches with reasonable accuracy. For the
specific casen = 9, we have found that a semi-infinite
Kauzmann curve indeed does exist in the plane, passing
continuously from the origin to infinity in the first quadraitt.

(4.1)
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spheres, hard dumbbells) appear to possess Kauzmann curves
that involve equilibrium crystal and metastable fluid pairs as
contributing states. Furthermore, appending attractive forces to
those simple models continues to produce Kauzmann curves.
Melting In these latter circumstances of repelling and attracting inter-
Curve actions, theT = 0 terminus of the Kauzmann curve involves

an amorphous inherent structure in a state of maximal isotropic
tension, which is a minimum in the= 0 liquid spinodal curve,

and the lowest density state at which a spatially uniform glass

t Critical X
p Vapor Point can exist.
Spinodal . The helium isotopes have been cited as examples with discrete
0 ‘ . - points on their melting curves that satisfy the Kauzmann criteria.
! |T=rc'fr|§ ) /‘Lﬁui ’ Furthermore, these discrete points can credibly be connected
i _ Spinodal by a continuous Kauzmann locus that penetrates the stable liquid
H e region of theT,p phase plane at low temperature, but crosses
! ‘/'/ over into the stable crystal region at higher temperature. The
'l(._/ ‘ crossing point, consistent with the Clapeyron relation (2.1), is
e e ! a local minimum of the melting curve. On account of the
o extreme quantum characters both of*Hed Hé, neither of
T— these substances is able to participate in the classical statistical

Figure 5. Schematic plot in the temperaturpressure plane of the  coincidence of the Kauzmann terminus and the liquid spinodal
equilibrium coexistence curves (solid lines), spinodals {diztshed minimum; rapidity of tunneling processes eliminates the pos-
lines), and the Kauzmann curve (dashed line) forrthfesoft-sphere sibility of creating solid amorphous deposits (glasses) of helium
model with additional mean-field attractions (ref 39). that could be put in a state of tension. It would be very

) o ~illuminating to pursue a future theoretical project that determines
curve terminus when more realistic short-range and possibly how the phase diagrams and Kauzmann curves of the boson
direction-dependent and nonadditive attractions are present. Thegng fermion “heliums” evolve as the particle masses are
following argument suggests that indeed this is the case. Firstcontinuously increased to large values, at which point classical
observe that the maximally strong amorphous deposits presenktatistical mechanics becomes applicable and solid amorphous
at the sp!nodal minimum must.be devoid of weak spots (e.g., particle packings have operational significance.
low-density, pqorly bondeq reg|0n§), at least to the extent that It is important to understand (as stressed above) that the
tbhe tﬂonc?(s'?lllne (_:otnstrfalnt pﬁ rm_lts.l fSl.Jl(:h W(_T_?]k spots WOUL? existence of a Kauzmann locus is not equivalent to the existence
te the ni ilﬁ Igg| przlir;iiqommeﬁt aillnlca nale\J’re. n tlisin?pp:lo?r? of an ideal glass transition. This logical disconnection applies
o0 the spinoda um entails a new constraint o € whether quantum or classical statistical mechanics is the
available inherent structures. This may involve elimination of appropriate representation. In fact, none of the experimental
regions within the glassy medium that near the glass transition simulational, or theoretical evidence cited in this paper points

theTpreratzr(iati ?26 be hla/ent;(ﬁed texvsenlrgimtauyll asxg%)?tanr'l'c to the presence of any ideal glass transition in any substance at
eterogeneitie$*°such weak spots would naturally e al positive temperature.

enhanced mobility under thermal agitation, and appear to ) .
underlie the low-temperature failure of the Stok&nstein A recent paper by Sasttjhas presented simulational results
relations” By limiting the number of qualifying inherent for a frequently used classical model glass former that consists
structures, the configurational entroSoniq is necessarily ~ Of @n approximately é%GZO binary mixture of inequivalent
reduced, and since the constraint selects that inherent structurd-€nnard-Jones particlesThe numerical results obtained in that
uniquely qualified to resist fracture, this suggests Ratig = Sastry study included _determlnaltlon of liquid-phase spinodal
0, the same as for the crystal &t= 0. Following a recent curves, and free energies over wide ranges of temperature and
' ¢ density. These results were interpreted so as to seemingly

argument due to Martinez and Angell that configurational an : " ‘
vibrational entropies are proportional to one anoffieve can contradict the proposition advanced here and in ref 39 that the
T = 0 Kauzmann terminus and tie= 0 spinodal minimum

assume that the vibrational entropies for the two phases become ) .
virtually equal as they approach their respective states of involve the same amorphous state. However, it must be pointed

isotropic tensionpmin. This implies that thisT = 0 pair out that the crystal structure or structures for this binary mixture
constitutes a Kauzmann pair. No pair can exist in a greater stateh@ve never been determined, to the best of our knowledge; in

of tension, so this must locate the terminus of the Kauzmann fact: the composition examined may not correspond closely to
curve in theT,p plane. a stoichiometric crystal at all, but rather to a eutectic

compositiork%2Consequently, it is not yet possible to apply the
V. Conclusions and Discussion Kauzmann criteria of equal pressure and entropy to crystal and
) liquid phases as required in our approach. Instead, Sastry

By citing a combination of experimental phase diagrams, €mploys a “glass transition” criterion based solely on the liquid
mean-field model calculations, and theoretical arguments, this free energy. The result of this alternative requirement generates
paper proposes that many substances d|sp|ay “KauzmannﬂOVEl and valuable information about the binary glaSS-fOI’ming
curves” in theirT,p planes, locating crystaliquid phase pairs model. However, it is an independent analysis that does not
with equal pressures and entropies. We do not claim here thatcontradict the approach presented above in section IV.
such curves exist for all substances and models, but the available The phase pairs that have been considered above for the
evidence suggests that this may not be a rare occurrence. Withirpresence of Kauzmann loci have all involved crystals on the
the context of classical statistical mechanics, models with one hand, and isotropic fluids (liquids) on the other hand. Of
particles that exert simple repelling forces (e.g., rigid and soft course this has been the traditional emphasis. However, such
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investigations can in principle be widened to encompass otherto Liquid Helium,2nd ed.; Clarendon Press: Oxford, 1987; pp-16.

phase pairs, one of which is metastable, but both of which have
identical pressure and entropy. Examples of such phase pairs™,

(20) Madelung, Olntroduction to Solid-State Thegrgpringer-Ver-
ag: New York, 1978; Section 3.3.
(21) Atkins, K. R.Liquid Heliunt Cambridge University Press: Cam-

that may possess Kauzmann loci might be (a) crystal, liquid pridge, 1959; p 63.

crystal; (b) liquid crystal, isotropic liquid; (c) crystal polymorph

pairs that interconvert by a first-order phase transition; and (d)
phase pairs involving at least one quasicrystal. At present little

(22) Rastogi, S.; Newman, M.; Keller, ANature 1991, 353 55.

(23) Rastogi, S.; Newman, M.; Keller, A. Polym. Sci. (Polym. Phys.)
B 1993 31, 125.

(24) Rastogi, S.; Hone, G. W. H.; Keller, AMacromoleculesl999

or no attention seems to have been devoted to these possibilitiesgy "ggoo.

but they may be worthy objects for future research.
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