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The glassy state is ubiquitous in nature and technology. The most 
common way of making a glass is by cooling a liquid sufficiently fast 
so that it does not have time to crystallize. The manner in which such 
supercooled liquids acquire amorphous rigidity is poorly understood. 
This lack of knowledge impacts negatively on the design, formula­
tion, and manufacturing of important products in the pharmaceutical, 
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food, communications, energy, and engineering plastics industries. 
We review important recent advances in the fundamental understand­
ing of glasses that have resulted from two complementary statistical 
mechanical viewpoints: the energy landscape formalism and statisti­
cal geometry. The former provides a unifying analytical framework 
for describing the thermodynamic and transport properties of glasses 
and the viscous liquids from which they are commonly formed. Sta­
tistical geometry addresses the quantitative description of a glassy 
material's history-dependent structure. ©2001 Academic Pres& 

I. Introduction 

Glasses are disordered solids. At the molecular level, they have a liquid­
like structure and therefore lack the periodicity of crystals. Mechanically, 
they behave like solids, since they exhibit proportionality between stress and 
deformation under moderate perturbation. Glasses have played a central 
role in our daily lives since ancient times. Man-made glass objects, now almost 
5000 years old, have been found in Egypt (Zarzycki, 1991 ). Ordinary window 
glass, made mostly of sand (Si02), lime (CaC03), and soda (Na2C03), is 
the best-known example of a manufactured amorphous solid. The superior 
properties of pure Si02 sometimes justify the substantial additional costs 
associated with its purification and high melting point, 1713oC (Angell and 
Kanno, 1976). Optical wave guides, for example, consist of pure glassy silica. 
Most engineering plastics are amorphous, as is the silicon used in many 
photovoltaic cells. In the pharmaceutical industry, glasses made of sugars 
and small amounts of water are commonly used for the preservation of 
vaccines and labile biochemicals (Franks, 1994). Metallic glasses (Chaudhari 
and Thrnbull, 1978) command technological interest because of their soft 
magnetism and, in the case of some alloys, their excellent corrosion resistance 
(Greer, 1995). The glassy state is also important in the manufacture and -. 
processing of cookies, crackers, and other cereal-based foods (Blanshard 
and Lillford, 1993). 

In spite of the ubiquity and technological importance of the vitreous 
state, the literature of our profession is quite thin on the subject. In part 
this is because many of the important technical problems that chemical 
engineers have so successfully solved in the past have been closely re­
lated to the petroleum industry and, hence, involve primarily physical and 
chemical transformations that take place in fluids. Glasses, moreover, being 
structurally liquid-like but mechanically solid, and having history-dependent 
properties that nevertheless can persist unchanged over geological times, fall 
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between the clear-cut boundaries into which chemical engineering science 
has traditionally been divided. The properties of a glass, for example, are 
as much a consequence of thermodynamics as they are of kinetics. The for­
mer provides the driving force toward equilibrium, the attainment of which 
is thwarted by following a path- and rate-dependent process that leads to 
the glassy state. This interplay of kinetics and thermodynamics, then, en­
dows a glass with its physical properties. Like any nonequilibrium material, 
a glass has a processing history-dependent structure, another concept the 
quantification of which chemical engineering, with its traditional emphasis 
in fluid-phase transformations, has not been much concerned with in the past. 

These reasons for the comparative marginality of glass science within the 
. chemical engineering literature are rapidly becoming obsolete. Important in­
-dustries that until recently had received comparatively little attention have 
become central to the theory and practice of modem chemical engineering. 

, The pharmaceutical industry is perhaps the best example of this evolution. 
This situation represents a useful broadening of our discipline's scope, com­
plementary rather than antithetical to its traditional petrochemical core. For 
chemical engineers involved in such activities as the design and synthesis of 
new materials, the formulation of pharmaceutical products, or the processing 
of cookies and crackers, knowledge of the solid states of matter is essential. 
We believe that the evolving needs of our practical profession, coupled with 
the trend in virtually all areas of contemporary scholarship toward a lowering 
of barriers between traditional disciplines will bring the vitreous state closer 
to the core of chemical engineering. This will enrich our discipline and should 
in tum lead to novel insights that will improve our basic understanding of 
the vitreous state of matter. 

In this article we review important recent advances in the fundamental 
understanding of glasses that have resulted from two complementary statis­
tical mechanical viewpoints: statistical geometry and the energy landscape. 

·The former addresses the quantitative description of structure. The latter 
provides a unifying framework for describing both the thermodynamic and 

. transport properties of glasses and the viscous liquids from which they are 
commonly formed. There are several excellent reviews of this vast topic. 
Kauzmann's (1948) classic article remains timely today and is still one of the 
best introductions to the field. More recent reviews include the articles by 
Angell (1995), Ediger et al. (1996), and Angell et al. (2000). 

A. PHENOMENOLOGY OF VITRIFICATION BY SUPERCOOLING 

Glasses can be made by a variety of processes, such as reactive pre­
cipitation, electrolytic deposition, quenching of a vapor, ion implantation, 
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chemical vapor deposition, and cold compression of crystals (Zarzycki, 1991; 
Angell, 1995; Debenedetti, 1996). The most common route to the glassy state, 
however, is the rapid cooling of a melt. Thus, the properties of metastable 
liquids cooled below their freezing point (supercooled liquids) are intimately 
related to those of the resulting glass. 

Substances known to form glasses include elements (e.g., P, S, Se ); oxides 
(e.g., Si02, Ge02, B203, P20s, A~03, S~03); chalcogenides (e.g., A~S3); 
halides (e.g., BeF2, ZnC12); salts (e.g., KN03 + Ca(N03)2, K2C03 + MgC03); 
aqueous solutions of salts, acids, or bases [e.g., H2S04 (aq.), LiCl (aq.)]; 
organic compounds (e.g., glycerol, methanol, ethanol, glucose, o-terphenyl, 
fructose); polymers [e.g., polystyrene, poly(vinyl chloride), poly(ethylene 
oxide)]; metal alloys (e.g., Ni + Nb, Cu + Zn); and metal-metalloid alloys. 
(e.g., Pd + Si, Ni + P) (Zarzycki, 1991; Debenedetti, 1996). A glass can be · 
formed provided that the starting liquid is cooled fast enough to avoid crystal­
lization. The cooling rate needed to achieve this is substance-specific. Phenyl , 
salicylate, for example, vitrifies when cooled at a rate of 50°08, whereas the 
vitrification of Ag requires cooling at 1010 oas (Uhlmann, 1972). In gen­
eral, high entropies of fusion and high interfacial tensions favor vitrification 
(Debenedetti, 1996). 

Figure 1 (Debenedetti, 1996) illustrates the relationship between the spe­
cific volume and the temperature of a liquid as it is rapidly cooled at a 
constant pressure. As the temperature is lowered below the freezing point 
Tm, the liquid contracts (provided that its thermal expansion coefficient is 
positive). Cooling causes molecular motion, and hence configurational ex­
ploration, to slow down. Eventually, a condition is reached where molecules 
move so slowly that the liquid cannot equilibrate in the available time im­
posed by the cooling rate, and its structure appears "frozen" on the labora­
tory time scale (e.g., minutes). This falling-out of equilibrium occurs across 
a narrow transformation range where the thermal expansion coefficient de­
creases abruptly to a value generally smaller than that corresponding to the· 
liquid and comparable to that of a crystalline solid. The resulting material is a 
glass. The temperature defined by the intersection of the liquid and vitreous. 
portions of the volume-vs-temperature curve is the glass transition tempera­
ture Tg. Other thermodynamic properties behave analogously to the volume, 
as illustrated in Fig. 2 for the enthalpy (Debenedetti, 1996). 

In contrast to the freezing point, Tg is not a true transition temperature, 
because the vitrification process occurs over a narrow temperature interval. 
Furthermore, Tg depends on the cooling rate. The slower a liquid is cooled, 
the longer the time available for configurational exploration, and hence the 
lower the temperature down to which the liquid can remain in equilibrium. 
Consequently, Tg increases with cooling rate (Moynihan et al, 1976; BrUning 
and Samwer, 1992). 'I)tis means that the properties of a glass depend on the 
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process by which it is formed. The material formed by cooling at a slower rate 
(Fig.1, a), is denser and has a lower enthalpy than the faster-cooled glass, b. In 
practice, however, the dependence of Tg on the cooling rate is rather weak [Tg 
changes by only 3-5°C when the cooling rate changes by an order of magni­
tude (Ediger et al., 1996) ], and the transformation range is sufficiently narrow, 
so that Tg is indeed an important material characteristic (Debenedetti, 1996). 

The narrow transformation range commonly referred to as the glass tran­
sition is the temperature interval where the characteristic molecular re­
laxation time becomes of the order of 100 s (the laboratory time scale). 
The viscosities of several g~ass-forming liquids are shown in Fig. 3 as a 
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Flo. 2. Isobaric relationship between enthalpy and temperature in the liquid, glassy, and 
crystalline states. T m is the melting temperature, and Tg the glass transition temperature. 
The lower diagram shows the behavior of the isobaric heat capacity. The arrow indicates the 
&-function singularity due to latent heat at a first-order phase transition. (From Debenedetti, 
1996.) 

function of the reciprocal temperature. Another common definition of Tg , 
is the temperature at which Tl = 1013 P. Close to the glass transition the 
viscosity is extraordinarily sensitive to temperature. For some melts, such 
as silica, this dependence is well described by the Arrhenius functionality, 
Tl = A exp(E j kT). Other substances exhibit an even more dramatic increase 
in their viscosity close to the glass transition, which is often well represented 
by the Vogel-Tammann-Fulcher (VTF) equation (Vogel, 1921; Tammann 
and Hesse, 1926; Fulcher, 1925) 

Tl = Aexp[Bf(T- To)], (1) 

where Tg > T0 > 0. Understanding the origin of this extraordinary 
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slowing-down of molecular relaxation processes, or, equivalently, of the en­
ergy barriers that give rise to Arrhenius (or super-Arrhenius) behavior, is 
one of the major challenges in the physics of glasses. 

Following an idea proposed by Laughlin and Uhlmann (1972), Angell 
(1985) plotted the viscosity of several glass-forming liquids in Arrhenius 
fashion but with the reciprocal temperature scaled by Tg (see Fig. 4). Since 
all curves coincide at Tg (where 17 = 1013 P), and at high temperatures, where 
17 is close to 10-2 P for many liquids above their melting point (e.g., water), 
a more orderly pattern emerges from this scaled Arrhenius representation, 

· compared to the bare Arrhenius plot shown in Fig. 3. Angell proposed a 
useful classification of liquids into "strong" and "fragile" categories. The 
viscosity of the former behaves in nearly Arrhenius fashion, whereas frag-

. ile liquids show marked deviations from Arrhenius behavior. Silica is of­
ten mentioned as the prototypical strong liquid, whereas o-terphenyl is the 
canonical fragile glass-former. In general, strong liquids, such as the network 
oxides Si02 and Ge02, have tetrahedrally coordinated structures, whereas 
the molecules of fragile liquids experience nondirectional, dispersive forces. 
The strong-fragile pattern is not limited to the viscosity. Any molecular re­
laxation time, 1 when plotted in scaled Arrhenius fashion, will result in a plot 
similar to Fig. 4 (Angell, 1995). 

1 The viscosity is the product of the elastic modulus, G00 , and the shear relaxation time'· 
T} = Goot". 
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Another important characteristic of viscous liquids close to Tg is nonex­
ponential relaxation. Consider the response of a system to a perturbation, : 
such as the polarization in response to an applied electric field, the strain 
(deformation) resulting from an applied stress, the stress in response to 
an imposed deformation, the volume response to applied pressure, or the 
temperature response to a heat flux. It is found experimentally that the tem­
poral behavior of the response function ct>(t), following an initial "instan­
taneous" response, can often be described by the stretched exponential, or 
Kohlrausch-Williams-Watts (KWW) function (Kohlrausch, 1854; Williams 
and Watts, 1970), 

({3 < 1), (2) 
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where 

Cl>{t} = [u(t)- u(oo)]/[u(O+)- u(oo)] (3) 

and u is the measured quantity (e.g., the instantaneous stress following a 
step change in deformation.) • in Eq. (2} is a characteristic relaxation time, 
whose temperature dependence is often non-Arrhenius (fragile behavior.) 
Other functional forms, such as power-law relaxation (Richert and Blumen, 
1994}, have also been used to fit nonsimple exponential behavior. More im­
portant than the exact functional form (especially since those used so far are 
not theoretically based but empirical fits) is the considerable slowing-down 
of long-time relaxation embodied in KWW-type behavior. This contrasts 

; sharply with the behavior of liquids above the melting point, which is usu­
ally well characterized by simple exponential (Debye) relaxation (fJ -+ 1} . 

. The molecular basis of nonsimple exponential relaxation is not fully un­
derstood, but the available evidence· suggests that this sluggishness is the 
consequence of the growth of distinct individually relaxing domains (spatial 
heterogeneity) (Hyde et al., 1990; Richert, 1994; Cicerone and Ediger, 1995, 
1996; Mel'cuk et al., 1995; Hurley and Harrow ell, 1996; Perera and HarroweD, 
1996a,b; Donati et al., 1999a; Bennemann et al., 1999; Wang and Ediger, 1999; 
Ediger, 2000). Whether or not the individual relaxation in each of these do­
mains is exponential is an important and interesting open question (Vidal 
Russell and Israeloff, 2000}. 

B. OPEN QUESTIONS 

The entropy of a liquid at its melting temperature is higher than that of the 
corresponding crystaF However, the heat capacity of a liquid is generally 

' higher than that of the crystal. Thus, the entropy difference between a liq­
uid and its stable crystal decreases upon supercooling. Figure 5 (Kauzmann, 
1948} shows the entropy difference between several supercooled liquids and 
their stable crystals as a function of temperature, at atmospheric pressure. 
For lactic acid the entropy difference decreases so fast that a modest ex­
trapolation of experimental data predicts its vanishing. In practice, the gl~s 
transition intervenes, and the crossing does not occur. This is shown by the 
dotted horizontal lines in Fig. 5. If the glass transition did not intervene, 
the liquid entropy would equal the crystal's at. a temperature TK (the Kauz­
mann temperature.) Below TK the entropy of the crystal approaches zero as 
T tends to zero, and hence the entropy of the liquid would become negative 

2 See Greer (2000) and Rastogi et aL (1999) for an apparent exception. 
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upon further cooling. This violation of the Third Law of Thermodynamics3 is 
known as Kauzmann's paradox, although it was first noted by Simon (1931) 
(Wolynes, 1988). 

The entropy crisis described in the preceding paragraph is the result of 
an extrapolation. With the exception of 3He and 4He (Wilks, 1967),4 there is . 
no known substance for which a Kauzmann temperature is actually reached. 
Nevertheless, the extrapolation needed to provoke a conflict with the Third 
Law is indeed modest for many substances (Angell, 1997), and what inter­
venes to thwart the imminent crisis is a kinetic phenomenon, the labora­
tory glass transition. This suggests a connection between the kinetics and 

3 Negative entropies are inconsistent with Boltzmann's formula, S = kIn Q, where Q denotes 
the number of quantum states corresponding to a given energy, volume, and mass. 

4 4He is a liquid at 0 K and 1 bar (liquid Hell); its equilibrium freezing pressure at 0 K is 
26 bar. At this point, the entropies of the liquid and the crystal are equal, and this is therefore 
a Kauzmann point. The melting curves of both 3He and 4He exhibit pressure minima: these 
occur at ca. 0.32 K eHe) and 0.8 K (4He). These are also equal-entropy (Kauzmann) points. 
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the thermodynamics of glasses (Wolynes, 1988), a striking manifestation of 
which is the fact that fragile glass-formers behave like lactic acid in Fig. 5, 
their entropy of fusion being rapidly consumed upon supercooling (Ito et al., 
1999). Equally intriguing is the fact that for many fragile glass-formers, TK, a 
thermodynamic quantity obtained from calorimetric measurements, is close 
to T0 , a dynamic quantity obtained from transport property measurements 
(Angell, 1997) [To is the singular temperature where the VTF equation, 
Eq. (1), predicts complete structural arrest to occur]. Although the validity 
of extrapolations leading to entropy crises has been questioned (Stillinger, 
1988), the situation depicted in Fig. 5 for fragile liquids such as lactic acid 
prompts inquiry into whether the laboratory glass transition is a kinetically 
controlled manifestation of an underlying thermodynamic transition, the 
ideal glass transition (Gibbs and DiMarzio, 1958). The proper role of ther­
modynamics, and its connection with kinetics, are major open questions in 
the physics of glasses. 

The translational and rotational motion of a Brownian particle immersed 
in a fluid continuum is well described by the Stokes-Einstein and Debye 
equations, respectively, 

D = ksT j6n1Ja 

Dr = ks T j8n T}a3 , 

(4) 

(5) 

where Dis the particle's translational diffusion coefficient, k8 is Boltzmann's 
constant, '1 is the fluid's viscosity, a is the radius of the Brownian parti­
cle, and Dr is its rotational diffusion coefficient.5 Surprisingly, these equa­
tions hold down to the molecular level, and they have, accordingly, found 
widespread application in the interpretation and correlation of data on both 
tracer and self-diffusion in liquids. If account is taken of boundary conditions 
and molecular shape effects, the Stokes-Einstein-Debye relations are often 
accurate to within a factor of 2 (Cicerone and Ediger, 1996) provided T ~ T m. 

In contrast, it is found experimentally that in supercooled liquids the Stokes­
Einstein relationship breaks down around 1.2Tg (Fujara et al., 1992; Cicerone 
and Ediger, 1995, 1996). Below this temperature, translational motion (both 
probe and self-diffusivity) is faster than predicted by the Stokes-Einstein 
equation by factors that become at least as high as 100 near Tg (Stillinger 
and Hodgdon, 1996). Note that this breakdown is in the direction opposite 
to that which would be predicted by invoking a growth in the effective size 
of molecules due to increasingly cooperative rearrangements upon super­
cooling. The inverse relationship between rotational diffusion and viscosity, 
however, continues to be accurately obeyed. This means that, upon cooling 

5 The numerical coefficients 6 and 8 in Eqs. (4) and (5) correspond to no slip at the fluid­
particle interface. Other boundary· conditions result in different numerical constants [e.g., 4 in 
Eq. (4) for fluid-particle slip]. 
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below ca. 1.2Tg, molecules translate increasingly faster than expected based 
on the known viscosity, and they also translate more for every rotation they 
execute. Although a plausible interpretation of the data has been offered in­
voking spatially heterogeneous dynamics (Cicerone and Ediger, 1995, 1996; 
Stillinger and Hodgdon, 1996), this remains a very active area of research 
because a definitive explanation of experimental observations does not exist 
(Wang and Ediger, 1999; Cicerone and Ediger, 1995, 1996; Hinze et al., 1999; 
Liu and Oppenheim, 1996; Tarjus and Kivelson, 1995). 

Sophisticated theoretical tools and experimental protocols exist for the 
characterization of crystalline structure (Kittel, 1966). The situation is quite 
different with disordered materials. The quantitative description of glassy 
structure is an important open problem. Ideally, this description should 
be based on structural order parameters that vary continuously between 
0 (complete randomness) and 1 (perfect order). These order parameters 
should track specific types of order, such as translational order (the tendency 
of molecules to occupy preferred positions in space) and orientational order 
(the tendency of anisotropic molecules to adopt a preferred orientation). 
The development of an analytical framework for quantifying disorder is still 
in its infancy (Ziman, 1979; Zallen, 1983; Torquato et al., 2000; Truskett 
et al., 2000). Progress in this area could lead to advances in the early detec­
tion of tumors (Hama et al., 1999), the design of transdermal drug delivery 
systems (Brinon et al., 1999), the prediction and characterization of flow 
through porous media and packed beds (Bryant and Blunt, 1992; Torquato, 
1994; Sahimi, 1995), the efficient handling and processing of powders and 
granular materials (Shahinpoor, 1980), and the characterization and pro­
cessing of foods (Blanshard and Lillford, 1993). 

Other important unanswered questions were mentioned in Section LA 
(origin of energy barriers that give rise to Arrhenius and super-Arrhenius 
behavior close to T8 , origin of stretched exponential dynamics). Clearly, 
there are large gaps in our knowledge of disordered solids and the liquids 
from which they are commonly formed. In this article we review recent 
theoretical progress toward an improved understanding of glasses and su­
percooled liquids resulting from the application of the energy landscape 
formalism and statistical geometry. 

c. STRUCfURE OF ThiS ARTICLE 

In Section II we define energy landscapes, and we present the formalism 
that relates potential energy minima to the thermal properties of super­
cooled liquids and glasses. Section III discusses the characterization of voids 
in dense particle packings, and how this approach, combined with energy 
minimization techniques, can yield powerful new insights into the mechanical 
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properties of glasses. Also included in this section is a discussion of recent 
work on the characterization of disorder and its application to model hard­
sphere glasses. The intriguing connection between the dynamics and the ther­
modynamics of the glassy state is discussed in Section IV. It is shown there 
that understanding the manner in which a supercooled liquid samples its po­
tential energy surface provides powerful insight into stretched exponential 
behavior, low-temperature breakdown of the Stokes-Einstein behavior, and 
the connection between entropy and viscous slowdown. Section V introduces 
the statistical description of an energy landscape and derives its connection 
to a macroscopic system's thermodynamic properties. It also suggests exper­
imental and computational routes to the investigation of landscape statistics. 
Section VI summarizes the significant progress that has occurred in recent 
years through the application of energy landscape and statistical geome­
try concepts to the understanding of disordered solids and the liquids from 
which they are formed, and lists major open questions. 

II. The Energy Landscape 

The interactions operating among the atoms, ions, or molecules of any 
material system play a dominant role in determiniD.g static and dynamic 
properties of that system. Dilute gases are easy to analyze, at least concep­
tually, in that interactions occur primarily in isolated small clusters (pairs, 
triplets, etc.). But the situation is qualitatively different and far more chal­
lenging for fluid and solid condensed phases: virtually every particle remains 
in constant contact with many neighbors, and the system presents a volume­
spanning macroscopic cluster. In particular, this is true for the supercooled 
liquids and glasses that form the subject of this article. 

Under these condensed-phase conditions it is natural to consider the full 
N-body potential energy function <l>(r1 ... rN) for the material system of in­
terest and to seek to describe the way its details generate the wide variety 
of collective thermodynamic and kinetic phenomena that have been experi­
mentally observed in condensed matter. For the remainder of this section we 
suppose that all N particles are the same chemical species and that vectors 
r; comprise all relevant position, orientation, conformation, and vibration 
coordinates. For the moment, volume V will be constant. 

Except for configurations with coincidence of nuclei, <I> is bounded and ar­
bitrarily differentiable in all its coordinates. Therefore it is useful to examine 
the geometry of the smooth hypersurface generated in the multidimensional 
space of variables, 

(6) 
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This hypersurface constitutes the system's energy landscape. If v is the num­
ber of internal degrees of freedom per particle (orientation, conformation, 
etc.), then the dimension of the space ( 6) will be 

(3 + v)N + 1. (7) 

Theoretical study of the N-body system now focuses on the <I> hypersurface 
topography, or, more colloquially, its "rugged landscape." Specific landscape 
characteristics of interest are the number of minima and their distribution 
and the nature of saddle points (transition states) throughout the landscape. 
A schematic illustration of an energy landscape is shown in Fig. 6 (Stillinger, 
1995). 

The early work of Goldstein (1965, 1969) is a prescient precursor of 
the topographic viewpoint of condensed phases (Stillinger, 1995) illustrated 
schematically in Fig. 6. Landscape-based ideas have since found fruitful ap­
plication to a wide variety of problems, such as protein folding (Frauenfelder 
et al., 1991; Wolynes, 1992; Abkevich et al., 1994; Chan and Dill, 1994; 
Frauenfelder and Wolynes, 1994; Saven et al., 1994; Wolynes et al., 1995; 
Wang et al., 1996; Plotkin et al., 1996, 1997; Becker and Karplus, 1997; Dill and 
Chan, 1997; Wolynes, 1997), melting and freezing phenomena (La Violette 
and Stillinger, 1985a; Patashinski and Ratner, 1997), the mechanical proper­
ties of glasses (Lacks, 1998; Malandro and Lacks, 1997, 1999; Utz et al., 2001 ), 
shear-enhanced diffusion in liquids and colloidal suspensions (Malandro and 

TRANSITION STATES 
(SADDLE POINTS) 
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PERMUTATIONS 
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Flo. 6. Schematic illustration of an energy landscape for a many-particle system. The hor­
izontal direction represents all configurational coordinates. (Reprinted with permission from 
F. H. Stillinger. A topographic view of supercooled liquids and glass formation. Science 1995; 
267:1935. Copyright© 1995, American Association for the Advancement of Science.) 
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Lacks, 1998), the dynamics of supercooled liquids (Schulz, 1998; Sastry et al., 
1998a; Keyes, 1999), and economic optimization with complex cost functions. 
A useful collection of papers on this topic can be found in the volume edited 
by Frauenfelder et al. (1997). The landscape formalism presented in the rest 
of this section focuses on supercooled liquids and glasses. 

Symmetries intrinsic to the N-body system lead to a partitioning of the 
configuration space into equivalent symmetry sectors. If y is the symmetry 
number for each particle, the number of sectors is 

r = N!yN, (8) 

where the first factor N! accounts for the exchange permutations that are 
. possible with the N identical particles. The potential energy landscape thus 
- consists of many replicas of a primitive topographic parcel. In particular, 

each distinguishable <l> minimum and saddle point appears r times in the 
configuration space. The <l> local minima offer a conceptually simple way 
to describe the fine details of the energy landscape. The system configura­
tion r1 ... rN at any one of these minima by definition is one with overall 
mechanical stability: forces and torques on every particle vanish simultane­
ously. For this reason these discrete special configurations are often called 
"inherent structures" (Stillinger and Weber, 1982). It has been demonstrated 
(Stillinger, 1999) that in the large-system limit, the number of inherent struc­
tures in each symmetry sector rises exponentially with N, assuming that the 
number density N j V (>0) is held fixed. 

Identification of inherent structures leads to a natural division of the 
multidimensional configuration space into nonoverlapping regions, one for 
each inherent structure, that cover the entire space. The most direct way to 
accomplish this is to use steepest descent mapping, defined by solutions to 
the equation set 

drifds = -o<l>for; (1::::; i::::; N; 0::::; s), (9) 

where sis a "progress variable." The locus of all points that connect to a given 
. inherent structure by solutions to Eq. (9) define the "basin of attraction" for 

that inherent structure (see Fig. 6). These basins contain all configurations 
that can be viewed as vibrationally distorted versions of the respective inher­
ent structures. Small intrabasin displacements from the inherent structure 
minimum will be accurately described as harmonic motions, while those 
of higher amplitude that carry the system configuration close to a shared 
boundary between two basins will tend to be strongly anharmonic. 

The deepest basin in each symmetry sector corresponds to the most nearly 
perfect crystalline arrangement of the N particles in the available volume 
V for that crystal structure that is stable at 0 K. If Vis conformal with that 
crystal structure, and N is on~ of the corresponding "magic number" integers, 
then the inherent structure at the bottom of these r deepest basins will be 
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that of a defect-free crystal. Small displacement then are conventionally de­
scribed as composed of independent phonons (Ashcroft and Mermin, 1976). 
The simplest structural excitations from this defect-free state to neighboring 
higher-lying basins involve localized rearrangents that produce point defects 
in the crystal and are expected to occur in O(N) different real-space loca­
tions or, equivalently, along the same number of distinct directions in the 
multidimensional configuration space. At the other extreme each symme­
try sector will contain one (or more) highest-lying basins. These surround 
inherent structures that are energetically the least favorable ways to ar­
range the N particles in space to achieve mechanical stability. In most cases 
of interest this requirement is expected to produce an amorphous particle 
deposit. 

The potential energy range between the lowest- and the highest-lying 
basin bottoms is an extensive property of the N-body system. In view of the 
fact that exponentially many (inN) distinct inherent structures are crowded 
in between these limits, it is sensible to consider the statistical distribution 
of basins in a symmetry sector by depth. Let 

¢ = cf)jN (10) 

be an intensive order parameter for classifying basins by depth (Speedy, 
1999). We can write the following expression, asymptotically valid in the 
large system limit, for that distribution (Stillinger, 1999) 

dQ 
d¢ = Cexp[Na(¢)], (11) 

where dQ denotes the number of inherent structures with a depth (on a per 
particle basis) between ¢ and ¢ ± d¢ f2. Here C and a ( ¢) are independent 
of N, with the former a scale factor with dimension inverse energy. If ¢c 
and ¢w, respectively, stand for the ¢ values of the lowest-lying (crystalline) 
and the highest-lying (worst) inherent structures, then a(¢), the basin enu­
meration function, will be nonnegative and continuous between these limits, 
presumably with 

a(¢c) = 0 

a(¢w) = 0 

and passing through at least one maximum between these limits. 
A vibrational partition function can be assigned to each 

(Debenedetti et al., 1999), 

Qv,a = A-N (f3) { dr1 ... drN exp{f3[ cf)a - cf)(rt ... rN )]}, 
JB(a) 

(12) 

basin a 

(13) 

where A comes from in,tegration over conjugate momenta, f3 = 1/ kB T, B (a) 
is the region occupied by basin a in the multidimensional configuration space, 
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and <I>" is the potential energy of the embedded inherent structure. While 
these Q v,a will surely vary from basin to basin, it is their average dependence 
on order parameter (jJ that is most significant. For that reason, select a narrow 
range (jJ ± e (e eventually to go to zero after the large~system limit), and 
compute the vibrational free energy per particle av(l/J, /3) as the following 
arithmetic mean over this narrow basin fraction: 

exp[-Nf3av(/3, l/J)] = (Qv,a(/3)}<1>±•· (14) 

With the benefit of the a and av definitions, it becomes possible to ex~ 
press the canonical partition function for the N~particle system as a simple 
¢ integral (Stillinger and Weber, 1982), 

Q(N, V, /3) = A-N J dr1 ... drN exp[ -/3<1>(r1 ... rN)] 

1</>w 

= C <Pc d¢ exp{N[a(l/J)- f3l/J- f3av(f3, ¢)]} (15) 

= exp( -f3A), 

giving the Helmholtz free energy A as usual.6 The large~N limit causes the 
integrand, and thus the integral itself, to be dominated by the neighborhood 
of the maximum of the bracketed combination appearing in the exponent. 
Let ¢(13) denote the value of the order parameter which produces the in­
tegrand maximum at the temperature under consideration. The Helmholtz 
free energy per particle then possesses the simple form 

-f3A(f3)/N = a[¢(13)]- 13¢(13)- f3av[f3, ¢(/3)]. (16) 

Temperature variations cause¢ to shift, thereby accessing different posi-
0 tions of the basin-depth distribution function (11 ). In any event ¢(13) identi­

fies the set of basins preferentially inhabited at the chosen temperature. As 
will be shown in Section V, a(¢) for low molecular weight substances in the 

· liquid state tends to fall in the range 1 to 10 (see also Stillinger, 1998; Speedy, 
1999). 

If N is equal to Avogadro's number, the single-sector distribution (11) 
will contain an overwhelmingly dominating factor approximately equal to 

(17) 

With any reasonable estimate for the kinetic rate of interbasin transitions, 
it would take far longer than the age of the Universe for the 1-mol system 

6 Both a and av depend on density. The notation in (15) and (16) corresponds to isochoric 
exploration of the landscape. 
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to visit all of the basins that are relevant for the given temperature (even 
if no returns to previously visited basins occurred). Given this situation, it 
is important to understand that thermal equilibrium on the laboratory time 
scale involves sampling only a tiny, but representative, subset of the basins 
designated a(¢). 

Equation (16) for the Helmholtz free energy shows that equilibrium ther­
modynamic data intrinsically entangles basin numeration (a) and vibra­
tion (av) aspects of theN-body system (Stillinger et al., 1998; Stillinger and 
Debenedetti, 1999). Partial disentanglement becomes possible upon leaving 
the equilibrium domain. Specifically, very rapid temperature quenches from 
an equilibrium state at T can trap the system in a basin or small group of 
neighboring basins contained in a[¢(tl)]. Indeed, the ideal limit of infinitely . 
rapid temperature quench to 0 K would be equivalent to the steepest descent 
mapping that defines the inherent structures and their basins. In this way the 
energies and structures of individual inherent structures could in principle 
be determined. 

Crystal nucleation from a pure melt in the neighborhood of its thermody­
namic freezing point is kinetically sluggish for most substances, thus permit­
ting at least some amount of liquid supercooling. This circumstance violates 
the "representative sampling" mentioned above, by excluding those basins 
whose inherent structures contain some significant amount of crystalline or­
der. Those basins not so excluded correspond to amorphous inherent struc­
tures, whose depth distribution could be described by aa(rP ), where 

(18) 

A free energy expression for the metastable supercooled liquid, exactly anal­
ogous to that shown in Eq. (16), now becomes applicable: 

-tJAa(tl)/N = aa[Cfia(tl)]- tl¢a(tl)- tJa~[tJ, Cfia(tl)]. (19) 

As indicated, the vibrational free energy requires an average over the re­
stricted basin set, and Cfia(tl) is the statistically preferred depth in that set 
obtained by maximizing this modified expression. Of course, even this ex- , 
tension (19) breaks down at and below a glass transition temperature. 

Although the various considerations covered in this section could be used 
to determine some basic characteristics of the multidimensional energy land­
scape, much would remain undetermined. In particular, details about inter­
basin transition states and about the overall arrangement of the basins of 
various depths have not yet been illuminated. The time-dependent phe­
nomena considered in Section IV can supply at least some of the desired 
information. 

The development thus far has implicitly assumed constant-volume 
(isochoric) conditions. Constant-pressure (isobaric) conditions are also 
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experimentally important and can simply be handled by appending 
volume V, now variable, to the list of configurational coordinates: 

(20) 

At the same time, the pressure-volume product should be appended to the 
potential energy function 

(21) 

to yield a "potential enthalpy." The dimension of the augmented configura­
tion space thus increases by unity, and the "rugged landscape" is that of \11. 
All of the preceding considerations adapt to this alternative circumstance, 

. with basins distributed in depth by the intensive order parameter, 

1/l='li/N, (22) 

· the analogue of Eq. (10). 

Ill. Statistical Geometry and Structure 

Unlike crystalline solids, supercooled liquids and glasses are character­
ized by a topological complexity at the molecular level that eliminates long­
range periodic order. This should not be surprising given that experimental 
protocols for glass formation, by design, frustrate the natural tendency of 
substances to crystallize at low temperatures. Moreover, since supercooled 
liquids "fall out of equilibrium" upon vitrification, the details of the resulting 
glassy structures depend sensitively on the mode of preparation, i.e., on the 
thermal processing history (Angell, 1995; Debenedetti, 1996). 

Although long-range order is noticeably absent in liquids and glasses, 
species-dependent intermolecular interactions (e.g., "hard-core" repulsion 
or strong molecular association) inevitably promote the buildup of sub­
stantial short-range order in condensed phases, as evidenced by diffraction 
experiments (Zallen, 1983) and molecular simulation (Angell et al., 1981). 
Although the molecular-based study ofliquids and their mixtures is an impor­
tant component of modem chemical engineering research (e.g., Theodorou, 
1994; Prausnitz, 1996; Gubbins and Quirke, 1996, Debenedetti, 1996; Davis, 
1996; Deem, 1998), comparatively less effort has been devoted to the prob­
lem of characterizing and quantifying structure in disordered phases.? 

In this section, we examine recent developments in the description and 
interpretation of the underlying geometric structure of the liquid and glassy 

7 The use of fractal and percolation concepts to characterize pore-space topology (Sahimi, 
1993) is a notable exception. 
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state. In particular, we focus on the application of powerful new theoretical 
and algorithmic tools to interrogate the nature of molecular ordering and 
the geometry of the intervening void space in model systems. 

A. Vom GEOMETRY AND CoNNECTIONs TO THE ENERGY LANDSCAPE 

The complex geometry of the pore structure, or alternatively the void 
space, in a material (including its volume, surface area, and connectivity) can 
play a central role in determining many of its physical properties. Examples 
include transport processes in porous media (Torquato, 1991; Reiss, 1992); 
permeability, flow, and diffusion of fluids in packed beds (Thompson and 
Fogler 1997); mass transfer in polymeric glasses (Greenfield and Theodorou, 
1993); adsorption in zeolite crystals (Dodd and Theodorou, 1991); stability 
and function of proteins and nucleic acids (Liang et al., 1998); bubble nucle­
ation (Shen and Debenedetti, 1999); the thermodynamics of fluids (Speedy, 
1980; Sastry et al., 1998b ); and the nature of phase transitions in condensed­
phase systems (Reiss and Hammerich, 1986; Bowles and Corti, 2000). 

Given the diversity of relevant applications, it is not surprising that the 
characterization of voids in .disordered systems has an appreciable history, 
which can be traced back to primitive "hole" theories of the liquid state 
(Frenkel, 1955; Ono and Kondo, 1960). While the early theories offer an 
admittedly rudimentary "lattice" description of voids, recent computational 
advances permit an exact (and highly efficient) characterization of the con­
tinuum void geometry present in particle packings in two (Rintoul and 
Torquato, 1995) and three dimensions (Sastry et al., 1997a). 

An important recent development in the rigorous characterization of dis­
ordered materials is the geometric algorithm of Sastry et al. (1997a ). It allows 
the identification of disconnected cavities in monodisperse and polydisperse 
sphere packings, and the exact determination of the volume and surface 
area of these packings (Fig. 7).8 This algorithm has proven to be a pow­
erful tool for probing the void geometry of metastable liquids and glasses 
(Sastry et al., 1997b, 1998b; Shen and Debenedetti, 1999; Vishnyakov et al., 
2000; Utz et al., 2001). It should be mentioned in passing that some of the 
void quantities mentioned above can, at least in principle, be determined 
using standard Monte Carlo sampling methods (Shah et al., 1989). However, 

8 In any sphere packing, it is possible to partition the given volume into occupied and avail­
able space. The former is the union of all the exclusion spheres, and the latter is its complement, 
namely, the volume available for the placement of the center of an additional sphere. The exclu­
sion region of a sphere of diameter cr is a concentric sphere of radius cr. Exclusion spheres can 
overlap. At a high enough density, the available space is in general composed of disconnected 
cavities. 
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Flo. 7. A random configuration of atoms (black} surrounded by exclusion spheres (gray). 
The disconnected pockets of space that lie outside of the generally overlapping exclusion spheres 
are termed "cavities" (cross-hatched}. A natural choice for the effective exclusion radius for 
the Lennard-Jones fluid is rex = u' the Lennard-Jones diameter. 

stochastic schemes become unsatisfactory at high density, when the volume 
fraction of the void space is small (Rintoul and Torquato, 1995). 

The geometric algorithm of Sastry et al. (1997a) is based on a Voronoi­
Delaunay tessellation9 (Tanemura et al., 1983). It consists of three basic 
steps. 

(a) Identification of cavities. This is accomplished by obtaining the per­
colation clusters of Voronoi edges in the void. 

(b) Identification of polyhedra enclosing the cavities. The union of 
Delaunay tetrahedra dual to the Voronoi vertices in a cavity provides 
an upper bound on the cavity volume. 

(c) Determination of cavity volume and surface area. This is done 
by a systematic decomposition of each Delaunay tetrahedron into 
24 subunits. 

For details on each of these steps, interested readers should consult the 
original paper (Sastry et al., 1997a). 

9 The Voronoi tessellation divides space into polyhedral regions that are closer to the center 
of a given particle than to any other. Joining pairs of particle centers whose Voronoi polyhedra 
share a face yields a dual tessellatiQn of space into Delaunay simplices. 
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The application of this algorithm to explore the morphology of Lennard­
Janes inherent structures has yielded new insights into the fundamental na­
ture of the glass transition and suggested a possible and previously unsus­
pected connection with bubble nucleation in liquids under tension. Sastry 
et al. (1997b) investigated the inherent structures of a Lennard-Jones system 
with smoothly truncated interactions. The results from this study, together 
with previous work on single-component, nonassociating liquids (Weber and 
Stillinger, 1984; La Violette and Stillinger, 1985b; Stillinger and Weber, 1985; 
La Violette, 1989; Stillinger and Stillinger, 1997), reveal that the packing ge­
ometry and energy of the inherent structures are virtually independent of 
the equilibration temperature. In contrast, it is known that the energy land­
scape exhibits a rich and highly nontrivial density dependence (La Violette, 
1989; Sastry et al., 1997b; Malandro and Lacks, 1997). It is precisely the 
exploration of this density dependence that has yielded important new in­
formation on the glass transition, metastability, and nucleation (Sastry et al., 
1997b; Debenedetti et al., 1999). 

In the case of the shifted-force Lennard-Jones system, Sastry et al. ( 1997b), 
confirming earlier similar observations by La Violette (1989) showed that in­
herent structure morphologies can divided into three distinct intervals in 
density: 

A: 0.99 < pa 3 

B: 0.89 < pa3 < 0.99 

C: pa3 < 0.89. 

(23) 

Here, a and 8 are the familiar Lennard-Janes parameters, p is the num­
ber density (p = N j V), N is the number of molecules, and V is the total 
volume. As a point of reference, the reduced triple-point density and the 
critical-point density for the liquid in this model occur at PTPa3 = 0.815 and, 
Pca3 = 0.323, respectively (the corresponding critical pressure and temper­
ature are Pca3 /8 = 0.0805 and kTc/8 = 0.935) (Errington, 2000). 

Figure 8 illustrates the nonmonotonic density dependence of the average 
pressure in the inherent structures. In the first of these intervals (A), the 
inherent structures exist at a positive pressure (although the pressure is 
smaller in magnitude than for the equilibrated fluid configurations at the 
same density). Interval B contains inherent structures in tension (i.e., at 
negative pressure). Note that the magnitude of the tension in these structures 
increases with decreasing density, approaching a state of maximum isotropic 
tensile strength at a reduced density of 

pa 3 = 0.89. (24) 

Interval C also shows inherent structures with negative pressures; however, 
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FIG. 8. Density variation of the inherent structure pressure for a fluid with a smoothly trun­
cated Lennard-Jones potential (Sastry et al., 1997b ). Regions A, B, and C identify distinguishing 
density intervals for the inherent structures discussed in the text. 

in this density range, the sustained tension is clearly reduced with decreasing 
density. 

A detailed geometric analysis (Sastry et al., 1997b) of the void space in the 
inherent structures reveals that the density of maximum tension Ps has special 
significance. It represents the density below which the attractive interactions 
in the system are unable to sustain a mechanically stable packing that is 
amorphous, isotropic, and statistically homogeneous. This density, known 
as the Sastry density, is an important material characteristic: since a glass 
is a liquid arrested at (or close to) a mechanically stable configuration, or 
inherent structure, we reach the important conclusion that it is not possible 
to form a homogeneous glass below a material's Sastry density. 

Expanding the system to lower densities literally shreds the inherent 
structures into several densely packed regions threaded by large system­
spanning voids. Given that equilibrium liquid configurations in interval C 
"fracture" as they are continuously deformed into their respective local po­
tential energy minima, it is not surprising that the tension sustained in the 
resulting heterogeneous inherent structures declines with decreasing density. 
Although extremely low-de:p.sity inherent structures (pa 3 < 0.60) have not 
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been systematically investigated, the rational expectation is that the tension 
will monotonically diminish as the density approaches zero. The geometry 
of the resulting mechanically stable structures should be extremely tenu­
ous, perhaps resembling aerogels (Fricke, 1986; Kieffer and Angell, 1988; 
Stillinger, 2001 ). Finally, we point out that the structures at pa3 ~ 0.99 expe­
rience zero pressure and may indeed exhibit features similar to amorphous 
deposits prepared from low-pressure vapor deposition of single-component 
substances. 

The shape of the pressure versus density curve in Fig. 8 is reminiscent 
of the metastable pressure isotherms which cross through the vapor-liquid 
coexistence region, as predicted by the van der Waals equation of state and 
other mean-field theories (Hirschfelder et al., 1954). In fact, Sastry et al. 
(1997b) argued that the curve shown in Fig. 8 represents the true zero­
temperature limit of such metastable isotherms in the smoothly truncated 
Lennard-Jones fluid, and hence the extremum of the p(p) curve at the Sastry 
density is the low-temperature limit of the spinodal curve along which the 
superheated liquid becomes mechanically unstable with respect to the vapor. 
This identification is supported by mean-field calculations on a number of 
model systems (Debenedetti et al., 1999), as discussed in more detail in 
Section V. The important point here is the intriguing connection and possible 
convergence of the limit of stability upon superheating and the ultimate 
vitrification limit upon supercooling. 

The results of the simple Lennard-Jones fluid invite the following ba­
sic question about materials: What aspects of molecular architecture (e.g., 
shape, symmetry, flexibility, etc.) are crucial in determining the details of the 
energy landscape and, ultimately, the structural and mechanical features of 
the liquid and the glass? To shed some light on this important issue, the den­
sity dependencies of various properties of the energy landscape have been 
recently explored for molecular models of ethane, pentane, and cyclopen­
tane (Utz et al., 2001). Interestingly, the molecular liquids were found to 
be very similar to the Lennard-Jones fluid in one respect: the "equation 
of state" of the energy landscape, i.e., the relationship between inherent 
structure pressure and bulk density, appears to be virtually independent of 
temperature. The extent to which molecular factors such as chain length and 
branching will alter this picture is a fascinating open question. Details of the 
void geometry reveal another interesting feature, namely, that the surfaces 
of the inherent structure cavities that form below Ps (the density of max­
imum tensile strength) are enriched in end groups (Utz et al., 2001). This 
finding may have important implications for understanding the mechanisms 
for cavitation in chain-like fluids. 

An analogous but much richer behavior is expected to be exhibited by 
good glass-forming m~terials. As discussed in more detail in Section IV, 
the mean inherent structure energy in these systems can show a significant 
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dependence on equilibration temperature (Sastry et al., 1998a). Further­
more, the average inherent structure pressure and the underlying void ge­
ometry are expected to be notably temperature dependent, replacing the 
simple result shown for the Lennard-Jones fluid in Fig. 8 with a family 
of curves. The prediction, although (to the best of our knowledge) not 
yet tested experimentally, is that lower equilibration temperatures will re­
sult in inherent structures which are more capable of resisting dilatational 
fracture. 

Finally, we note that the specific, directional hydrogen bonds present in 
liquid water and aqueous solutions confer complexity to their underlying 
energy landscapes. The wide diversity of inherent structures in water is evi­
denced experimentally by the existence of multiple crystalline polymorphs 
(Eisenberg and Kauzmann, 1969), clathrate networks (Davidson, 1973), and 
high- and low-density amorphous solids (Mishima and Stanley, 1998). Recent 
simulations of a model for liquid water (Roberts et al., 1999) indicate that its 
energy landscape is indeed rugged and diverse. Not only are the properties 
of the inherent structures temperature dependent, but also Roberts et al. 
(1999) demonstrate that in some density ranges the amorphous inherent 
structures can attain lower potential energies than the ground states of the 
pure crystalline forms. Although the structural features underlying the en­
ergy landscape have not yet been elucidated, this observed behavior suggests 
the possibility of a microscopic interpretation of many of water's anomalous 
features, including the observed polyamorphic transition between its glassy 
phases (Mishima and Stanley, 1998) and the fragile-to-strong transition (Ito 
et al., 1999) as water is supercooled to its vitreous form. 

The systematic investigation of structure, void distribution, and morphol­
ogy in mechanically stable packings (inherent structures) is still in its infancy. 
Yet what has been learned so far about the mechanical properties of molec­
ular glasses (Utz et al., 2001), absolute limits to vitrification (Debenedetti 
et al., 1999), the phase behavior of metastable water (Roberts et al., 1999), 
and bubble nucleation (Sastry et al., 1997b; Utz et al., 2001) suggests that 
exploring the connection between statistical geometry and energy land­
scapes is a powerful route to understanding and eventually predicting the 
thermal and volumetric properties of supercooled liquids and glasses. 

B. QuANTIFYING MoLECULAR DISORDER IN EQUILIBRIUM 

AND GLASSY SYSTEMS 

Although significant theoretical and computational progress has yielded 
valuable insights into the morphology of void space in supercooled liquids 
and glasses, much remains to be clarified about the nature of molecular­
level disorder present in amorphous systems. Glassy systems are of special 
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interest because they exhibit rich and complex microstructures with pro­
nounced molecular correlations, yet they lack the long-range order charac­
teristic of crystalline solids. In this subsection we focus on recent advances in 
the description of simple models of disordered condensed phases; however, 
it should be emphasized that the general problem of describing quantita­
tively the types of disorder that nature exhibits over a wide variety of length 
scales (e.g., porous rock, plant structure, tissues) is of enormous scientific 
and technical importance (Cusack, 1987; Laughlin et al., 2000; Truskett et al., 
2000). 

At one extreme, a truly random system, by definition, can exhibit 
no molecular correlations, be they positional, orientational, or conforma­
tional-its structure is that of an ideal gas. On the other hand, a perfect pe­
riodic crystalline array is a manifestation of perfect order. Our experience 
with molecular systems in Nature indicates that these extremes exist only as 
limiting concepts. Between the ideal gas and the perfect crystal lie imperfect 
gases, liquids (both stable and metastable), liquid crystals, defective crystals, 
incommensurate structures, quasicrystals, and a variety of structures that or­
ganize by nonequilibrium processes, such as glasses and materials formed by 
irreversible adsorption onto a substrate. Depending on the point of view, all 
such systems exhibit a certain degree of order (or disorder), and the differ­
ences between them can be remarkably subtle. For instance, the problem of 
distinguishing between the structure of dense glasses and that of polycrys­
talline materials remains a significant challenge for materials scientists and 
engineers (Zallen, 1983; Cusack, 1987). 

To describe quantitatively the disorder present in a material, it is often 
convenient to introduce a structural order parameter. This term refers to a 
metric that can detect the development of order in a many-body system, 
perhaps by employing the tools of pattern recognition (Brostow et al., 1998). 
In many cases, such a measure is constructed to serve as a "reaction coordi­
nate" for a thermodynamic phase transition (van Duijneveldt and Frenkel, 
1992). However, since the form of the order parameter clearly depends on 
the phenomenon of interest, the development of such measures can be a 
difficult and subtle matter. 

Given that the supercooling of a liquid can lead to structurally distinct 
possibilities (the stable crystal or a glass), structural order parameters are es­
pecially valuable in understanding low-temperature metastability. In partic­
ular, it has been demonstrated (van Duijneveldt and Frenkel, 1992) that the 
bond-orientational order parameters introduced by Steinhardt et al. (1983) 
are well suited for detecting crystalline order in computer simulations of 
simple supercooled liquids. The bond-orientational order parameters are so 
named because they focus on the spatial orientation of imaginary "bonds" 
that connect molecules to their nearest neighbors defined as above with 
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the Voronoi-Delaunay tesselation. If these bond orientations persist over 
a macroscopic distance in the sample (e.g., as they do in a perfect crystal), 
then the system is said to be bond-orientationally ordered. 

Of particular interest is the specific bond-orientational order parameter 
given by 

(25) 

where Y 6 m represents the spherical harmonic associated with the orienta­
tion ( (), ¢) of a bond in the laboratory reference frame, and the overbar 

. indicates an average over all bonds in the sample. The parameter Q6 has the 
- desirable property that it vanishes for a completely random system in the 
infinite-volume limit (Rintoul and Torquato, 1996), whereas it is significantly 

· larger when crystallites are present, attaining its maximum value for space­
filling structures (Q~cc = 0.5745 in the perfect face-centered cubic (FCC) 
lattice). Q6 is also large for a number of alternative crystalline structures, in­
cluding the body-centered cubic, the simple cubic, and the hexagonal lattices 
(Steinhardt et al., 1983). This property renders Q6 an extremely valuable tool 
for investigating metastability and crystal growth in computer simulations of 
simple atomic fluids and colloidal suspensions (Rein ten Wolde et al., 1996; 
Rintoul and Torquato, 1996; Lacks and Wienhoff, 1999; Huitema et al., 1999; 
Richard et al., 1999). In what follows, we normalize the bond-orientational 
order parameter Q6 by its value in the perfect FCC lattice, 8 = Q6! Q~cc. 

In contrast to the bond-orientational order parameters mentioned above, 
scalar measures for translational order [that is, of the tendency of particles 
(atoms, molecules) to adopt preferential pair distances in space] have not 
been well studied. However, a number of simple metrics have been intro­
duced recently (Truskett et al., 2000; Torquato et al., 2000, Errington and 
Debenedetti, 2001) to capture the degree of spatial ordering in a many-body 
system. In particular, the structural order parameter r, 

"'Nc (n. _ n~deal) 
~r=l ' z r= , 

"'Nc ( crystal _ ideal) 
L-d=l ni ni 

(26) 

was constructed to measure the degree of translational order in a system 
relative to some relevant crystallattice10 (Truskett et al., 2000; Torquato et al., 
2000). To understand the structural order parameter r, we consider three 
systems with the same number density p: the system of interest, a completely 

10 The structural order parameter r should not be confused with the relaxation timer defined 
in Eq. (2). 
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random system (i.e., an ideal gas), and the reference crystal lattice. Here, 
n~tai indicates the number of neighbors that are located in a molecule's 
ith neighbor shell (a distance r; from the molecule) in the reference crystal 
lattice. Similarly, nldeai refers to the average number of neighbors that are 
located at a distance rfrom a molecule [where r; - (a8j2) < r < r; + (a8/2)] 
in the ideal gas. Finally, n; measures the number of neighbors that lie in that 
same spherical shell surrounding a molecule in the system of interest. As 
can be seen from (26), -r quantifies the degree of spatial ordering in the 
system of interest by "metering" its position between the two natural limits, 
the ideal gas ( -r = 0) and the perfect crystalline lattice ( -r = 1 ). In the above 
outline, a= r1 (the first nearest-neighbor distance for the reference crystal), 
8 is a shell width parameter, and Nc is the total number of neighbor shells _ 
considered in the reference crystal. 

The structural order parameter -r was originally introduced to investigate 
ordering in the hard-sphere system, for which the appropriate reference -
crystal structure is the FCC lattice (Torquato et al., 2000). In that investiga­
tion, the first seven neighbor shells were considered (Nc = 7), allowing for a 
shell-width parameter of size 8 = 0.196. From a practical perspective, it was 
noted that consideration of more neighbor shells did not result in qualita­
tively different behavior for -r (Truskett et al., 2000). We mention in passing 
that the approach outlined above is useful only if the relevant ordered state 
(i.e., the reference crystal structure) is known a priori. The development of 
robust structural order parameters that do not require such information, so­
called crystal-independent measures, is an active area of research (Truskett 
et al., 2000; Errington and Debenedetti, 2001). 

We can gain some insight into the molecular ordering that occurs in con­
densed phases by studying a map of the structural order parameters ( -r, e) for 
equilibrium and nonequilibrium packings in a simple system. Figure 9 repre­
sents such an ordering phase diagram constructed from molecular dynamics 
simulations of a collection of 500 identical hard spheres (Truskett et al., 2000; -
Torquato et al., 2000). Shown on the diagram are the equilibrium fluid, the 
equilibrium FCC crystal, and a set of glassy structures generated from the , 
Lubachevsky-Stillinger compression protocol (Lubachevsky and Stillinger, 
1990; Lubachevsky et al., 1991). In this protocol, glassy hard-sphere pack­
ings are produced from low-density sphere configurations by allowing the 
hard-sphere diameter a(t) to grow linearly in time (at a given rate) during 
the course of a constant-volume molecular dynamics simulation. The com­
pression protocol terminates when a high-density "jammed" sphere packing 
is achieved (Lubachevsky and Stillinger, 1990). As a result, the degree of 
disorder (as measured by -r and e) and the final packing fraction ¢ in the 
glasses depend on the "processing history" through the compression rate, 
i.e., the diameter growth rate. 



1HEORY OF SUPERCOOLED LIQUIDS AND GLASSES 49 

1.0 I 
I 
I 
I 

0.8 
crystal 

I 
I 
I 
I 

0.6 
I 

glasses I 
I 

~ ,/ 
0.4 

~ 
• 

0.2 .. -- . ~ .. fluid 
o.o I 

0.0 0.2 0.4 0.6 0.8 1.0 e 
Flo. 9. 1\vo-parameter ordering phase diagram for a system of 500 identical hard spheres 

('Ihlskett et al., 2000; Torquato et al., 2000). Shown are the coordinates in structural order 
parameter space (T, El) for the equilibrium fluid (dot-dashed), the equilibrium FCC crystal 
(dashed), and a set of glasses (circles) produced with varying compression rates. Here, Tis the 
translational order parameter from (26) and El is the bond-orientational order parameter Q6 
from (25) normalized by its value in the perfect FCC crystal (El = Q6/Q~. Each circle 
represents an average of 27 glasses produced by compressions at a given rate r. Unlike the 
equilibrium state points, the degree of ordering ( T, El) and the packing fraction t/1 in the glasses 
are determined by the processing history (in this case, the compression rate r). The freezing 
and melting transitions are indicated by the triangle and the square, respectively. 

One striking feature of the ordering phase diagram shown in Fig. 9 is 
the strong positive correlation that exists between r and e in the equilib­

. rium hard-sphere fluid and crystalline phases. This indicates that entropy 
(i.e., packing efficiency) promotes an appreciable coupling between transla-

. tional and bond-orientational order in the hard-sphere system. In addition, 
we note that there is a discontinuous jump in the structural order parameters 
across the first-order freezing transition, creating a large gap in order param­
eter space (0.15 < r < 0.40 and 0.1 < e < 0.8) that serves as a "no man's 
land" for the pure equilibrium phases. Interestingly, we find that sphere 
packings that exhibit an intermediate order, corresponding to coordinate 
pairs ( r, e) in no man's land, can be generated if we resort to a nonequilib­
rium (history-dependent) method for preparation, such as the Lubachevsky­
Stillinger protocol. The observation that the jammed structures populate a 
different region of the ordering phase diagram than the equilibrium sys­
tem indicates that certain n~nequilibrium packings can be distinguished 
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statistically from the equilibrium configurations based on structural infor­
mation alone. In particular, we note that the hard-sphere glasses are not 
simply solids with the "frozen-in" structure of the liquid. 

Examination of the glassy sphere packings produced by the Lubachevsky­
Stillinger protocol reveals that the amount of order in the structures can be 
statistically controlled by the compression rate. In fact, we note that "ran­
domness" is a matter of degree in the jammed hard-sphere structures; i.e., 
jammed structures with slightly higher packing fractions ¢ can be realized at 
the expense of small increases in order ( r, 8 ). This observation has recently 
led to a reassessment of the traditional notion that the random close-packed 
state is the densest possible amorphous sphere packing (Torquato et al., 
2000). 

Although the ordering phase diagram presented in Fig. 9 was constructed 
from a highly idealized model system, it suggests challenging scientific ques­
tions about the morphology of real materials. For instance, it is clear that " 
there exist large regions of the ( r, e) plane, i.e., certain types of molecular 
ordering, that are statistically inaccessible for a system in equilibrium. Is it 
possible to understand the relationship between these "inaccessible regions" 
in order parameter space and the relevant interactions in the system (i.e., the 
energy landscape)? In other words, can materials which possess a particu­
lar morphology be engineered by "tuning" their interactions? Moreover, 
can we use the ordering phase diagram as a viable guide for quantifying the 
relationship between disorder and history for realistic nonequilibrium proto­
cols? Although we are far from answering these questions for real materials, 
the notion of an ordering phase diagram provides a useful conceptual frame­
work for investigating the relationship among microscopic interactions, pro­
cessing conditions, and the morphology of equilibrium and nonequilibrium 
systems. 

The systematic investigation of order phase diagrams, such as that shown 
in Fig. 9 but for different molecular interactions, the location of inherent -
structures in the order plane, and the comparative exploration of order 
(or disorder) in "computer glasses" generated by different quenching pro-_ 
tocols are, we believe, fruitful avenues for research into the nature, classi­
fication, and quantification of disorder in glasses and other technologically 
important nonequilibrium materials. 

IV. Landscape Dynamics and Relaxation Phenomena 

We presume in what follows that the supercooled liquid or glass of in­
terest can be described by classical mechanics. Assuming that r j comprises 
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Cartesian coordinates for all nuclei of particle j, the isochoric dynamical evo­
lution of theN-particle system follows the Newtonian equations of motion: 

mi. d2rifdt2 =-Vi <I> (1::: j::: N). (27) 

The diagonal matrix mi specifies the masses of the nuclei. Recall that <I> 
includes both intraparticle and interparticle potentials, as well as interactions · 
of particles with confining walls that define system volume V. The qualitative 
nature of the trajectory traced out by the system configuration point, 

R(t) = [rt(t), rz(t), ... , rN(t)], (28) 

as it evolves by Eqs. (27) depends strongly on the magnitude of the total 
energy. If that total energy is high, R(t) is able to move over the landscape 
with relatively little hindrance, moving quickly from basin to basin without 
being forced to pass close to the locations of basin-boundary saddle points. 
This situation typically describes liquids well above their melting tempera­
tures. A variety of computer simulations (LaViolette and Stillinger, 1985a; 
Buchner et al., 1992; Moore and Keyes, 1994; Wu and Tsay, 1996; La Nave 
et al., 2000; Keyes, 1997; Keyes et al., 1997) have established that R(t) in these 
high-energy circumstances moves across parts of the landscape at which the 
Hessian matrix (of second <I> derivatives) has a significant fraction of neg­
ative eigenvalues. In other words, the instantaneous normal mode (INM) 
spectrum for hot liquids exhibits a significant fraction of imaginary frequen­
cies. Mode coupling theory (MCT) describes this situation well (Leutheusser, 
1984; Bengtzelius et al., 1984; Gotze and Sjogren, 1992, 1995). In this high­
temperature situation, a landscape-based description of liquid dynamics is 
not required, although still applicable in principle. 

Lowering the total energy reduces the rate of interbasin transitions, 
obliges R(t) during those transitions to pass on average closer to the sad­
dle points, and produces a reduction in the fraction of Hessian eigenvalues 
that are negative. As noted in Section II, the mean depth t[J of the basins 
visited by R(t) increases in absolute value as the energy and/or temperature 
decline, so that smaller and smaller subsets of basins can be visited. In the 
very low-energy/low-temperature range, interbasin transitions become very 
infrequent and, at least for solid amorphous materials, will be dominated 
by low-barrier transitions. These few remaining transitions are convention­
ally identified as two-level systems, and they have important consequences 
for heat capacity and sound propagation measurements on those amorphous 
solids (Phillips, 1972; Anderson et al., 1972). 

Whereas MCT appears well suited to describe dynamics and relaxation 
processes in liquids that are above, at, or moderately below their equilib­
rium melting points (Gotze and Sjogren, 1995), it becomes physically in­
appropriate for strongly supercooled liquids and the glasses that they form 
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below an experimental (or simulational) glass transition temperature Tg. 
MCf erroneously predicts a singular temperature Tx below which the N­
body system loses ergodicity, i.e., loses the ability to display complete relax­
ation to equilibrium (or restricted equilibrium for noncrystallizing liquids). 
One has 

(29) 

and typically Tx is 10 or 20% higher than T8 (Debenedetti, 1996}. This short­
coming arises from the failure of the original MCf (Bengtzelius et al., 1984) 
to incorporate landscape details and their profound influence on low temper­
ature behavior. More recent elaborations ofMCf (Sjogren and Gotze, 1991; 
Gotze and Sjogren, 1992} address this problem by incorporating a coupling 
between density and momentum fluctuations. 

A few general observations are in order here about basin shapes and 
about the transitions that carry the system from one basin to a neighboring 
one. First, the intrabasin vibrational motions are substantially anharmonic 
for liquids at and slightly below their melting temperature Tm. One mea­
sure of this anharmonicity has already been mentioned, the incidence of 
negative eigenvalues of the Hessian matrix. Another revealing measure is 
the mean-square displacement of the configuration point, on a per-particle 
basis, from the inherent structure, plotted versus the temperature. This would 
be a straight line proportional to T if the basin interior were exactly har­
monic, assuming classical statistics apply. However, as the schematic Fig. 10 

Absolute Temperature 

Flo. 10. Schematic illustration of mean-squared atomic displacements versus temperature, 
measured from the inherent structure, for amorphous-phase basins. The melting, Mer singular, 
and glass transition temperatures are T m• Tx, and T8, respectively. 
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indicates, the initial harmonic rise for low temperature becomes significantly 
enhanced at higher T due to strong anharmonicity (Sastry et al., 1998a). This 
enhancement appears to arise from the contribution of basin "arms" that 
stretch outward from the inherent structure configuration, while rising only 
slowly in potential energy with distance (La Violette and Stillinger, 1986). 
The anharmonic augmentation of the root-mean-square displacement is sub­
stantially larger for amorphous (liquid) basins than for crystalline basins, and 
this distinction has led to generalization of the venerable Lindemann melt­
ing criterion (Lindemann, 1910; Martin and O'Connor, 1977) to include a 
liquid freezing criterion (LaViolette and Sillinger, 1985a). 

Computer simulations for several models (Weber and Stillinger, 1985; 
Ohmine, 1995) have determined that the elementary transitions between 
neighboring basins entail shifts of only small local groups of particles. To 
be precise, the difference between the inherent structures of the two basins 
involved in a large N-particle system is concentrated on a neighboring set 
of 0(1) particles; the remainder particles experience at most a minor elastic 
response to the localized repacking (Lacks, 1998). In view ofthe fact that the 
number of such localized repacking possibilities is proportional to system 
size, the number of transition states (saddle points) in the boundary of any 
basin will be O(N), i.e., an extensive property. So too, then, will be the net 
kinetic exit rate from any basin at positive temperature. 

It is important to bear in mind that the localized nature of the fundamental 
transitions implies that their respective saddle points lie only an 0(1) exci­
tation energy above the bottom of the basin from which the system exits. In 
contrast, the total excitation energy possessed by the system while it resides 
in that basin will be an O(N) quantity, even at very low temperatures. The 
central issue then becomes how long on average the system must wait before 
the intra basin dynamics concentrates sufficient energy along the direction of 
the saddle point to permit the transition to the neighboring basin. This is the 

' N-body analogue of the same issue that arises in chemical kinetics theory of 
unimolecular decomposition for variable intramolecular excitation energy 
(Gilbert and Smith, 1990). 

At least in the temperature range relevant to liquid supercooling and glass 
formation, the kinetics of interbasin transitions and resulting relaxation phe­
nomena can be described by a master equation (Stillinger, 1985). Suppose 
that the conserved system energy is E, and let Pa(t) stand for the probability 
that the system's configuration point resides in basin a at time t. The master 
equation takes the form 

dPa(t)jdt = ~)K(y -+ aiE)Py(t)- K(a -+ yiE)Pa(t)], (30) 
y 

where with obvious notation the K's are transition rates between neighboring 
basins a andy at system energy E. These 0(1) rates are required to satisfy 
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detailed balance conditions to assure that Eq. (30) has time-independent 
equilibrium solutions. Specifically, for all a,y pairs, the following equality 
must hold: 

Ma(E)K(a--+ YIE) = My(E)K(y--+ alE). (31) 

Here Ma and My are the microcanonical measures of the interiors of basins a 
andy at energy E. Equation (31) ensures that total probability is conserved 
at all times, 

L Pa(t) = 1, (32) 
a 

even when the system is out of equilibrium. 
The general solution to the linear master equation (30) consists of a linear 

combination of eigenfunctions (equal in number to the number of basins that 
can be occupied): 

Pa(t) = L Anx!n)(E)exp[-).n(E)t] ().n(E) ~ 0). (33) 
n~O 

Initial conditions determine the linear combination coefficients An. which 
express the relative contribution of the nth eigenfunction. Thermal equi­
librium at energy E corresponds to a vanishing decay constant, say ).0, and 
in connection with earlier remarks, the collection of eigenfunctions x!0>(E) 
is strongly concentrated in those basins whose depths are close to the ijJ 
for the given E. The terms in expression (33), with An > 0 (n > 0) describe 
relaxation toward equilibrium. 

A supercooled liquid or amorphous solid can be driven out of (restricted) 
equilibrium in a wide variety of ways, and the kinetics of relaxation back to 
(restricted) equilibrium subsequently followed. This variety includes sudden 
temperature or pressure changes, mechanical working, application of a po­
larizing electric field, and irradiation with energetic particles. As mentioned 
in Section I, the linear-response relaxation kinetics of supercooled liquids as 
monitored by any of several properties is observed to follow a Kohlrausch­
Williams-Watts (KWW) stretched exponential form [see Eq. (2)], 

f(t) = f(O)exp{-[t/r(T)]Il(T)}, 

where stretching exponent fJ(T) empirically tends to fall in the range 

~ :::: fJ(T) :::: 1. 

(34) 

(35) 

The relaxation time :r in Eq. (35) should not be confused with the 
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translational order parameter defined in Eq. (26). The mean relaxation time 
defined by f(T) is 

lrel(T) = 100 
tf(t)dt I 100 

f(t)dt = [r(2/ ,B)/ r(1/ ,B)]r(T) (36) 

The tendency is for ,B(T) to decline with declining temperature, and as ,B 
passes downward between the limits shown in Eq. (35), the coefficient of r 
in Eq. (36) increases from 1 to 60. 

By expressing f(t) as a Laplace transform, 

f(t) = f(O) 100 F(A)exp(-At)dt, (37) 

the stretched exponential formally becomes resolved into individual simple-
. exponential decays with a range of decay rates. This allows contact with the 

general solution shown above in Eq. (33), with the understanding that for 
any property Q the observable relaxation would follow the form 

Q(t) = L QaPa(t) = L ( L QaAnX~n))exp( -Ant)~ {
00q(A)exp( -At)dA. 

a n a Jo 
(38) 

Here Qa is the mean value of property Q averaged over basin a (at en­
ergy E), and q (A) is the spectral weight in the continuum limit of the modes 
with exponential decay constant A. If Q(t) in fact has the stretched exponen­
tial form, then q(A) will be proportional to the Laplace transform F(A), for 
which both numerical (Lindsey and Patterson, 1980) and analytical (Helfand, 
1983) studies are available. In the simple exponential decay limit ,B = 1, F (A) 
reduces to an infinitely narrow Dirac delta function but it broadens as ,B de-

. creases toward the lower limit ~ to involve a wide range of simple exponential 
relaxation rates. 

An obvious question to ask is what characteristics of the basin distri-
, bution and of the kinetic connections between them can produce the wide 

spectrum of relaxation rates and the associated stretched exponentials. Some 
hints may come from simple models for supercooling and glass formation, 
whose kinetics are known to display stretched exponential relaxation func­
tions. Two such models are the Fredrickson-Andersen kinetic Ising model 
(Fredrickson, 1984) and the tiling model (Weber et al., 1986). Both involve 
discrete space rather than a continuum, and both view the glass-forming 
medium as residing in two dimensions rather than three. Nevertheless, these 
models indicate that as the temperature declines and as deeper and deeper 
portions of the respective (discrete) potential functions are probed, larger 
and larger clusters of "particles" must be rearranged for the system to find 
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yet lower potential energy configurations. Furthermore, increasing diversity 
arises in how these rearrangements can occur, in both size and shape of the 
affected local regions. 

The shear viscosity TJ(T) measures the rate at which a liquid can rearrange 
in response to an applied shear stress. As explained in Section I, the extent 
to which the temperature dependence of TJ(T) conforms to, or deviates from, 
Arrhenius behavior, 

TJ(T) = TJo exp(E~/ kaT), (39) 

forms the basis of the "strong" vs "fragile" classification of glass form­
ers (Angell, 1985). Here TJo and the activation energy for viscous flow E~ 
are substance-specific, but temperature-independent, constants at a fixed · 
volume. 

Molten silica (Si02) is often considered the prototypical strong glass for­
mer (Angell, 1988). Its density is relatively constant in the supercooled range -
( <1700oC), and in that range the Arrhenius form (39) provides a good de­
scription for TJ(T). A numerical fit for that viscosity leads to the results 
(Mackenzie, 1961) 

1/0 ~ 1.6 X 10-13 p 

E~ ~ 180 kcallmol. 
(40) 

The latter stems from a local mechanism that rearranges the silica net­
work structure and, presumably, involves breakage and reformation of Si-0 
chemical bonds. 

The situation is quite different for glass formers at the fragile extreme. 
o-Terphenyl (OTP; C18H14) is a prototypical case and a favorite subject of 
experimental investigation (Pujara et al., 1992; Cicerone and Ediger, 1993; 
Wang and Ediger, 1999). Plotting ln TJ vs 1/ T produces a graph with a strong 
upward curvature (see Fig. 4), the slope of which defines a temperature-· 
dependent effective activation energy (Greet and Thrnbull1967; Plazek et al., 
1994): 

(41) 

It has been pointed out (Greet and Thrnbull, 1967) that this activation en­
ergy rises from approximately one-fourth of the heat of vaporization for the 
liquid above its melting point to approximately five times the heat of vapor­
ization when the temperature is reduced to Tg ~ -35°C. This rise by a factor 
of 20 unambiguously testifies that the OTP energy landscape is strongly het­
erogeneous. The portions of that landscape accessed at high temperatures 
permit structural relaxation by surmounting low-energy barriers, presum­
ably each step of which involves only rearranging slightly a small number 
of molecules. In contrast, the very large E~eff)(T ~ Tg) can arise only by 
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cooperative rearrangement of a large number of molecules, perhaps in the 
range 20-100. Furthermore, such rearrangements are unlikely to consist of 
single elementary transitions between neighboring basins; to pass from one 
low-lying basin to one of equal or greater depth, it may be required to pass 
upward in landscape altitude (energy) through a long sequence of elemen­
tary transitions before descending far away to a suitably deep basin. The 
latter concept is supported by the very small effective preexponential factor 
for OTP near Tg (Plazek et al., 1994), 

(42) 

reflecting a large activation entropy associated with the great diversity of 
· transition pathways possible between a pair of separated deep basins. 

Figure 11 attempts to provide a schematic illustration for the landscape to-
. pographic differences just discussed for the strong (Si02) and fragile (OTP) 

extremes. Of course, most glass-forming liquids fall between these extremes 
and should be thought of as interpolating the topographies illustrated. 
Figure 11 intends to illustrate only one symmetry sector. The strong case 
involves a single "metabasin" down into which the cooling liquid could con­
figurationally trickle, surmounting barriers but encountering no substantial 
traps. The contrasting fragile case displays deep and widely separated traps, 
i.e., a diverse collection of metabasins in the same symmetry sector. The 

(a) Strong Glass Formers 

{b) Fragile Glass Formers 

Flo. 11. Schematic illustration of the topographic distinction between energy landscapes 
for strong and fragile glass formers. Only one symmetry sector is represented. Potential energy 
increases upward; the horizontal direction represents all configurational coordinates. 
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former, Fig. lla, is similar to the configuration space "funnels" that have 
been postulated for properly folding biological proteins, while the latter, 
Fig. llb, is characteristic of biologically useless misfolding proteins (Saven 
and Wolynes, 1997). 

The long-pathway rearrangement processes expected for fragile materials 
at low temperatures are expected to be rare, to involve a local disruption 
of the otherwise well-structured amorphous medium, and to be relatively 
long-lived on the usual molecular time scale. These features all contribute to 
a substantial lengthening of the mean relaxation time tret(T), Eq. (36), with 
declining temperature. Furthermore, the landscape diversity of deep traps 
and of the configuration space pathways that connect them should produce a 
broad spectrum of relaxation times, just as required by stretched-exponential . 
relaxation functions, Eq. (34). 

This scenario requires strongly supercooled fragile glass formers to be dy­
namically heterogeneous media, consisting at any instant mostly of -
nondiffusing well-bonded particles, but with a few local "hot spots" of mobile 
particles. The phenomenon oflow-temperature dynamical heterogeneity has 
experimental support (Cicerone and Ediger, 1995) and has also been clearly 
documented by computer simulation (Donati et al., 1999a,b; Bennemann 
et a/., 1999; Perera and Harrow ell, 1996a,b ). Both techniques confirm that 
the regions of anomalous mobility grow strongly in mean size with declining 
temperature. 

The Stokes-Einstein relation connects shear viscosity 11 to the self­
diffusion constant Din a liquid [see also Eq. (4)], 

D( T) = kB T j[6rra17( T)]. (43) 

For liquids composed of relatively compact molecules, this relation de­
scribes the temperature dependence of D well above the melting point and 
even for moderate supercooling, using the measured 11 and a temperature­
independent a that tends to approximate roughly the size of the given molec­
ular structure. However the Stokes-Einstein relation is based on macroscopic 
hydrodynamics that treats the liquid as a continuum. This hydrodynamic pic­
ture clearly contradicts the dynamic heterogeneity that applies to strongly 
supercooled fragile liquids. Perhaps, then, it should come as no surprise 
that the Stokes-Einstein relation fails dramatically in those circumstances: 
D(T ~ Tg) has been observed experimentally to be 102 to 103 times larger 
than Eq. ( 43) predicts, retaining the same a that is applicable at high tem­
peratures (Fujara eta/., 1992; Cicerone and Ediger, 1993; Kind eta/., 1992; 
Cicerone and Ediger, 1996). It has been pointed out (Stillinger and Hodgdon, 
1994) that this D enhancement can arise from a suitable combination of 
mobile-region volume fraction, size, and lifetime. 

No intrinsic mathvmatical reason exists to connect the depth distribu­
tion of the basins to the kinetic pathways between them. The latter depend 
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on the height of saddle points connecting neighboring basins. However, 
intermolecular interactions, particularly those for fragile glass formers, con­
stitute a very special class of functions. Considerations similar to those that 
have suggested the form of Fig. 11 b might also suggest that the rugged land­
scape obeys a statistical scaling relation. This is the basis of the formula 
suggested long ago by Adam and Gibbs (1965), which connects the kinetic 
property trel or, equivalently, 11 to supercooled liquid thermodynamics: 

tre!. 11 ~A exp(BjTsconf). (44) 

Here A and Bare positive constants, expected to depend on which of trel or 11 is 
involved, and Sconf is the molar configurational entropy to be obtained from 

· calorimetric measurements for crystal, liquid, and glass. Sconf is a measure 
of the landscape's "ruggedness" and is related to the basin enumeration 
function introduced in Section II, 11 

Scond R = aa[<l>a(T)], (45) 

where R is the gas constant. For Eq. (44) to hold, one must have 

E~eff)(T) ex 1/aa[<l>a(T)]; (46) 

that is, the effective dynamical excitation energy should be inversely pro­
portional to the depth-dependent basin enumeration function aa evaluated 
at the depth populated at the given temperature. Thus, in the Adam-Gibbs 
picture, the origin of viscous slowdown close to Tg is the dearth of basins 
(configurations) that the system is able to sample at low temperatures. 
Furthermore, structural arrest is predicted to occur at the Kauzmann tem­
perature. If the configurational entropy has the form12 (Debenedetti, 1996; 
Richert and Angell, 1998), 

Sconf = Soo ( 1 - ; ) , ( 47) 

where TK is the Kauzmann temperature (at which Sconf presumably vanishes), 
·the Adam-Gibbs relation reads 

11 = A exp (__!___) . ( 48) 
T- TK 

This is the VTF equation [see (1)), with T0 , the temperature of structural 
arrest, equal to TK. The remarkable closeness of these two temperatures for 
several substances [To obtained from relaxation measurements and TK from 

11 The experimental determination of the configurational entropy from calorimetric (heat 
capacity) measurements is discussed in Section V. 

12 Equation (47) results when the heat capacity difference between the supercooled liquid 
and the crystal is inversely proportional to the absolute temperature, as is experimentally found 
to be the case for many substances (Alba et al., 1990). 
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FIG. 12. Adam-Gibbs plots of the dielectric relaxation time of 2-methyltetrahydrofuran 
(2-MTHF) and 3-bromopentane (3-BP) versus (Tscoru)-1. The lines are VTF fits, Tru, is the 
fusion temperature, and T B is the temperature below which the VTF equation applies. AAG and 
A VF are prefactors in the Adam-Gibbs and VTF equations, respectively. T K is the calorimetri­
cally determined Kauzmann temperature, and To is the VTF singular temperature, which were 
set equal in the VTF (line) fits. (Reprinted with permission from R. Richert and C. A. Angell. 
Dynamics of glass-forming liquids. V. On the link between molecular dynamics and configu­
rational entropy. J. Chern. Phys. (1998); 108: 9016. Copyright © 1998, American Institute of 
Physics.) 

calorimetric experiments (Angell, 1997)] was mentioned in Section I. This 
is an example of the apparent connection between dynamics and thermo­
dynamics in glasses (Wolynes, 1988). Figure 12 (Richert and Angell, 1998) 
shows the dielectric relaxation time for 2-methyltetrahydrofuran (MTHF) 
and 3-bromopentane (3-BP), plotted in Adam-Gibbs fashion. It can be seen 
that the theory provides an adequate description of the dielectric relaxation 
in 3-BP, but less so for MTHF. The Adam-Gibbs theory, in other words,. 
is approximate and not general. Nevertheless, it remains a very useful and 
popular analytical framework for correlating and extrapolating data. Under­
standing the connection between kinetic properties and thermodynamics on 
which the Adam-Gibbs theory is based is arguably the most important prob­
lem in the thermophysics of glasses and supercooled liquids. 

V. Thermodynamics 

The statistical description of an energy landscape needed to make connec­
tion with thermodynamic properties is provided by the basin enumeration 
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function, a(<P ), introduced in Section II, 

dQ 
d<P = C exp[Na(<P)), (11) 

where dQ is the number of potential energy minima whose depth, on a 
per-molecule basis, is <P ± d</J/2; N is the number of molecules; and Cis 
constant (Stillinger, 1999). It follows from the above equation that a, the 
basin enumeration function, is the configurational entropy per molecule 
arising from the existence of multiple minima of depth <P [see also Eq. (45)), 

Sconf 
--=a. 
NkB 

(49) 

As explained in Section II, the partition function can be written as a one-
. dimensional integral over the basin depth <P (Stillinger and Weber, 1982). In 

the thermodynamic limit, the integral in Eq. (15) is dominated overwhelm­
ingly by basin depths in the neighborhood of a particular, temperature­
dependent value, which satisfies the extremum condition 

(50) 

whereupon the Helmholtz energy can be written 

-fJA(fJ)/N = a[ci}(fJ))- fJcP(fJ)- {Jav[fJ, cP(fJ)). (16) 

For the limiting case where av does not depend on <P (i.e., all basins have 
the same mean curvature at their respective minima), ciJ follows from the 
condition 

da 1 
(51) -=-

d</J kBT 

Equation (16) establishes the formal connection between the thermody­
namic properties of a system and its energy landscape. In particular, it ex­
presses the Helmholtz energy in terms of an energy contribution, ci}, arising 
from the sampling of basins of a particular, temperature-dependent depth; 
a configurational entropy contribution, a, due to the existence of an expo­
nential multiplicity of such basins [Eq. (11)); and a vibrational contribution 
that arises from the thermal excitation that allows the system to sample 
basins at a temperature-dependent "height" above the local potential energy 
minimum. 

The basin enumeration function a ( <P) can be obtained from experimental 
thermodynamic data. Because experiments are commonly done at constant 
pressure, Eqs. (13), (15), (16), and (50) must be recast in terms of the isobaric, 
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isothermal (N, P, T) ensemble. Following arguments identical to those in the 
isochoric case, the important result (Stillinger, 1998) is 

-{3G(f3)/N = a[~(f3)]- {3~({3)- {3gv[f3, ~({3)], (52) 

where G is the Gibbs free energy, 1/1 is a "potential enthalpy" basin depth 
per particle [see also Eqs. (21) and (22)], and gv is the intrabasin vibrational 
Gibbs free energy per particle. To construct a(l/1), we consider the equilib­
rium between a liquid (1) and its crystal (x) at the melting point (Tm, Pm): 

-a(!)(~)+ f3m~(l) + f3mgv({3, ~)(1) = -a(x)(~) + f3m~(x) + f3mgv({3, ~)(x). 

(53) 

Because the crystal is confined to a single basin, a<x) = 0. If the intrabasin 
vibrational free energy depends only on temperature, the above equation 
simplifies to 

(54) 

a<1) corresponds to the entropy of fusion, and 1/1(1) - 1/f(x) corresponds to the 
enthalpy of fusion. ForT< Tm and P = Pm, we can therefore write 

1/1(1)({3, Pm)- 1/l(x)({J, Pm) = fll/1 = flhm- [Tm flcpdT (55) 

(I) flhm 1 1Tm flcp 
a ({3, Pm) = - - - -dT, 

kBTm kB r T 
(56) 

where flcp = c~1) - c~x). Thus, one can calculate the enthalpy excitation pro­
file, 1/1(1) -1/l(x) = h(T), and the configurational entropy, a<1) = h(T), from 
heat capacity data. Cross-plotting yields the desired basin enumeration func- _ 
tion, a= a(fll/1) (Stillinger, 1998; Speedy, 1999). Equations (55) and (56) 
are valid under the assumption that the vibrational free energies of the crys­
tal and the liquid are equal at the same temperature. Experimentally, this -
would result in negligible differences between crystalline and glassy heat 
capacities. Examples of such substances include OTP (Chang and Bestul, 
1972) and 3-methylpentane (Takahara et al., 1994). 1-Propanol, in contrast, 
shows nonnegligible differences between vitreous and crystalline heat ca­
pacities (Takahara et al., 1994). These differences have not been taken into 
account in the calculations shown below. 

Figure 13 shows the isobaric basin enumeration functions for 1-propanol 
and 3-methylpentane, at various pressures in the range 0-2 kbar. Figure 14 
shows the corresponding excitation profiles. Figure 15 illustrates schemati­
cally the salient characteristics of the isobaric basin enumeration function. 
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Fro. 13. Isobaric basin enumeration functions for 1-propanol (a) and 3-methylpentane 
(b) at different pressures. The x axis gives the difference between inherent structure and crys­
talline "potential enthalpies." Calculations performed according to Eqs. (55) and (56), using 
the experimental heat capacity data of Takahara et al. (1994). (From Lewis, 2000.) 

The characteristic temperature-dependent basin depth is obtained from the 
condition [see also Eq. (51)] 

du(il1fr) 1 
dil1fr = kBT. (57) 

Temperature increases monotonically from the point where u = 0 
(dufdil1fr > 0 branch) to the top of the curve, which corresponds to the 
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FIG. 14. Isobaric excitation profiles for 1-propanol (a) and 3-methylpentane (b) at different 
pressures. The y axis gives the "potential enthalpy" difference between the amorphous basin 
sampled preferentially at a given temperature and the single crystalline basin. Calculations 
performed according to Eq. (55), using the experimental heat capacity data of Takahara et al. 
(1994). (From Lewis, 2000.) 

limit T ~ oo. The condition a = 0 implies the existence of a unique basin; 
it therefore corresponds to the Kauzmann temperature TK, where the en­
tropy of the supercooled liquid equals that of the stable crystal.13 When the 
system is in this unique basin, it has attained the lowest possible energy that a 
noncrystalline packing can adopt. This condition is called the ideal glass. The 

13 This is contingent on tb.e assumption that du fd1ft remains finite (see Stillinger, 1988). 
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FIG. 15. Schematic isobaric basin enumeration function. Also shown is the graphical con­
struction that yields a and illfr at each temperature. See also Eqs. (50) and (57). (From Lewis, 
2000.) 

negatively sloped portion of the basin enumeration function corresponds to 
negative temperatures and is therefore not physically relevant for the present 
purposes. 

The similarity between the calculated isobaric excitation profiles shown 
in Fig. 14 and the isochoric profiles obtained by molecular simulation (Sastry 
et al., 1998a) is remarkable. The isobaric excitation profiles have a discon­
tinuity (not shown) at TK: for T < TK the system remains trapped in the 
unique (ideal glass) basin, and 1::!..1/f is constant. The discontinuity is absent 
in the simulated isochoric profiles, because the system gets trapped kineti­
cally in a cooling rate-dependent basin and is not able to access the deepest 
amorphous basin. 

The approximately parabolic shape of the curves in Fig. 13 suggests the 
parametrization 

(58) 

where l::!..t/1'00 is the infinite temperature limit of 1::!..1/f, anda00 is the correspond­
ing configurational entropy (Fig. 15). Table I (Lewis, 2000) gives the values 
of, a00 , m, and l::!..t/1'00 for 1-propanol and 3-methylpentane, as a function of 
pressure. The calculated isobaric basin enumeration functions are asymmet­
ric, and Eq. (58) describes the curves accurately only if different values of m 
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TABLE I 
GAUSSIAN LANDSCAPE PARAMETERS FOR 1-PROPANOL AND 3-METHYLPENTANE 

CALCULATED FROM HEAT CAPACITY MEASUREMENTS0 

D.1froo 
P(MPa) C1oo (kJ/mol) 

1-Propanol 
0.1 6.564 11.3 

108.4 6.549 12.4 
198.6 6.499 13.0 

3-Methylpentane 
0.1 10.083 14.2 

108.1 9.532 15.0 
198.5 8.927 14.8 

• From Takahara et al. (1994). 

lOOm 
(mollkJ)2 

6.8 
5.49 
4.96 

5.87 
5.00 
4.90 

are used for positive and negative temperatures. Since only the former have 
physical significance, it seems prudent at this stage in our understanding 
of landscape statistics to preserve the simplicity of Eq. (58) rather than to 
include higher-order terms in an attempt to capture the slightly asymmet­
ric character of the basin enumeration function. Landscapes with parabolic 
enumeration functions will henceforth be referred to as Gaussian (Speedy, 
1999; Buchner and Heuer, 1999). 

Several useful relations can be written for systems with Gaussian land­
scapes. The excitation profile satisfies the relation 

{ 

1::..1/f __ 1_ 

1::..1/f = 00 2m~BT 
1::..1/f 00 - .,--,----

2mkBTK 

Combining Eqs. (16), (51), and the isochoric analogue of (58), 

(f = Cfoo- m(¢- ¢oo)2 , 

leads to the following expression for the Helmholtz free energy: 

-fJA/N = CT00 + {J¢00 - {3 2 j4m - {Jav. 

The equation of state follows by differentiation, 

fJP I P = fJ d¢oo _ daoo + (L)2 dm + ( apav) . 
dlnp dlnp 2m dlnp alnp {J 

(59) 

(60) 

(61) 

(62) 

Thus, all thermodynamic (equilibrium) properties of a macroscopic system 
with a Gaussian landscape can be calculated from knowledge of ¢oo(P) (the 
density dependence of the basin depth per particle in the high-temperature 
limit), a00 (p) (the density dependence of the configurational entropy 
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associated with the existence of an exponential multiplicity of basins of a 
given depth, in the high-temperature limit), m(p) (the density dependence 
of the effective width of the basin distribution), and av(f3, p) (the temper­
ature and density dependence of the vibrational free energy). ¢oo(P) and 
m(p) can be obtained from molecular simulation studies that combine en­
ergy minimization and standard particle moves (e.g., Sastry et al., 1998a; 
Jonsson and Andersen, 1988). Fitting the resulting excitation profiles to the 
isochoric analogue of Eq. (59) (T > TK) yields ¢00 and m. The vibrational 
free energy can be obtained from the equation 

(63) 

where Fi is Planck's constant divided by 2n, wi are the density-dependent 
normal mode angular frequencies, and v is the number of degrees of freedom 
per molecule14 (Landau and Lifshitz, 1980). The normal mode frequencies 
are obtained from the Hessian matrix of second derivatives of the energy. 
For a Gaussian landscape, 

(64) 

where ¢K corresponds to the deepest amorphous basin, that is, to the ideal 
glass. Thus, a00 can, in principle, be obtained numerically by performing a 
constrained optimization in which stable packings whose measures of order 
exceed a specified cutoff are excluded from consideration. 

From the preceding discussion it can be concluded that significant progress 
in understanding the thermodynamics of complex condensed systems under 
conditions such that each constituent unit (for example, a molecule in the 
case of a molecular glass former or an amino acid residue in the case of a pro­
tein) experiences simultaneous strong interactions with many neighbors can 
result from a numerical investigation of basiclandscape features ( ¢ 00 , a 00 , m) 
as a function of the density and molecular architecture. Recent studies by 

. Sciortino et al. (1999) and by Buchner and Heuer (1999) demonstrate the 
powerful insights that can be gained by this approach. 

The energy landscape perspective provides fresh insight into, and suggests 
unexpected connections between, stretched liquids and the glassy state. As 
shown in Fig. 8, the p(p) relationship for mechanically stable packings of 
simple, atomic systems shown van der Waals-type behavior. We refer to this 
type of curve as the equation of state of an energy landscape (Debenedetti 
et al., 1999). The landscapes of ethane, n-pentane, and cyclopentane exhibit 
similar behavior (Utz et al., 2001). Water's landscape, in contrast, consists 

14 Equation (63) involves a proper quantum treatment of harmonic vibrational degrees of 
freedom. 
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of a family of p(p) curves which depend on the temperature of the equi­
librated liquid from which the energy minimization is performed (Roberts 
et al., 1999). While our present understanding of those features of molecu­
lar architecture and interactions that give rise to a temperature-dependent 
landscape equation of state is far from complete, it is clear that orientation­
dependent interactions are sufficient to cause this type of complexity. In 
what follows we restrict our attention to "simple," that is, temperature­
independent, landscape equations of state. 

The minimum in the p(p) curve corresponds to the maximum tensile 
strength of which the amorphous form of a given material is capable. As 
mentioned in Section III, the density at which this occurs is called the Sastry 
density, an important material characteristic. Below the Sastry density, me­
chanically stable packings are fissured due to the appearance of large cavities 
(Sastry et al., 1997b ). Thus, this density is a limiting condition, below which 
amorphous packings can no longer be mechanically stable (i.e., minimum 
energy) and simultaneously spatially homogeneous. Since a glass is a liquid 
trapped in a mechanically stable configuration (potential energy minimum), 
it is not possible to form a homogeneous glass below a material's Sastry 
density. 

The nonmonotonic shape of the p(p) curve is reminiscent of the behavior 
of approximate equations of state, such as the van der Waals equation. It must 
be understood, however, that whereas the unstable portion of such equations 
is unphysical, the landscape equation of state is exact. Neighboring states on 
this curve, however, are not connected by a continuum of thermally equili­
brated states. Rather, thermal motion having been removed by construction, 
the path from one point to another along the landscape equation of state is 
through the high-temperature equilibrated fluid. This caveat notwithstand­
ing, there appears to be a deep and illuminating relationship between the 
spinodal curve for the superheated liquid and the Sastry point. The theoret­
ical maximum for the tensile strength of noncrystalline forms of a material 
is given by the T = 0 limit of the spinodal curve along the superheated liq­
uid branch (Debenedetti, 1996). Table II lists the predictions for the Sastry 
density Ps and maximum tensile strength Ps (i.e., the Sastry point), accord­
ing to three cubic equations of state, and compares these theoretical pre­
dictions with our simulation results for the Lennard-Jones fluid (Fig. 8). Of 
course, none of these equations are accurate representations of the Lennard­
Janes fluid. Nevertheless, the clear implication from the simulations is that 
the Sastry point corresponds to the T = 0 limit of the superheated liquid 
spinodal. 

Since the Sastry density is an absolute (thermodynamic) limit to vitrifi­
cation as T ~ 0, it follows that the point (p8 , T = 0) is the low-temperature 
termination of the Ka~mann curve. Since materials are vitrified by cooling 
and/or compression, the Kauzmann curve is expected to have a positive slope 
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TABLE II 
COMPARISON OF THEORETICAL PREDICTIONS OF THE SASTRY POINT 

(p8 , Ps) AccoRDING TO CuBIC EQUATIONS OF STATE AND SIMULATIONs• 

van der Waals 
Soave-Redlich-K wongb,c 
Peng-Robinsonc,d 
Simulation• 

Ps/Pc 

3 
3.85 
3.95 
2.76 

Ps/Pc 

-27 
-62.5 
-71.5 
-39.8 

• Subscript c denotes the value of a property at the critical point. 
b From Soave (1972). 
c An acentric factor w = 0.001 was used, corresponding to Ar (Reid 

et al., 1987). 
d From Peng and Robinson (1976). 
e Smoothly truncated Lennard-Jones fluid (Sastry et al., 1997b). 

See Fig. 8. 

in the (T, p) plane. Our results suggest, therefore, that the low-temperature 
termination of the Kauzmann curve coincides with the T --+ 0 limit of the 
superheated liquid spinodal.15 The predicted convergence of two such appar­
ently unrelated limits is surprising. It is not obvious why the limit of stability 
for the superheated liquid should tend to the locus along which the entropies 
of a deeply supercooled liquid and of its stable crystalline form coincide. 
Nevertheless, this conclusion from our simulations is supported by mean­
field theoretical calculations (Debenedetti et al., 1999). Figure 16 shows the 
calculated phase diagram of a soft-sphere system whose constituent atoms 
interact via a pairwise-additive spherically symmetric potential that decays 
as the inverse ninth power of the interatomic distance, plus a mean-field, 
van der Waals-type attraction. In addition to the phase coexistence loci, 
the diagram shows the Kauzmann curve, as well as the spinodal curves cor­
responding to the liquid-vapor transition. The remarkable feature of the 
calculation is the low-temperature convergence of the superheated liquid 
spinodal and the Kauzmann curve. Similar results have also been obtained 
for the hard-sphere and hard-dumbbell models with mean-field attraction. 

In spite of the remarkable agreement between theoretical predictions, 
on the one hand, and the logical consequence of the simulations, on the 
other, we believe that the generality of behavior such as shown in Fig. 16 
cannot be accepted uncritically but should instead be regarded as a funda­
mental open question on the properties of disordered materials. This caution 
is warranted by the approximate, mean-field nature of the calculations, as 
well as by microscopic critiques of the very notion of a Kauzmann temper­
ature (Stillinger, 1988). Perhaps more significantly, recent experiments on 

15 For a contrasting viewpoint, see Sastry (2000). 
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FIG. 16. Calculated phase diagram of the r-9 soft-sphere plus mean-field model, showing 
the vapor-liquid (VLE), solid-liquid (SLE), and solid-vapor (SVE) coexistence loci, the su­
perheated liquid spinodal (s), and the Kauzmann locus (K) in the pressure-temperature plane 
( P* = Pa 3 I e; T* = ks TIe). The Kauzmann locus gives the pressure-dependent temperature 
at which the entropies of the supercooled liquid and the stable crystal are equal. Note the con­
vergence of the Kauzmann and spinodal loci at T = 0. See Debenedetti et al. (1999) for details 
of this calculation. 

poly( 4-methylphentene-1 ), which show inverse melting at low temperatures 
and high pressures, that is, freezing upon heating, call into question the no­
tion of an ideal glass and of the Kauzmann temperature as an absolute limit 
to supercooling (Rastogi et al., 1999; Greer, 2000). 

VI. Conclusion 

In glasses and the supercooled liquids from which they are commonly 
formed, molecules are subject to the simultaneous action of many neigh­
bors. Under these conditions the multidimensional N-body potential energy 
function <l>(r1 ... rN ), the energy landscape, provides a convenient frame­
work within which to describe the thermophysical properties of this impor­
tant class of condensed-phase systems. Melting and freezing phenomena 
(La Violette and Stillinger, 1985a), complex dynamics in supercooled liquids 
(Sastry et al., 1998a), the mechanical strength of glasses (Utz et al., 2001; 
Malandro and Lacks, 1997, 1999), the limits of stability of the liquid state 
of matter (Debenedetti et al., 1999; Sastry, 2000), and aging phenomena in 
glasses (Utz et al., 2000; Kob et al., 2000) are some of the important phe­
nomena on which the landscape perspective has yielded useful new insights. 
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Major open questions where landscape-based ideas should prove helpful in­
clude the possible thermodynamic basis for the glass transition (Debenedetti 
et al., 1999), the relationship between kinetics and thermodynamics of deeply 
supercooled liquids and glasses (Adam and Gibbs, 1965; Wolynes, 1988), and 
translation-rotation decoupling and the breakdown of the Stokes-Einstein 
relationship in supercooled liquids (Pujara et al., 1992). In addition, there­
formulation of the thermodynamics of liquids embodied in Eqs. (16), (52), 
(55), (56), (61), and (62) suggests that understanding basic topological fea­
tures of a landscape's density-dependent statistics could lead to improved 
theories of simple and complex liquids. As explained in Section V, landscape 
statistics can be obtained from experiments, theory, and simulations. 

The quantitative description of disorder in liquids and glasses is the sec­
ond theme of this article. Recent work on the simple hard-sphere system 
(Torquato et al., 2000; Truskett et al., 2000) shows that it is possible to distin­
guish equilibrium and nonequilibrium states based on the accessible types of 
molecular disorder. It is also possible to relate the type of molecular disor­
der to a glass' processing history. Extending these developments to models 
with more realistic interactions, and mapping their order phase diagrams, 
including their inherent structures, are some of the important questions, the 
answers to which could shed new light on the relationship among molecular 
interactions, process conditions, and the morphology of glasses. More gen­
erally, the problem of quantifying disorder in condensed phases has implica­
tions for early detection of tumors, transdermal drug delivery, flow through 
porous media, and powder engineering. 

Glasses are central to a wide variety of commercial processes and technical 
applications, such as the preservation of labile biochemicals, food processing, 
the manufacture of optical wave guides, corrosion resistance, photovoltaic 
cells, and the extrusion and molding of engineering plastics. In spite of their 
widespread natural occurrence and technical utilization, there are major gaps 
in the present understanding of the vitreous state of matter. In this article 
we have presented a geometric viewpoint of glass transition phenomena and 

, supercooling. These ideas have contributed significantly to contemporary 
knowledge of this important topic. We believe that they are likely to prove 
equally fruitful in the future. 
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