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Families of model ‘‘rugged landscape’’ potential energy functions have been constructed and
examined, in order to clarify the molecular-level basis for the relationship between thermodynamic
and kinetic behaviors of glassforming substances. The general approach starts by forming
elementary basin units, each of which contains a single local minimum~inherent structure!. These
units are then spliced together to create a continuous composite potential with the requisite number
of basins, upper and lower limits, and boundary conditions. We demonstrate by example that this
approach creates wide topographic diversity. Specifically, many pairs of model potential functions
exist that share identical thermodynamic properties~depth distribution of minima!, but drastically
different kinetics ~overall topography!. Thus, within the confines of this purely mathematical
exercise, the ‘‘strong’’ versus ‘‘fragile’’ classifications of thermodynamics and of kinetics are
logically disconnected. We conclude that the empirically-observed correlation between
thermodynamic and kinetic behaviors embodied, for example, in the Adam–Gibbs equation, must
rest upon an additional physical principle involving details of interparticle interactions, transcending
the purely mathematical aspects of potential energy landscape topography. ©2002 American
Institute of Physics.@DOI: 10.1063/1.1434997#

I. INTRODUCTION

The ability of all substances to form condensed phases,
and the static and dynamic properties of those phases, de-
pend fundamentally upon the interactions operating among
the constituent particles~atoms, ions, or molecules!. In par-
ticular this is true for liquids that readily supercool toward,
and into, the glass state. Despite the existence of an enor-
mous literature devoted to supercooled liquids and their
glasses,1–3 scientific insight in this area remains incomplete.
The present theoretical contribution identifies and attempts to
clarify one of these knowledge gaps.

It has become customary to invoke Angell’s empirical
classification scheme for glass forming substances, placing
each on a one-dimensional scale between ‘‘strong’’ and
‘‘fragile’’ extremes.4 Examples of the former typically ex-
hibit little difference between liquid and crystal heat capaci-
ties Cp , and tend to have viscosities and mean relaxation
times described well by an Arrhenius function of tempera-
ture. Examples of the latter have liquid heat capacities that
are significantly larger than the corresponding crystal values,
by a margin that increases with extent of supercooling; and
the viscosities and mean relaxation times display ‘‘super-
Arrhenius’’ behavior~strong upward curvature of logarithmic
plots vs inverse temperature!.

The calorimetric behavior of the fragile glassformers
~e.g., ortho-terphenyl!, historically lies at the heart of the
so-called ‘‘Kauzmann paradox.’’5 The supercooled-liquid vs
crystal heat capacity discrepancy, when extrapolated below
the point of dynamical arrest at the experimental glass tran-
sition, suggests that the entropy of the configurationally dis-
ordered liquid would cross that of the ordered crystal at some

positive temperatureTK ; furthermore, extrapolation to abso-
lute zero temperature appears to imply that the metastable
liquid would possess lower entropy than that of the crystal.
This last implication violates the third law of
thermodynamics.6 The fact that this impending violation is
thwarted by the kinetically-controlled experimental glass
transition suggests a possible connection between the ther-
modynamics and the kinetics of supercooled liquids.

One of the more frequently cited suggestions for avoid-
ing this paradox is that an ‘‘ideal glass transition’’ intervenes
at, or close to, the Kauzmann temperatureTK .7 This hypo-
thetical scenario postulates that if full structural relaxation
could be maintained for the substance involved, the super-
cooling would yield the unique optimal~i.e., lowest energy!
amorphous structure at this positive temperature. It should be
noted in passing that theoretical objections to this ideal glass
transition concept have been raised,8 and alternative sce-
narios for avoiding the third-law violation have been
advanced.8–10

Adam and Gibbs11 originated an early attempt to link
quantitatively the thermodynamic behavior of supercooled
liquids to their flow and relaxation kinetics. These authors
introduced and exploited the concept of elementary ‘‘coop-
eratively rearranging regions’’ in the low temperature liquid
to establish this connection. Their analysis produced the fol-
lowing generic expression connecting shear viscosityh, or
alternatively a mean relaxation timet, to the configurational
entropy per particleSconf of the supercooled liquid,

h~T!,t~T!>A exp@B/TSconf~T!#. ~1.1!

HereA andB are suitable temperature-independent multipli-
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ers. If indeed a given fragile glassformer possesses a Kauz-
mann temperatureTK.0, and ifSconf vanishes at this point,
then the Adam–Gibbs expression~1.1! predicts non-
Arrhenius behavior forh and t, with both diverging to in-
finity at that temperature. In the Adam–Gibbs theorySconf is
that portion of the entropy attributable to the ‘‘rugged land-
scape’’ character of the system’s potential energy function.
Although the original derivation referred to isobaric condi-
tions, the conclusions are unchanged if instead number den-
sity is fixed.

Although the concept of ‘‘cooperatively rearranging re-
gions’’ has consistently remained innocent of precise defini-
tion, the Adam–Gibbs expression~1.1! has enjoyed appre-
ciable success at correlating static and dynamic
measurements for a substantial range of glass formers.12 This
success has emboldened several authors to attempt an expla-
nation, or rationale, in terms of the multidimensional poten-
tial energy surface, and its topographic ‘‘rugged landscape’’
characteristics.13–16 The present paper addresses this last
viewpoint, utilizing families of model potential energy func-
tions and their corresponding statistical mechanical analyses.

Section II contains a brief review of the basic properties
of many-body potential energy functions, as they pertain to
supercooling and glass transition phenomena. This review
includes the transformation of partition functions to the
basin-based inherent structure representation.17–19Section III
introduces a family of ‘‘rugged’’ one-dimensional potential
energy functions that are composed piecewise out of modular
single basin units. The form of the modular units and their
rules for combination lead to a simple version of the inherent
structure representation for thermodynamic properties. Sec-
tion IV exposes a fundamental, and somewhat iconoclastic,
property of these one-dimensional rugged landscapes. Spe-
cifically, it is possible to identify pairs of functions that pro-
duce identical thermodynamic properties, yet have very dif-
ferent dynamics-controlling topographies, thus implying a
logical disconnection between the two aspects. This latter
observation is not restricted to simple one-dimensional
model potentials. Section V offers several generalizations to
higher-dimensional spaces that exhibit the same logical dis-
connection. The final Sec. VI discusses the need for a prin-
ciple, not purely mathematical in nature, to explain the em-
pirical connection between thermodynamic and kinetic
properties of supercooled liquids, allowing both to be~at
least approximately!placed together on the strong-to-fragile
scale.

II. BASINS AND INHERENT STRUCTURES

Let r1¯rN be the configurational coordinates forN par-
ticles confined to volumeV. Each r i will include internal
degrees of freedom if nonspherical and/or structured par-
ticles are involved, otherwise they specify only center posi-
tions. The potential energy of interaction will be denoted by
F(r1¯rN). This function will be bounded below by a quan-
tity proportional toN,

F~r1¯rN!>CN, ~2.1!

for some suitable constantC. No analogous upper bound can
be assigned on account of strong repulsions that act between

particles at small separations.F will be continuous and at
least twice differentiable with respect to the components of
r1¯rN , provided no two particles have coincident nuclei.

The multidimensional ‘‘landscape’’ presented by theF
hypersurface in the space ofr1¯rN divides naturally into
‘‘basins,’’ each one of which contains a single embeddedF
minimum. The configuration at such a minimum is a me-
chanically stable arrangement of the system’s particles, and
is usually denoted as an ‘‘inherent structure.’’ Each basin is
defined to be the locus of points in the multidimensional
configuration space that connect, or ‘‘drain,’’ to the minimum
via steepest descent on theF hypersurface. Specific model
calculations,20,21as well as general arguments,22 indicate that
for N identical particles, each with symmetry factors, the
numberV of basins and inherent structures has the following
asymptotic form for largeN,

ln V; ln~N!sN!1aN. ~2.2!

Here, a.0 will be substance-specific, and will generally
vary with number densityN/V. The first term on the right-
hand side side of Eq.~2.2! is the logarithm of the number of
equivalent symmetry sectors into which the multidimen-
sional configuration space divides; parametera expresses the
exponential rise rate withN at which the number of geo-
metrically distinguishable inherent structures increases.

Transition states~first-order saddle points!involved in
the dynamics of switching between pairs of basins, lie within
the shared boundaries for those basins. The energy of exci-
tation from the inherent structure at the bottom of a basin to
such a transition state is anO(1) quantity, and there are
typically O(N) such simple exit channels from any basin.
The difference in potential energy altitude,

F~highest!2F~ lowest! ~2.3!

between the highest-lying and the lowest-lying inherent
structures is also anO(N) quantity. This requires that such a
pair of extreme inherent structures must be widely separated
in the configuration space, i.e., manyO(1) transitions are
required to pass from one to the other.

For some purposes it is useful to classify basins by their
depths, that is, by the potential energy values of their embed-
ded inherent structures. In the large system limit (N,V→`,
N/V constant!the appropriate representation for the distribu-
tion generalizes Eq.~2.2! to the following:

ln V~f!; ln~N!sN!1s~f!N, ~2.4!

where the intensive order parameterf is F/N for the inher-
ent structures, ands>0 is independent ofN and is defined
between finite lower and upper limits,

F~ lowest!/N[fmin<f<fmax[F~highest!/N. ~2.5!

The connection between Eqs.~2.2! and ~2.4! for the large-
system limit is simply,

a5maxf@s~f!#. ~2.6!

An intrabasin vibrational partition function may simply
be defined by integrating the appropriate Boltzmann factor
over the interior of that basin (B). For present purposes, the
quantity of significance is the mean vibrational partition
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function for those basins whose inherent structures lie in the
immediate depth neighborhood of a givenf value. The cor-
responding vibrational free energy per particle, at inverse
temperatureb51/kBT, will be denoted byf vib(b,f),

b f vib~b,f!;N21lnK YN~b!

3E
B
exp@2bDF~r !#dDNr L

f6«

. ~2.7!

HereD is the space dimension of the system,DF measures
the potential energy rise within the basinB from its local
minimum at the inherent structure, andYN(b) is the partition
function for all conjugate momenta. For structureless point
particlesYN(b) reduces tolT

2DN , wherelT(b) is the mean
thermal deBroglie wavelength for those point particles.

At fixed number density, the Helmholtz free energy
emerges next as a variational minimum for an exceptionally
simple linear combination involvings and f vib ,

bF~b!;N minf@bf2s~f!1b f vib~b,f!#. ~2.8!

The minimizing value of the order parameter,f*( b), lo-
cates the temperature-dependent depth of the dominating ba-
sins at the prevailing temperature. Expression~2.8! is strictly
valid only in the large-system asymptotic limit, for which an
integrand-maximum evaluation of the partition function be-
comes appropriate.17–19

In discussion of supercooling and glass formation, it is
useful to modify the meaning of Eq.~2.8! to avoid interfer-
ence by the crystallization transition. Conceptually, this is
easily accomplished by definings and f vib only for the
‘‘amorphous’’ subset of basins within the multidimensional
configuration space.8 This subset contains the overwhelming
majority of all basins, and determines the value ofa in Eqs.
~2.2!and~2.6!. The result of this basin restriction is a precise
definition of free energyF for the metastable supercooled
liquid via Eq. ~2.8!. For the remainder of this paper we shall
presume that this modification is in effect.

III. MODULAR BASIN UNITS

In the interests of simplicity and clarity, we restrict this
initial portion of our analysis to rugged potential energy
functions defined in just one space dimension. This suffices
to introduce and to establish our main points. Various direc-
tions of generalization to the more physically relevant case
of many dimensions form the subject of Sec. V.

Define the following pair of modular potential energy
units over the interval 0<x<1:

P~xu11!52~9/16!cos~px!1~1/2!cos~2px!

1~1/16!cos~3px!; ~3.1!

P~xu21![P~12xu11!

5~9/16!cos~px!

1~1/2!cos~2px!2~1/16!cos~3px!. ~3.2!

One easily verifies the following properties:

P~0u11!50,
~3.3!

P~1u11!51,

P8~0u11!5P8~1u11!50, ~3.4!

P9~0u11!5P9~1u11!522p2. ~3.5!

In additionP(xu11) possesses a single interior minimum at
0,xmin,1, where

cos~pxmin!51/3,

xmin>0.391 826 552, ~3.6!

P~xminu11!5217/27,

and the curvature at this minimum is given by

P9~xminu11!520p2/9. ~3.7!

Analogous results pertain to the mirror image function
P(xu21).

Figure 1 illustrates the two modular unit functions. Each
constitutes a single one-dimensional basin, with an interior
minimum, and vanishing gradient at the endpoints. The net
altitude change across such a basin is61, as indicated by the
discrete index for the functions.

The next step is to use an ordered set ofM of these
modular units to form a multibasin rugged potential energy
function. This can be accomplished by placing the units end
to end, with vertical shifts to ensure continuity of the result
across the seams. By construction, the first and second de-
rivatives will also be continuous, yielding a reasonably
smooth composite function.

Any given sequence of modular units used to form a
composite function can be specified in an obvious way as a
sequence of Ising spinsm i561. The multibasin functionsF
of interest are defined over the interval 0<x<M , by means
of the generic expression,

FIG. 1. Modular basin functionsP(xu61), used for construction of com-
posite ‘‘rugged landscape’’ potential energy functions~Sec. III!.
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F~x!5P~x2 j 11um j !1(
i 51

j 21

m i1C~m1¯mM !,

~ j 21<x< j !, ~3.8!

where in each caseC(m1¯mM)will be chosen so that the
absolute minimum ofF is zero. We will requireF(x) to
satisfy periodic boundary conditions,

F~M !5F~0!, ~3.9!

which in turn requires that

(
i 51

M

m i50. ~3.10!

In other words, the Ising sequence must contain equal num-
bersM /2 of positive and negative spins.

In spite of horizontal shifts, altitude adjustments, and
mirror imaging, all basins comprised in the composite func-
tions F(x), Eq. ~3.8!, basically have the same shape. Con-
sequently the vibrational free energyf vib is the same for all
basins. On account of this special circumstance, the averag-
ing shown earlier in Eq.~2.7! is unnecessary, andf vib de-
pends only onb, notf. For this one-dimensional case, then,
evaluation of vibrational free energy requires evaluation of
only a single configurational integral,

R~b!5E
0

1

exp@2bP~xu11!217b/27#dx. ~3.11!

One easily determines thatR(b) is a monotonically decreas-
ing function of b, with low-temperature and high-
temperature limiting forms as follows:

R~b!;3/~10pb!1/2 ~b→1`!, ~3.12!

R~b!51217b/271O~b2! ~b→0!. ~3.13!

On account of thef independence off vib , the value
f*( b) of this order parameter that identifies the dominant
basins at any given temperature is now determined by the
simple criterion,

s8~f* !5b. ~3.14!

This can be interpreted as locating the tangency point of a
straight line with slopeb that rolls on top of thes(f) curve.

If any one of the composite functionsF(x), Eq. ~3.8!, is
intended to represent the rugged landscape of anN-body
system in one of its symmetry sectors, then one is motivated
to set

M>exp~aN! ~3.15!

to be consistent with Eq.~2.2! above.

IV. TOPOGRAPHIC VARIABILITY AT FIXED DEPTH
DISTRIBUTION

Given that equal numbersM /2 of Ising spins are11 and
21, the number of nominally distinct sequences of spins,
and of the associated composite functionsF(x), will for-
mally be

M !/ @~M /2!! #2. ~4.1!

However many pairs ofF ’s in this set will be substantially
the same, differing only by translation and/or reflection. Nev-
ertheless this still leaves wide latitude for topographic diver-
sity, even under the constraint of a fixed distribution of basin
depths. The simplest case occurs forM58, with 4 inherent
structures each atF50 and atF51. The corresponding
Ising spin representations are

21,21,11,11,21,21,11,11 ~4.2!

and

21,11,21,21,11,21,11,11. ~4.3!

Figure 2 illustrates these two contrasting examples that dis-
play distinct ‘‘landscape’’ profiles.

Experience shows that examples of such topographic di-
versity, subject to the constraint of a fixed depth distribution,
rapidly proliferate as the numberM of modular units in-

FIG. 2. The simplest pair of one-dimensional composite potentials that pos-
sess a common distribution of inherent structure depths~4 at 0, 4 at 1!, but
distinct topographies. Cases~a! and~b! refer, respectively, to Eqs.~4.2! and
~4.3!.
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creases. In fact, the number of distinguishable topographies
that share a common basin depth distribution can also in-
crease asM increases.

Figure 3 presents a strongly contrasting pair of compos-
ite functions forM560, using a schematic protocol for sim-
plicity. For this pair, the basin depth distribution from bottom
(F50) to top (F59) involves the following numbers:

2,4,6,8,8,8,6,6,6,6. ~4.4!

The reader can easily verify that many other topographies
exist with this same depth distribution. The example shown
in Fig. 3~a!amounts to a single ‘‘metabasin,’’ or ‘‘funnel,’’ of
the qualitative type often cited as relevant to the proper fold-
ing of proteins into their native forms. On the other hand,
Fig. 3~b!exhibits a larger number of metabasins separated by
high barriers that one can see would act as kinetic barriers to
equilibration.

An alternative representation of rugged potential sur-
faces utilizes ‘‘disconnectivity graphs.’’ These have the ad-
vantage of explicitly showing the existence of kinetic path-
ways that connect different portions of the configuration

space at any choice of total energy.23–25Figures 4~a!and 4~b!
present the disconnectivity graphs for the two surfaces in
Figs. 3~a!and 3~b!, respectively.

It is possible to state simple rules for transforming one
M -unit F into another, without changing the depth distribu-
tion. The trivial rules of translation (x→x1n) and reversal
(x→M2x) have already been noted. In addition, one has
the following:

~1! any connected subsequence ofM 8,M modular units
that begins and ends at the sameF level may be re-
versed;

~2! any pair of distinct subsequences, whose respective start-
ing and endingF levels are pairwise equal, may be in-
terchanged;

~3! any pair of distinct connected subsequences, with the
startingF level of each one equal to the endingF level
of the other, may be interchanged after both are reversed.

All topographically distinctF ’s possessing a common depth
distribution can be generated from any one of them by re-
peated application of these rules.

In the large-system limit for which the logarithm of the
depth distribution is described by the functions(f), Eq.
~2.4!, significant topographic diversity will certainly con-
tinue to apply, at least for this class of one-dimensional
model potential energy functions. Indeed, the discrepancy
between theO(N) span for the potential energy@Eq. ~2.5!#,

FIG. 3. Contrasting pair ofM560 composite potentials, both possessing the
basin depth distribution specified in Eq.~4.4!.

FIG. 4. Disconnectivity graphs for the pair ofM560 composite potentials
shown in Figs. 3~a!and 3~b!, respectively.
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and the number of modular units rising exponentially withN
@Eq. ~2.2!# offers increasing numbers of ways for up-and-
down ‘‘folding’’ of the potential contour consistent with a
given depth distribution. Consequently, significant kinetic di-
versity can be expected even under the constraint of fixed
thermodynamic behavior. In particular the overall potential
energy contour could be arranged to display a single metaba-
sin as illustrated in Fig. 3~a!, or a collection of many metaba-
sins separated by high intervening barriers, Fig. 3~b!.

The family of one-dimensionalF ’s thus far examined
can be extended to include a no-net-rise basin unitP(xu0).
The resulting collection of compositeF ’s would then be
encoded by spin-1 Ising sequences (m i50,61). The simple
choice

P~xu0!5@cos~2px!21#/2[2sin2~px! ~0<x<1!
~4.5!

conforms to the previous criterion of second-derivative con-
tinuity at the matching endpoints. However, the intrabasin
partition function inevitably differs for this new basin shape
~it can be expressed in closed form using the modified Bessel
function I 0), thus requiring use of the averaging shown in
Eq. ~2.7! to determinef vib . Including P(xu0)as a modular
unit removes the requirement thatM be an even integer for
periodic boundary conditions, but does not diminish the to-
pographic diversity that can exist with a fixed basin depth
distribution.

V. MULTIDIMENSIONAL GENERALIZATIONS

The principal and obvious shortcoming of the family of
potentials defined above is that they are one-dimensional. By
contrast, the dimension of the configuration space within
which anN-body potential function exists is proportional to
N. Therefore our next task is to extend the concepts thus far
developed to a higher-dimensional format. The goal will be
to demonstrate that a wide variety of geometrically and
therefore kinetically distinct landscapes can all produce the
same thermodynamics.

The simplest multidimensional extension involves a sum
of separable contributions,F i , each of the type defined in
Sec. III above,

F~x1¯xn!5(
i 51

n

F i~xi !. ~5.1!

The total number of basins~each one of which is
n-dimensional!will be

M5)
i 51

n

Mi . ~5.2!

We shall require thatF satisfy periodic boundary conditions
in each of then directions.

The individual contributionsF i in Eq. ~5.1! can be en-
coded by their own sequences ofMi Ising spins. And be-
cause topographic diversity exists in directionxi for eachi ,
at a fixed basin depth distribution, we can be assured that
such diversity also exists forF. In fact, a single thermody-
namic constraint on the depth distribution of the
n-dimensional basins comprised inF, Eq. ~5.1!, is far less

limiting than a set ofn basin-depth constraints applied to
each of theF i individually. Although the transformation
rules stated at the end of Sec. IV are still relevant for each
directionxi , they can now be supplemented by other depth-
distribution-preserving processes that operate simultaneously
on two or more directions.

The separable form Eq.~5.1! implies that Newtonian dy-
namics on such ann-dimensional surface would consist of
independent motions in each of then directions. Small-
amplitude motions close to a minimum in a realistic potential
surface would always amount to essentially separable har-
monic motions, but more generally the many-body dynamics
would not be separable due to anharmonicity. Consequently
a further extension of our family of model potentials to pro-
duce dynamic nonseparability is warranted. For this reason
we now examine two-dimensional modular basin units de-
fined over the unit square 0<x,y<1. These modular units,
to be denoted byQ(x,yua,b,c,d), will each have local
maxima at the four-square vertices, saddle points along each
square edge, and a single interior minimum. Furthermore, the
normal derivative of eachQ will vanish along the entire pe-
riphery of the unit square. The integer indicesa¯d will
identify the individualQ’s by specifying their values at the
square vertices,

Q~0,0u¯ !5a, Q~1,0u¯ !5b,
~5.3!

Q~1,1u¯ !5c, Q~0,1u¯ !5d.

This seems to be a more transparent notation for present
purposes than a logically equivalent assignment of Ising
spins to the square edges.

We shall restrict attention to cases in which the net
change in eachQ from one square vertex to an adjacent
vertex is 0,61. Some of theQ’s to be used are composed
additively from the modular one-dimensional functions con-
sidered earlier, Eqs.~3.1!, ~3.2!, and~4.5!. Specific examples
are the following:

Q~x,yu0,0,0,0!5P~xu0!1P~yu0!,

Q~x,yu0,1,1,0!5P~xu11!1P~yu0!, ~5.4!

Q~x,yu0,1,2,1!5P~xu11!1P~yu11!.

Although each of these two-dimensional basins is internally
separable, they can be combined with other modular units so
that the resultingF is not separable overall. Rotation and
reflection operations can be applied to the second and third
of expressions~5.4! to generate other unit modular functions,
such asQ(x,yu0,0,1,1) andQ(x,yu2,1,0,1).

Two other species ofQ’s remain to be defined, neither of
which is internally separable. They areQ(x,yu0,1,0,1) and
Q(x,yu0,0,1,0). These species of course cannot be generated
from the previous cases by rotation and/or reflection. We
assign the following form to the first of these:
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Q~x,yu0,1,0,1!521/21~1/2!@cos~2px!1cos~2py!#

2~5/8!cos~px!cos~py!1~1/16!

3@cos~px!cos~3py!

1cos~3px!cos~py!#, ~5.5!

which has the following interior minimum:

xmin5ymin51/2,
~5.6!

Q~xmin ,yminu0,1,0,1!523/2.

The other nonseparable species is

Q~x,yu0,0,1,0!523/42~9/32!@cos~px!1cos~py!#1~1/2!@cos~2px!1cos~2py!#1~1/32!@cos~3px!1cos~3py!#

1~5/16!cos~px!cos~py!2~1/32!@cos~px!cos~3py!1cos~3px!cos~py!#. ~5.7!

This last function has a single interior minimum at

xmin5ymin>0.452 92,
~5.8!

Q~xmin ,yminu0,0,1,0!>21.805 550 5.

Figure 5 presents a picture of the modular surface defined by
the functionQ(x,yu0,0,1,0).

The reader will notice that noQ(x,yu0,1,1,1)-type spe-
cies has been included in the definitions above. The reason is
that such a modular unit cannot be expressed in the same
simple trigonometric basis as shown for the other functions,
under the same requirements of continuity and vanishing
normal gradient at the perimeter of the unit square.

A compositeF(x,y) satisfying periodic boundary con-
ditions inx andy now can be created splicing together trans-
lated and elevatedQ modules into an array of unit squares.
The specific forms chosen for theQ’s guarantee that the
resultingF and its gradient can be continuous at all shared
square edges. We can formally set

F~x,y!5Q~x2 i ,y2 j uai j ,bi j ,ci j ,di j !1K~ i , j ! ~5.9!

for that portion of the entire surface within the square,

i<x< i 11, j <y< j 11, ~5.10!

for non-negative integersi , j that are subject to

1< i<M1 , 1< j <M2 . ~5.11!

The integer constantsK( i , j ) are analogous to theC’s in Eq.
~3.8!, providing the necessary elevation for the module. The
selection ofQ’s andK’s to form a compositeF can be fully
specified by the integer values of thatF at the shared verti-
ces of the network of squares.

Figures 6~a!and 6~b!present a simple nonseparable pair

FIG. 5. Potential surface for the nonseparable basin function
Q(x,yu0,0,1,0), defined in Eq.~5.7!.

FIG. 6. A pair of nonseparable composite potentials that are thermodynami-
cally equivalent but dynamically distinct. The respective two-dimensional
modular units comprised in theF ’s are specified implicitly by the integer
values shown, equal to the local potential maxima at the shared square
vertices. The horizontal and vertical dashed lines indicate the periodic
boundaries.
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of compositeF ’s that are thermodynamically equivalent, but
dynamically distinct. These contrasting examples are sym-
bolized in the figures by the 8310 arrays of vertex values, as
just described above. The reader can easily verify that the
basin~module!enumeration by species and altitude is iden-
tical for Figs. 6~a!and 6~b!, which indeed assures a common
thermodynamic behavior. However the arrangements of
those modules in the composite potential are distinct, specifi-
cally with different pathways between the lowest-lying
minima that occur in theQ(x,yu0,1,2,1) units. This latter
feature surely influences and distinguishes the respective dy-
namical behaviors. Figures 7~a! and 7~b! present visual
views of the corresponding potential surfaces.

Although the examples specified in Fig. 6 are transparent
and obvious, it should be clear that with substantially larger
M1 and M2 the opportunities would proliferate for widely
disparate topographies that are thermodynamically ‘‘degen-
erate.’’ In that respect this non-separable family of two-
dimensional potentials is similar to the one-dimensional fam-
ily described earlier in Secs. III and IV. Once again, for large

M, wide latitude will exist to vary the number and arrange-
ment of metabasins without effecting the thermodynamics.

Two-dimensional, nonseparable functions of the kind
just described can be combined to form a potential function
in a higher number of dimensions in a manner analogous to
that of Eq.~5.1!,

F~x1¯yn!5 (
k51

n

Fk~xk ,yk!. ~5.12!

The Newtonian dynamics would then be partially separable
into then two-dimensional subspaces.

It should be clear that unit-cube or unit-hypercube
modular functions could be defined and utilized in a straight-
forward generalization of the procedure followed for the one-
dimensional and two-dimensional cases. Although this might
produce rising technical complexity with increasing dimen-
sion of those modular units, it is hard to avoid the conclusion
that the constraint of fixed thermodynamics would almost
always be accompanied by dynamical diversity.

VI. CONCLUSIONS AND DISCUSSION

By using a modular basin approach, it has been possible
to construct families of model ‘‘rugged landscape’’ potential
energy functions. The simplest of these families involves
one-dimensional functions, but multidimensional~and non-
separable!generalizations have also been produced. A shared
attribute of all of these families of model functions is their
topographic diversity. In fact, the diversity is sufficiently pro-
nounced that pairs of functions can be identified that share
exactly the same thermodynamic behavior~depth distribu-
tion of potential energy minima!, while differing drastically
in those topographic attributes that control kinetic and relax-
ational behavior. The implication of these simple model re-
sults is that the same characteristic of kinetic diversity under
the constraint of thermodynamic equivalence applies as well
to the N-body case of real glass formers, where the dimen-
sion of the configuration space isO(N), and the number of
basins~in a symmetry sector!is exponentially large inN. A
qualitatively similar conclusion about decoupling of thermo-
dynamics and kinetics, based on a rather different view of
the potential energy surface, appears in a recent paper by
Wales and Doye.26

Experimental observations of glassforming liquids have
benefited from Angell’s classification scheme between
‘‘strong’’ and ‘‘fragile’’ extremes. Although a few exceptions
appear to exist, an empirical rule states that this classification
simultaneously applies both to thermodynamic~calorimetric!
and kinetic~flow and relaxational!properties, i.e., ‘‘strong’’
correlates with ‘‘strong,’’ and ‘‘fragile’’ correlates with
‘‘fragile.’’ 27 This empirical rule, and the success of the
Adam–Gibbs equation, have focused attention on topo-
graphic features of the potential energy surface as possible
sources of the apparent connection between thermodynamics
and kinetics in supercooled liquids. However, the results ob-
tained in this study seem to cast such speculation in a new
and perhaps unexpected light. From the purely mathematical

FIG. 7. Potential surfaces for the two thermodynamically equivalent com-
posite potentials that were specified schematically in the prior Figs. 6~a! and
6~b!.
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standpoint illustrated by the model potential energy functions
described above, thermodynamics would appear to be logi-
cally decoupled from kinetic behavior.

Several issues concerning our families of model func-
tions need to be considered. First, all members of these fami-
lies have upper bounds~remain finite!, whereas realistic po-
tential energy functions tend to become arbitrarily large at
small interparticle separations. This qualitative discrepancy
seems to be totally benign in the present context, though.
System configurations with arbitrarily high potential energy
are simply never visited during the temporal evolution of a
many-body system. That part of the ‘‘rugged landscape’’ to-
pography relevant to glass-forming behavior lies closer to
the basin minima, and to the low-order saddle points that
normally provide interbasin transitions.

A second issue that deserves consideration arises from
the shapes of the unit modular regions out of which our
composite potential energy functions have been constructed.
Depending on the dimension of the space used, these are unit
intervals, unit squares, unit cubes, etc., and they are placed
together so as to tile the space in a nominally periodic fash-
ion. However these shapes are a convenience, not a neces-
sity. In an alternative development, it would have been pos-
sible to utilize other, less symmetrical, modular regions.
Mixtures of differently-shaped modular regions selected to
tile the space properly could also have been selected for use.
Furthermore, inclusion of modular regions that are not just
simply connected also appears to be feasible. Although each
of these extensions might require additional technical com-
plications, none of them appear to compromise the topo-
graphic flexibility present under the constraint of fixed ther-
modynamic behavior that characterize the examples
developed above in Secs. III–V.

A third issue involves the shape of the large region over
which the composite potential function is defined, and at the
edges of which periodic boundary conditions have been im-
posed. This region is intended to mimic a single symmetry
sector, as mentioned above in Sec. II. A realistic shape for
such a symmetry sector would be highly nonconvex, and
probably highly multiply connected. Nevertheless, no math-
ematical property arising from these complex features obvi-
ously intervenes in a continuation of our argument that ther-
modynamically identical potential energy functions can
display widely divergent kinetic behaviors. We stress once
again that this conclusion refers only to mathematical, not
physical, characteristics of many-body potential energy func-
tions.

Having made these claims, we are now obliged to con-
front the empirical linkage between thermodynamic and ki-
netic properties of glassforming substances, whereby the An-
gell classification scheme simultaneously assigns a ‘‘strong’’
versus ‘‘fragile’’ ranking to both groups of properties.4,27 It
appears to us that the only viable option is to conclude that
the empirical linkage arises not from a mathematical at-
tribute of rugged potential energy surfaces per se, but from
an additional physical principle that has had no role in con-
structing our model potential energy families. This principle
presumably concerns the specific nature of interparticle in-
teractions, arising from molecular shape, flexibility, ionicity,

covalent bond formation, etc. These interactions would have
to give rise to a class of rugged energy landscapes in which
drastically different multiple topographies~kinetic diversity!
cannot in general arise from a single depth distribution~ther-
modynamics!. It would be extremely useful to have in hand a
clear and comprehensive statement of this additional prin-
ciple, including the conditions under which exceptions could
occur.27 However the articulation of that principle is beyond
the scope of the present paper.

Finally, we note that at least some glassformers appear to
change their character from ‘‘fragile’’ at high temperature, to
‘‘strong’’ at low temperature.28 This implies that the land-
scape topographies for such systems change qualitatively
from those configuration-space regions preferentially occu-
pied at high temperature, to those preferentially occupied at
low temperature. The model potentials described in the pre-
vious sections of this paper could in principle be easily
crafted to exhibit that kind of variable topography for ther-
modynamic or kinetic behavior, or both, but as before the
two classes of attributes would be logically independent.
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1J. Jäckle, Rep. Prog. Phys.49, 171~1986!.
2C. A. Angell, Science267, 1924~1995!.
3P. G. Debenedetti,Metastable Liquids~Princeton University Press, Prince-
ton, 1996!, Chap. 4.

4C. A. Angell, J. Non-Cryst. Solids131-133, 13 ~1991!.
5W. Kauzmann, Chem. Rev.43, 219~1948!.
6~a! W. Nernst,Nach. d. Ges. d. Wissensch. zu Go¨ttingen, Math. phys. Kl.,
Heft I ~1906!; ~b! Sitz.-Ber. d. preuss. Akad. d. Wiss.~1906!, Vol. 20;~c!
M. Planck, Treatise on Thermodynamics, 3rd ed.~Dover, New York,
1945!, pp. 272–292.

7Reference 3, pp. 250–253.
8F. H. Stillinger, J. Chem. Phys.88, 7818~1988!.
9D. Kivelson, S. A. Kivelson, X. Zhao, Z. Nussinov, and G. Tarjus, Physica
A 219, 27 ~1995!.

10G. P. Johari, J. Chem. Phys.113, 751 ~2000!.
11G. Adam and J. H. Gibbs, J. Chem. Phys.43, 139~1965!.
12In Ref. 3, p. 257.
13F. H. Stillinger, Phys. Rev. B32, 3134~1985!.
14C. A. Angell, Physica D107, 122~1997!.
15A. Heuer, Phys. Rev. Lett.78, 4051~1997!.
16S. Sastry, Nature~London!409, 164~2001!.
17F. H. Stillinger, Phys. Rev. A25, 978~1982!.
18F. H. Stillinger, in Mathematical Frontiers in Computational Chemical

Physics, edited by D.G. Truhlar~Springer-Verlag, New York, 1988!, pp.
157–173.

19F. H. Stillinger, Science267, 1935~1995!.
20F. H. Stillinger, J. Chem. Phys.88, 380~1988!.
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