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Realistic interactions that operate in condensed matter systems can exhibit complicated
many-particle characteristics. However, it is often useful to seek a more economical description
using at most singlet and pair effective interactions that are density dependent, to take advantage of
the theoretical and computational simplifications that result. This paper analyzes the statistical
mechanical formalism required to describe thermal equilibrium in that kind of approach. Two
distinct interpretations are available for the role of density dependence. Either one can be treated
with internal consistency, but generally they lead to differing thermodynamic predictions. One
regards the density dependence of effective interactions as merely a passive index for the state at
which the optimal choice of those effective interactions was deternii@ade ). The other treats

the density as an active variable on the same footing as particle coordi@atesl|). Virial pressure

and isothermal compressibility expressions in terms of particle distribution functions are displayed
for both cases. Under special circumstances it is possible for the two interpretations to yield the
same pressure isotherms; the conditions producing this coincidental concordancy have been
explored by means of density expansions. 2602 American Institute of Physics.
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I. INTRODUCTION AND HISTORICAL BACKGROUND We have assumed for simplicity here that only a single spe-
. cies is present(the multicomponent generalization is
Regardless of whether it is close to, or far from, a stat€aightforward, andr, comprises all nuclear positions of the

of equilibrium, the behavior of any material sample depends, particle. Also, the zero of energy fdry has been chosen
fundamentally on the structure of its constituent particles angl, correspond to widely separated particles, all in their

on their mutual interactions. FOV t_he majority of SUbs'["?mce‘?fowest-energy conformation. In the event that structureless
that command research attention in the physical and b'°|°9'particles were under consideratian, would vanish identi-

cal sciences, those structures and mtgraqtlons tend to be' ve(%"y except near confining container walls. The requirement
complex. In theory, a full characterization would require y5; £ (1.1) be satisfied identically for al, with the same
solving the Schrdinger equation for all electrons, in an ar- ¢,4ctions u;, uniquely determines these component func-
bitrary configuration of the system’s nuclei, at least for theyjyng

ground electronic state. In practice this is a difficult or im- T.he scientific literature reveals many theoretical propos-
possible task. Both conceptual understanding and numericalg replace the exact many-body potentiall) with a

studies motivate the search for a more economical descrifqathematically simpler, and therefore more tractable, form
tion. . ) ) . _®F while attempting to retain physical essentials. The most
Quite generally, the many-particle interaction potentlalpopu|ar approach approximatds, with a linear combina-

@, that emerges from solving the ScHioger equation for tion of (at mos} “effective” one-body and two-body inter-
electrons can be resolved into separate one-body, two-bodyions

..., N-body contributions:
ON=OR =2 U (1) + 2 Uz (1;.r))- (1.2

(I)N(rl"'rN)ZE_ ul(ri)+2 up(ri,ry)
: <] Of course some criterion must be advanced for the selection
of the uf'’s, including specification of the function search
+ 2 Ug(ri,rj,r) - un(ry-ry). space. The results generally will depend on temperature
=ik system volumeV, and eithemN (closed systemor chemical
(1.1)  potentialu (open system presuming that the system is close
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to a state of thermal equilibrium. So far as the present invesseeks a continuous variation in the pair potential, as the num-
tigation is concerned, we shall assume that isothermal corber densityp of the entire system changes, so that the short-
ditions apply, and thus shall concentrate on the effectg of range order expressed by the pair correlation funct&n
andN. The implications of temperature dependence for efremains invariant® The density range over which this in-
fective interactions will be reserved for later consideration. variance can be maintained offers some insight into the sta-

Early proposals for effective pair potentials assumed thatistical geometry of particle packing.
the full expansion(1.1) converged rapidly with respect to Yet another source of density-dependent effective pair
order, and that terms beyond three-body contributions coulgotentials has emerged from an adaptatldh of the so-
be neglected. This assumption was viewed as well justifiedalled “reverse Monte Carlo” procedufé:?? This approach
for insulating atomic and molecular systens.g., noble starts with a given pair distribution function at fixed number
gases, water, saturated hydrocarho@ne of the first pro- density, often determined experimentally for a real sub-
posals to invoke density-dependent pair potentials in thistance, and then applies an iterative statistical algorithm to
context was put forward by Sinanlog % it utilized invari-  extract a pair potential that would produce the given distri-
ance of the thermodynamic energy as its basic criterionbution function at the same temperature and density. Conse-
Rushbrooke and Silbdrtadopted a contrasting strategy, quently, the final objective is the same as that of the Rush-
which was also followed by Rowlinson and collaboratdrs, brooke and Silbert work mentioned abdV&he presence of
that the effective pair interaction should reproduce the paimany-body interactions in the initial system can be expected
correlation function of the system with the full many-body to induce temperature and density effects on the outcome of
potential. Neither of these approaches assumed that it wahkis procedure.
necessary to considery§ differing from u, . A substantial group of published wofRs?® has dealt

In the event that the particles of the system bear permawith consistency issues that appear to arise in statistical me-
nent electrostatic charges, local polarization effects becomehanics in the presence of density-dependent effective inter-
important, and confer an intrinsically many-body characteractions. Specifically, this involves reconciling the Ornstein—
on the true interactiod. For molten salfSthe obvious and  Zernike expression for isothermal compressibfiity.e., the
traditional way to simplify induced polarization involves structure functionS(k) for k—0] with the Clausius virial
renormalizing the bare Coulomb interactions by the inversg¢heorem for pressure, extended to the case of density-
of D.,, the density-dependent high-frequency dielectric condependent pair interactions. This issue also forms a major
stant. For some purposes it may be desirable to include Borsubject of the present paper.
cavity energies for each ioh. Two opposing viewpoints are possible when using nomi-

The case of highly polar, but electrostatically neutral,nally density-dependent effective interactions. On the one
molecules presents an analogous situation. The modeling dfand, if interest only requires modeling a given substance
water and aqueous solutions provides an obvious and signiféver a narrow density range, it may suffice to determine an
cant application area. The presence of large multipole moeffective interaction only at the midpoint of that range, and
ments on the bare molecules induces excess electrostatic mixen subsequently to treat the resulting effective interaction
ments, whose influence affects the choice of an effective paias though it were density independent. Within this interpre-
potential, and requires inclusion of effective self-energytation the compressibility formula and the Clausius virial
terms?® theorem in its conventional form are automatically consis-

Molten metal$! '3 and semiconductot$!® present an- tent. On the other hand, density dependence of effective in-
other broad class of substances for which effective interacteractions can be regarded as an intrinsic property of a
tions offer a useful modeling tool. For these cases, valenceodel, under experimental control by varying the system
and conduction band electrons dominate the underlyingolume(closed system or by varying the chemical potential
physics, and their thermal excitatiof® excited electronic (open system This second viewpoint requires modification
state$ generally confer additional temperature dependencef the Clausius virial relatiofi?>~2"and thus requires a rein-
upon the effective interactions, beyond what would beterpretation of the Ornstein—Zernike compressibility for-
present for insulating substances. mula. Both viewpoints can be independently developed as

Assuming that nuclear motions and local order in a subthermodynamically consistent formalisms, but they generally
stance of interest obey classical statistical mechanics, thgeld distinct predictions. It is not always possilaleriori to
corresponding canonical partition function can be interpretedlecide which approach is preferable; the choice depends on
as an inner product. This tactic generates a variational critethe application.
rion for selection of a “best” effective pair potential, regard- The principal objective of the present paper is to exam-
less of how rapidly expressiofil..1) converges® Such a ine formal aspects of these contrasting viewpoints, and to
variational approach in principle accounts for particle corre-show that each is internally consistent. The following Sec. Il
lations of all orders by optimally approximating the full- reviews some general statistical mechanical formulas needed
potential multidimensional Boltzmann factor. Furthermore itfor our analysis. Section Il considers the well-known mean-
can serve as the basis for developing density expansions &€&ld approximation, perhaps the simplest example of an ef-
effective interactions’ fective interaction model. The aforementioned &8} pro-

In addition to the examples just mentioned, anothercess is revisited in Sec. IV, emphasizing how the two
source of density-dependent pair interactions arises in aterpretationgviewpointg lead to different thermodynamic
purely theoretical context. This is the “isg®” process that  predictions. Section V demonstrates the existence of a math-
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ematical constraint on effective interactions that, if imple-process. Subsequent usageldf(r--ry|pq) for theoretical
mented, would enforce equality between the thermodynamighodeling or computer simulation would not necessarily be
predictions that emerge from the two alternative viewpointsyestricted to number densiy, but could in principle entail
The final Sec. VI presents conclusions and discusses somgy other number densitg#py. One must also bear in
related matters. We have also included an Appendix devoteghind that a series of similar optimizations could also be

to rigid sphere models with density-dependent effective colaccomplished, each belonging to a discrete set or a continu-

lision diameters. ous range opg’s; but for any one of these the corresponding
pq Serves only as an index to the optimization, and implies
Il. GENERAL RELATIONS no density commitment for subsequent application. For that

reason, we can refer {@as merely a “passive” variable.

Case Il. This alternative treajs as a true independent
variable for the effectlve interactions, on the same math-
ematical footing as---ry. Consequently, for this case we
write O (ry--ry,p). “Experimental” control over thisp
can be exercised by varying eith&; or V, or both. By
contrast with the preceding Caseplnow plays the role of an
“active” variable.

Suppose for the moment that the pasgiv€ase | inter-

The canonical ensemble offers the most convenient sta-
tistical mechanical setting in which to develop our analysis.
In the interest of simplicity, it will be supposed in the fol-
lowing thatN identical structureless particles reside in vol-
umeV, at inverse temperatu@=1/kgT, and that they are
subject to periodic boundary conditions. Given an effective
potential®y;, the corresponding canonical partition function
has the following fornt®

Zn(B,V)=(N3NND) LY (B,V), pretation is applicable, with just one-particle and two-
(2.1 particle effective interactions, as suggested earlier in Eq.
YN(B,V)ZJ drl"'j dryexd — BPX(ry 1y, (1.2, and which we now rewrite as follows:
\% \%
where At is the mean thermal deBroglie wavelength. Con- <I>§(r1---rN|pd)=Nu’{(|pd)+i2<j us (rijl pa) - (2.9

nection to thermodynamics occurs through the Helmholtz

free energyF, which is obtained fronZy, In writing this expression we have recognized thatuglls

—BF(N,BV)=In Z\(B,V). (2.2 are identical and position independent, and we have followed

In particular, this connection can serve as the starting pomtthe conventional assumption that th's are spherically

for developing various thermodynamic functions in density symmetric. In this cireumstance, the us_uaI_CIausms virial
A . relation gives the pressuge with no contribution from the
power series, i.e., in cluster expansighs. inglet interactionsi} . Whether it is inferred from a tim
As a result of the free translation permitted by the peri- singiet interactions; - €iner it is Inierred from a time-

odic boundary conditions, the particle density will be strictly tr:/eraged V'”?l qu?Ftlty,for bty %ptpk:ylng a l\t/olume scaling to
constant throughout the system. This will be true for all € canonical partition functio e resulting expression

phases that might be present, either singly or in coexistenct.I:(,)r the pressure is the following:

and whether those phases are fluid or crystalline. Particle
configurational order is revealed by the correlation functions ﬁp=p—(,8p2/6)f dryor [ du (riJpg)/dry,]
g™ of orders n>1, whose definition in the effective-

interaction canonical ensemble is substantially identical in X9 (r15,p,8). (2.5

form to that for conventional (density independent

interactions®® Furthermore, the Ornstein—Zernike relafibithat connects

the isothermal compressibility
) B V"N!

g (M) = RN =y Jy AT A ky=—(3INVI3p)y 5 (2.6)
Xexg —BPN(ry - ryl). (2.3 to local density fluctuations vig'® is also valid for Case I:

Periodic boundary conditions ensure that gil’ possess )

translational invariance; rotational invariance can only be ex-  px7/B= 1+Pf drifg@(riz.p.8)—11. 2.7

pected for homogeneous fluid phases in the large system

limit. It must be stressed that the pair correlation functi®f to

As pointed out in Sec. |, two distinct meanings, or inter-be inserted in this relation must be the infinite-system limit
pretations, can be attached to the density dependence of dtinction (for which the large;, asymptote is indeed)land
fective interactionsby,. To keep these cases separate, wethe upper integration limit is then allowed to pass to infinity.
shall use correspondingly distinct notations. The logical consistency between the two expressi@s)

Case |. This involves prior determination of an optimal and (2.7) that involve the pressure is just the same as for
effective interaction, using input data for the system of inter-conventional statistical mechanical models with true density-
est, at number densityy. We denote that effective interac- independent pair potentials.g., the Lennard-Jones 12-6 po-
tion by @} (rq---rnlpg). The vertical bar isolates, from the  tential model.
configurational variables to emphasize that this quantity The activep Case Il provides an illuminating contrast.
serves only as an index or identifier for the optimizationThe analog of Eq(2.4) for this alternative is
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. . . pair interactions appearing in E¢3.1) can be replaced by
(DN(rl"'rN!p):Nul(p)+i2<j uz (rij.p). (2.8 density-dependent singlet effective interactions,

N
Th_e (_axplicit <_jensity depe_ndences of the effective_ _singlet and S =S ur ()
pair interactions appearing here generate additional terms 2 Ve T

contributing to the pressure in its virial-theorem f&rf#242¢ 3.3

uy (i)=—Ap.
L dui(p) By U3 (12,p) ! P
Bp=p+pBp dp + 2 dry ap This approximation can be generated as the leading pertur-
bation term in a suitably crafted systematic expansion, the
H 4,35
2) so-calledy expansion'*
97 (r12.p. ). (2.9 In view of the fact thatu} is independent of position

. . . within th m, an alternati ivalentformulation
The existence of the new terms reflects the additional iso- thin the system, an alternativbut equivalentformulatio

thermal reversible work that must be performed, whileOf the mean field approximation is to replace E%i3) by the

_ r_l2 au;(r121p)
3p (9!’12

changing volumeV, in order to modify the interactions following:
among any fixed set of particles in the interior of the system. E 0 WE D i
Unless the new Case [active p) contributions to the = uz (rii)=i<j uy (1),
pressure accidentally sum to zero over the density range of (3.4)
interest(see Sec. V beloy the isothermal compressibility i - . .
1 will be modified from its Case (passivep) counterpart. uz (i, ) =[uy (i) +uy(j)J/(N=1)=—=2Ap/(N—-1).

However it is important to realize that correlation functionsln other words, the collection of long-range attractive inter-

( ) . . H . -y .
g'™, Eq. (2.3, are identical for the two classes of effective actions becomes replaced by position-independent, very

i 1 * DY = * .. - . . . . . -
interactions ®(ry---ry|pa=p) and OX(ry*rn.p), PrO-  \eak pair interactions. For either formulation, the effective
vided that the configuration-variable dependences of thesg:araction for the entiré-body system is

two alternatives are the same. In other words, short- and
long-range particle order in the system under fixédv, B

* S
conditions cannot depend on whether the effective interac- q)N:iZj uj )(rii)_NAp' (3.5
tions would, or would not, change \f were to be changed.
The implication is that the Ornstein—Zernike relatith?) The standard interpretation of the mean field approxima-
generally will not yield the correck; for Case II. tion conforms to Case Il of the preceding Sec. Il. Thaipis,

becomes a true “active” variable in thBl-body potential
function, which in the notational convention introduced ear-
lier would be written®\(r4---ry,p). Consequently the pres-
sure should be evaluated from the extended form of the virial
One of the Simp|est, and most familiar, examp|es of ef-expression, EC{.29), with the familiar result equal to that for
fective interactions emerges from the mean field approximathe short-range-interaction systerp(?) supplemented by
tion. Within the domain of classical statistical mechanics forthe mean field correction
continuum systems, this approximation usually appears in _ (s 2
connection with a strategy to separate the Nilbody poten- P(p.B)=P""(p.B) = Ap®. 3.6
tial into short-rangés) and long-rangél) components. Such Under the assumption that the short-range interactions are
a separation implicitly underlies the venerable van der Waalthose for rigid spheres, this is just the result produced by
equation of staté? as well as the more modern revision cre- Longuet-Higgins and Widom in their extension of the van

I1l. MEAN FIELD APPROXIMATION

ated by Longuet-Higgins and Widof. der Waals equatiofr.

Suppose that the initial-body potential consisted only The passivge Case | interpretatiofthat is unnatural for
of pair terms, and let the separated form be written the mean field approximatiprwould establish the effective

interactions, whether singlet or pair, at a chosen distin-
Dy(ryery) =2 [uP(r)+ud(rij)]. (3.1  guished densityy, and then insist on maintaining exactly
i< the same effective interactions at any subsequently used sys-

Here it will be supposed thai!) comprises of primarily tem number density. In the notational convention defined
attractive interactions, and is bounded and integrable, earlier, one would write

477[ r2uy)(r)dr=—2A. (3.2 PR(ry - Tylpg) = 2 UF(rij) —NApg. (3.7

0 <]

The basic idea of the mean field approximation is to postuThe last term on the right-hand side of this expression
late thatul is pointwise sufficiently weak so as to have merely amounts to a constant downward shift of all configu-
negligible effect on structure, but sufficiently long ranged sorational energies, and can have no influence on the pressure,
that it encompasses a macroscopic domain of neighbor pawhich is just that of the short-range-interaction systef®,

ticles (whose number therefore scales with the overall denThe corresponding isothermal compressibilw'rtﬁi) would be

sity p). If that is the case, then the entire set of long-rangegiven by the Ornstein—Zernike formula, EQ.7), using the
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pair correlation function for the short-range-interaction sys-  G(ky,;,) <0, 4.3
tem. Note that the relation between the Case | and Case |l o _ )
isothermal compressibilities is as follows: then restriction(4.2) would be violated ak, if p were to
exceed the upper limit
Ukr=1k\ = 2Ap2. (3.9
p* =—1UG(Kmin)- (4.4

In spite of the fact that the pair correlation function is the

same regardless of which of Case | or Case Il is invoked, it ~ An important group of applications leading to an upper

is directly relevant for evaluating isothermal compressibility density limitp* of the form(4.4) havek,,=0. In particular

only for the former; Eq(3.8) must be used for the latter. this occurs for the rigid sphere model where the invariant
g® is that for low or vanishing density. This implies that

IV. 1SO-g® PROCESSES the passiver Case | isothermal compressibility_ continu_ously
approaches zero asapproachepg* from below, i.e., the iso-

The introduction and examination of *isg® g system becomes arbitrarily “stiff” ap* . Evidently this

processes®3® has been motivated by the need to under-indicates that ap* the many body system has run out of

stand more deeply and in technical detail the connectionparticle arrangements that would be required to maintain the

between interparticle interactions and the equilibrium statisinvariant pair correlation pattern under further density in-

tical correlations that they induce. As the name suggestgrease.

these processes seek to identify changes in pair potentials In those instances whelg,;,=0, we can expand (k)

that manage exactly to preserve pair correlation functions asround the origin ok space as follows:

invariants as the system number density varies isothermally. ) 4

Put another way, the objective is to have density change and G(K)=Go+ G2k +O(k™),

pair potential change exert precisely canceling effects on the (4.5

pair correlation functiorg‘®(r). No singlet effective inter- Go<0, G,>0.

actionsuy are involved. Detailed studies have thus far bee

carried out for the rigid rod, disk, and sphere systéfres

well as the square-well system in three dimensiin®ne

straightforward example of an isg?) process would be to G(k) -1

maintain the exact zero-density form of the pair correlation C(k)= 17 pG(K)  3p+ (G,IGK2 +0(k%. (4.6

function (i.e., the Boltzmann factor for the initial pair poten-

tial) as the density increases from zero, and to inquireHere we have set the density deficit belpiv equal todp,

whether this condition can only be applied up to some maxi- .

mum densityp*>0. In the following, we will assume for p=p*—dp. (4.7)

convenience that the pair correlation function to be held conyhen Sp is small, only the leading term on the right-hand
stant has emerged from a system with pair interactions ofjge of Eq.(4.6) needs to be considered, and this term pro-

finite range. duces a large and narrow peak at the origin. An inverse Fou-

The pair potentials created by an ige? process are not  rier transform applied to that leading term then vyields the
effective interactions in the usual sense of having emergepi_space form of the direct correlation function

from an approximation method. Nevertheless, they are den-
sity dependent, and the resulting many-body systems can b _ ,3j r
interpreted according to either the passiv&ase | or the C?rlz’p)_(zw) dk exp(—ik-11,)
activep Case Il protocol. The former involves a sequence of
model systems with pair interactions (r;;|pq), each cre-

"This can then be related to the smiabehavior of the Fou-
rier transform of the direct correlation functio@i(k),*’

x{~ 1 8p+(G,/GHK]}

ated specifically to reproduce the targﬁ; at a givenpgq, — —(GY4mGyr 1) ex — | Go|(3p/Gy) Y2 15].

but only at thatpy. The latter envisions a single model sys-

tem with pair interactionsus (rj;,p) that continuously (4.8

change form as the system volume varies continuously.  This Yukawa function continuously loses its exponential
The structure factor is defined by damping upon approach to the upper density lipfit The
S(k)=1+pG(k), O(k* terms neglected in Eq4.8) can be expected to add

(4.1) short-range corrections to this long-range Yukawa result.

The Percus—YevickPY)%® and the hypernetted chain
(HNC)*® approximations supply connections between the di-
rect correlation function and the pair interactions that are
present to produce it. Both approximations agree that in the
asymptotic large-distance regime,

G =p | drppexpiik- 120?11 ~1].

In an isog® setting,S(k) becomes strictly a linear function
of p, as does itk— 0 limit, the Case | quantitpx1/8, EQ.
(2.7. Under thermal equilibrium conditions, the structure
factor obeys the restriction C(r12,p)~ — BUS (r10). (4.9

S(k)=0. (4.2 Equation(4.8) above then implies that will adopt a repel-
Consequently, i5(k) has an absolute minimum that is nega- ling Yukawa form at large separations, which in thes p*
tive at someky,in, limit becomes Coulombic,
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2
U3 (r12p),u3 (r1p,0)~(Ggl4mBGor 1) UT(p)=Ugp+Usp’+usp+---, (5.3
x ex —|Gol(8p/G2) " 15].
_ 2
U3 (F12,p) =Up(F 1) T Ups(F12)p+ Uz AF 1) p=t--+.

(4.10 (5.4)

With either the Case | or Case Il interpretation, this long- ]
range effective pair potential has a dominating influence oNotice that the first of these should have no constaif) (
the system pressure. For the passiv€ase |, insertion of term. The leading term of the second simply represents the

form (4.10 into the conventional virial expressig@.5) gen-  bare” pair interaction of two particles in isolation.
erates a pressure contribution that has the character of a Under the conventional circumstances, where “true” in-
simple-pole divergence: teractions are involved that are short ranged and density in-
dependent, the pair correlation function can also be devel-
Bp(p.B)~(p*)?25p (Case ). (41D oped in a density power series using the cluster expansion

This simple pole contribution is also present in the active- technique™“°The resulting expansion can be represented in
the following manner:

Case Il interpretation, of course, but it is itself dominated by
a double-pole contribution that arises from % /dp con- 2 2
tribution appearing in the extended virial relati¢h9): g'“(riz,p)=expg — Bux(rix) {1+ C=7(rp)p

Bp(p,B)~(p*)%2(8p)? (Case I). (4.12 +C2A(r ) p?+- -} (5.5

This contrasting pair of pressure results vividly illustrates the o theC2i)(r,,) would bep independent, and, would
different thermodynamic implications that can emerge fromy, iqentified v&ith Uyo in EQ. (5.4 abO\;e. But when

the alternative interpretations. We remind the reader that E _dependent effective interactions are under consideration,
(4.11) expresses the pressure behavior of a sequence of SY§qq the cluster sums are themselves constructed using those

tems indexed byp and each examined at its indexing  gftective interactions, a strict power series fgf?) would
whereas Eq(4.12) refers to a single system for whighis a = ojire expanding eac®/), and then collecting all terms
fundamental variable of the potential energy function. In;

. Lo e e in Eq. (5.5 with a common order ip. Once this is done, and
view of this distinction, note that the vanishinggt of the power series are inserted in B§.1) above, eacly order

sequence of isothermal compressibilities for Case | cannQienerates its own constraint to enforce Case I-Case Il con-
correctly be inferred from asymptoté.11) by differentiation cordancy. All constraints of orders up (8 extracted from

with respect to densitywhich would erroneously suggest Eq. (5.1), when enforced, assure that Case | and Case Il
proportionality to (p)2]; in fact it follows from Eq.(4.1) pressures will agree through ordet2.
above that the proportionality is linear & at p*: The leading-order constraifio(p°)] from Eq. (5.1) is

prrlB=[Go|dp (Case ). (4.13  trivial:

V. CONCORDANCY CONDITION u;1=0, (5.6

Although Case | and Case Il interpretations generallyand simply shows that the seri¢5.3) begins at quadratic

will produce distinct pressure predictions, special circum-order. The next ordeffO(p)] leads straightforwardly to the
stances exist under which those distinctions will vanish.condition:

Identifying those circumstances proceeds from the require-

ment that the conventional and the extended forms of the 1

virial expression for pressure, EqR.5 and (2.9), respec- u1,2=2f dripuy(riexd —Busorin]. (5.7
tively, produce the same result. This is equivalent to demand-

ing that the Case Il interactions satisfy the condition _ . . e
9 fy This last relation can be viewed as a specification of the
dui(p) »p U3 (rqz,p) 2 constantu, , once thatu, 4(r;,) has been selected. Alterna-
dp ) 12—&;) 97 (ri2,p). (5.0 tively, if interest lies in the subset of effective potentials that

have only short-range pair ternfand no singlet effective
As pointed out in Sec. Il above, the singlet effective inter-interactiong, then Eq.(5.7) reduces to

actionsuy could formally be absorbed into the definition of
u} . Thus the concordancy condition for the two interpreta-

tions would reduce to the following: O=J dripup(riexd —Buari], (5.8
A3 (r12,p) 2) ] ) ]
0=J drlZTg (riz,p). (5.2 which requires thatu,, be orthogonal to the bare-pair-
potential Boltzmann factor.

For the purposes of this section, however, &ql) offers the Proceeding to the next orde®(p?)], it is necessary to

more convenient starting point. account for contributions tg(® that (a) arise fromC®Y
The singlet and pair effective interactions can both bex(r,,), and(b) arise from the already-constrained effective

developed into density power series pair functionu, 4(ry,). One finds
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1 corporation of the effects of real many-body interactions can
Ul,sng drlzeXF[_ﬁuz,o(rlz)][[Zuz,z(rlz) often be well approximated by adroit choice of “effective”
singlet and pair potentials, which generally can be expected
—ﬁ(Uz,l(flz))2]+Uz,1(flz)f drs f(r13)f(r32)]a to display both temperature and density dependence.
The present study has been concerned with the conse-

(5.9 guences of density dependence in effective potentials. Two
distinct viewpoints, or interpretations, have been identified.
The first(Case } involves determination of effective interac-
f(rij)=exd —Bu,ori;)]—1. (5.10  tions at a set of one or more fixed densitjes, and then

Only the two quantitiesl; 5 and u, (r1,) make their first treating each such determination as thopgtwere simply a

appearance in E@5.9), and are thus constrained for the first NOnvarying parameter; the number densitin a theoretical
time. or simulational application of interest is then permitted to

It is clear that this systematic process could be continuegary from py while treating the interaction functions as in-
to higher orders, though the outcomes rise rapidly in comvariant quantities. The secori€ase 1) treats the density
plexity with increasing order. AD(p"), one has first appear- dependence of effective interactions as a legitimate variable
ances ofu;, andu,, ;. If in fact the various density ex- in the Hamiltonian of the many-particle system, on a math-
pansions (5.3—(5.5 are convergent, the resulting ematical footing equivalent to that of particle configurational

constrained effective interaction§ anduj as represented cqordinates. These separate viewpoints generally produce
by density serie5.3) and(5.4) should produce concordant gigsinct thermodynamic functions. In particular, the virial

results for Case | and Case Il pressures, at least up to t e . .
. o . ff f 2.
density of a phase transition. It should also be pointed Ol} essure appears in wo different forms, E@s5) and (2.9

that if the effective pair potentiali} (r1,,p) were a given qr Qage | and fo.r Case I, .respectivelyl. But in spite. of this
quantity, then Eq(5.1) could be used to determine that sin- dISt.InCtIOI’l, both mterpretaﬂpns enjoy internal co.n3|stency.
glet function u? (p) which would produce Case I-Case II Which of Case I or Case Il is to be the preferred interpreta-
pressure agreement, even across phase transitions. tion in any given application cannot be decidegriori, but
We close this Sec. V with a brief examination of the must rest upon physical details of the specific materials and
result obtained by applying the concordancy constraint to th@henomena under consideration.
isog® process discussed in Sec. IV. In this circumstance, Section V explores the possibility that imposition of suit-
the usual compressibility expression, H@.7) applies to  able constraints on the space of effective interactions, at least
both Case | and Case Il by construction. It can be written ingt the singlet plus pair level, might cause the virial pressures
the form for the Case | and Case Il interpretations to become equal
functions of the density. This special circumstance indeed
seems to be realizable, and in the event that only short-range
interactions are present, the constraints can be stepwise
implemented in increasing integer orders in density. The situ-
ation is less straightforward if the particles comprised in the
system bear electrostatic chargesg., fused salts, electro-
lytic solutiong, because density expansions are inappropri-
ate. This aspect of the subject deserves an in-depth examina-
_ 1 tion in a future study.

Ap=[G(O)] TIn[1+pG(0)]. (.12 Although the present work has concentrated on density
In other words, the constrained version of the @8- pro-  as a variable, we recognize that parallel issues exist concern-
cess possesses an elementary explicit pressure equationifg) temperature dependence that could arise from any proce-
state over its full density range. Finally, it should be notedgyre used to assign effective interactions. The analogs of our
that in the limit of vanishing(0), theexpression shown in - caqe | and Case Il interpretations would hinge on whether
Eq. (5.19 reduces identically to the ideal gas equation 0fthe temperature in the effective interactions were to be
state. . . . o

treated simply as an indexing paramefgr similar to pqy

above(from which the operative temperature could depart

or whetherT were to be regarded as a “true” variable of the
VI. CONCLUSIONS AND DISCUSSION effective interactions, controllable through the total energy in

The desire to construct and analyze realistic models fof Microcanonical ensemble. It is clear that the respective
technologically important substances is hindered by the comRredictions of the heat capacities generally would differ, al-
plexity of the constituent particles and their interactions. Fothough suitably constraining the space of effective interac-
reasons of practicality, it is desirable to limit the mathemati-tions should once again produce concordancy. This is an-
cal representation of interactions to low order in particleother feature of the general subject whose full analysis must
number, for example to singlet and pair functions only. In-await a later examination.

wheref is the Mayer cluster bond for the bare pair interaction

p _

ﬂ(&—) =[1+pG(0)] ", (5.1
Plg

where G(0) is the excess pair correlation function spatial
integral[Eq. (4.2)]. In view of the fact thatG(0) is density
independent for isg{?) processes, the preceding E§.11)
can immediately be integrated to yield
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da(p)

dp drip—alp)], (A8)

APPENDIX: EFFECTIVE INTGERACTIONS FOR RIGID which is analogous to the replacement that converts the usual

SPHERES virial expression Eq(2.5) to an expression involving just the
The purpose of this Appendix is to record a few resultscontact pair correlation function EQA3? above:” Equation

for the specific model of rigid spheres with density- (A8) converts Eq(2.9) to the following:

dependent collision diameteegp). The conventional rigid dina3(p)

sphere model, with a fixed collision diameter, provides theBp=p 1+ TH

natural backdrop. The pressure for that fixeodel can be np

expressed in the following form: =pF[pas(p)]. (A9)

—g'?a(p)]

1+(2mi3)pa’(p)g?la(p),p]

_ 3
Bp=pf(pa’), (AL From this expression it follows that the Case Il compressibil-

wheref possesses a convergent power series that generatég is given by
the virial series for the pressure

f(X)=1+F x+fx2+-. (A2) prrlB={F[pa’(p)]
This function is related to the contact value of the rigid 3 -1
. . : s 3 — dInpa(p)
sphere pair correlation function as follows: +pa’(p)F'[pa (p)]W (A10)
f(pa®)=1+(2m/3)pa’g?(r,=a,pa’). (A3)
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