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Realistic interactions that operate in condensed matter systems can exhibit complicated
many-particle characteristics. However, it is often useful to seek a more economical description
using at most singlet and pair effective interactions that are density dependent, to take advantage of
the theoretical and computational simplifications that result. This paper analyzes the statistical
mechanical formalism required to describe thermal equilibrium in that kind of approach. Two
distinct interpretations are available for the role of density dependence. Either one can be treated
with internal consistency, but generally they lead to differing thermodynamic predictions. One
regards the density dependence of effective interactions as merely a passive index for the state at
which the optimal choice of those effective interactions was determined~Case I!. The other treats
the density as an active variable on the same footing as particle coordinates~Case II!. Virial pressure
and isothermal compressibility expressions in terms of particle distribution functions are displayed
for both cases. Under special circumstances it is possible for the two interpretations to yield the
same pressure isotherms; the conditions producing this coincidental concordancy have been
explored by means of density expansions. ©2002 American Institute of Physics.
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I. INTRODUCTION AND HISTORICAL BACKGROUND

Regardless of whether it is close to, or far from, a st
of equilibrium, the behavior of any material sample depen
fundamentally on the structure of its constituent particles
on their mutual interactions. For the majority of substan
that command research attention in the physical and biol
cal sciences, those structures and interactions tend to be
complex. In theory, a full characterization would requ
solving the Schro¨dinger equation for all electrons, in an a
bitrary configuration of the system’s nuclei, at least for t
ground electronic state. In practice this is a difficult or im
possible task. Both conceptual understanding and nume
studies motivate the search for a more economical desc
tion.

Quite generally, the many-particle interaction potent
FN that emerges from solving the Schro¨dinger equation for
electrons can be resolved into separate one-body, two-b
..., N-body contributions:

FN~r1¯rN!5(
i

u1~r i !1(
i , j

u2~r i ,r j !

1 (
i , j ,k

u3~r i ,r j ,r k!1¯1uN~r1¯rN!.

~1.1!
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We have assumed for simplicity here that only a single s
cies is present ~the multicomponent generalization
straightforward!, andr i comprises all nuclear positions of th
i th particle. Also, the zero of energy forFN has been chosen
to correspond to widely separated particles, all in th
lowest-energy conformation. In the event that structurel
particles were under consideration,u1 would vanish identi-
cally except near confining container walls. The requirem
that Eq.~1.1! be satisfied identically for allN, with the same
functions ui , uniquely determines these component fun
tions.

The scientific literature reveals many theoretical prop
als to replace the exact many-body potential~1.1! with a
mathematically simpler, and therefore more tractable, fo
FN* while attempting to retain physical essentials. The m
popular approach approximatesFN with a linear combina-
tion of ~at most! ‘‘effective’’ one-body and two-body inter-
actions,

FN>FN* 5(
i

u1* ~r i !1(
i , j

u2* ~r i ,r j !. ~1.2!

Of course some criterion must be advanced for the selec
of the ui* ’s, including specification of the function searc
space. The results generally will depend on temperaturT,
system volumeV, and eitherN ~closed system! or chemical
potentialm ~open system!, presuming that the system is clos
© 2002 American Institute of Physics
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to a state of thermal equilibrium. So far as the present inv
tigation is concerned, we shall assume that isothermal c
ditions apply, and thus shall concentrate on the effects oV
and N. The implications of temperature dependence for
fective interactions will be reserved for later consideratio

Early proposals for effective pair potentials assumed t
the full expansion~1.1! converged rapidly with respect t
order, and that terms beyond three-body contributions co
be neglected. This assumption was viewed as well justi
for insulating atomic and molecular systems~e.g., noble
gases, water, saturated hydrocarbons!. One of the first pro-
posals to invoke density-dependent pair potentials in
context was put forward by Sinanogˇlu;1–3 it utilized invari-
ance of the thermodynamic energy as its basic criter
Rushbrooke and Silbert4 adopted a contrasting strateg
which was also followed by Rowlinson and collaborators,5–7

that the effective pair interaction should reproduce the p
correlation function of the system with the full many-bod
potential. Neither of these approaches assumed that it
necessary to consider au1* differing from u1 .

In the event that the particles of the system bear per
nent electrostatic charges, local polarization effects beco
important, and confer an intrinsically many-body charac
on the true interactionF. For molten salts8 the obvious and
traditional way to simplify induced polarization involve
renormalizing the bare Coulomb interactions by the inve
of D` , the density-dependent high-frequency dielectric c
stant. For some purposes it may be desirable to include B
cavity energies for each ion.9

The case of highly polar, but electrostatically neutr
molecules presents an analogous situation. The modelin
water and aqueous solutions provides an obvious and sig
cant application area. The presence of large multipole m
ments on the bare molecules induces excess electrostatic
ments, whose influence affects the choice of an effective
potential, and requires inclusion of effective self-ener
terms.10

Molten metals11–13 and semiconductors14,15 present an-
other broad class of substances for which effective inte
tions offer a useful modeling tool. For these cases, vale
and conduction band electrons dominate the underly
physics, and their thermal excitations~to excited electronic
states! generally confer additional temperature depende
upon the effective interactions, beyond what would
present for insulating substances.

Assuming that nuclear motions and local order in a s
stance of interest obey classical statistical mechanics,
corresponding canonical partition function can be interpre
as an inner product. This tactic generates a variational c
rion for selection of a ‘‘best’’ effective pair potential, regard
less of how rapidly expression~1.1! converges.16 Such a
variational approach in principle accounts for particle cor
lations of all orders by optimally approximating the ful
potential multidimensional Boltzmann factor. Furthermore
can serve as the basis for developing density expansion
effective interactions.17

In addition to the examples just mentioned, anoth
source of density-dependent pair interactions arises i
purely theoretical context. This is the ‘‘iso-g(2)’’ process that
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seeks a continuous variation in the pair potential, as the n
ber densityr of the entire system changes, so that the sh
range order expressed by the pair correlation functiong(2)

remains invariant.18 The density range over which this in
variance can be maintained offers some insight into the
tistical geometry of particle packing.

Yet another source of density-dependent effective p
potentials has emerged from an adaptation19,20 of the so-
called ‘‘reverse Monte Carlo’’ procedure.21,22 This approach
starts with a given pair distribution function at fixed numb
density, often determined experimentally for a real su
stance, and then applies an iterative statistical algorithm
extract a pair potential that would produce the given dis
bution function at the same temperature and density. Co
quently, the final objective is the same as that of the Ru
brooke and Silbert work mentioned above.4 The presence of
many-body interactions in the initial system can be expec
to induce temperature and density effects on the outcom
this procedure.

A substantial group of published works23–26 has dealt
with consistency issues that appear to arise in statistical
chanics in the presence of density-dependent effective in
actions. Specifically, this involves reconciling the Ornstei
Zernike expression for isothermal compressibility27 @i.e., the
structure functionS(k) for k→0# with the Clausius virial
theorem for pressure, extended to the case of dens
dependent pair interactions. This issue also forms a m
subject of the present paper.

Two opposing viewpoints are possible when using nom
nally density-dependent effective interactions. On the o
hand, if interest only requires modeling a given substa
over a narrow density range, it may suffice to determine
effective interaction only at the midpoint of that range, a
then subsequently to treat the resulting effective interac
as though it were density independent. Within this interp
tation the compressibility formula and the Clausius vir
theorem in its conventional form are automatically cons
tent. On the other hand, density dependence of effective
teractions can be regarded as an intrinsic property o
model, under experimental control by varying the syst
volume~closed system!, or by varying the chemical potentia
~open system!. This second viewpoint requires modificatio
of the Clausius virial relation,8,23–27and thus requires a rein
terpretation of the Ornstein–Zernike compressibility fo
mula. Both viewpoints can be independently developed
thermodynamically consistent formalisms, but they genera
yield distinct predictions. It is not always possiblea priori to
decide which approach is preferable; the choice depend
the application.

The principal objective of the present paper is to exa
ine formal aspects of these contrasting viewpoints, and
show that each is internally consistent. The following Sec
reviews some general statistical mechanical formulas nee
for our analysis. Section III considers the well-known mea
field approximation, perhaps the simplest example of an
fective interaction model. The aforementioned iso-g(2) pro-
cess is revisited in Sec. IV, emphasizing how the t
interpretations~viewpoints! lead to different thermodynamic
predictions. Section V demonstrates the existence of a m
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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ematical constraint on effective interactions that, if imp
mented, would enforce equality between the thermodyna
predictions that emerge from the two alternative viewpoin
The final Sec. VI presents conclusions and discusses s
related matters. We have also included an Appendix devo
to rigid sphere models with density-dependent effective c
lision diameters.

II. GENERAL RELATIONS

The canonical ensemble offers the most convenient
tistical mechanical setting in which to develop our analys
In the interest of simplicity, it will be supposed in the fo
lowing that N identical structureless particles reside in vo
umeV, at inverse temperatureb51/kBT, and that they are
subject to periodic boundary conditions. Given an effect
potentialFN* , the corresponding canonical partition functio
has the following form:28

ZN~b,V!5~lT
3NN! !21YN~b,V!,

~2.1!
YN~b,V!5E

V
dr1¯E

V
drN exp@2bFN* ~r1¯rN!#,

wherelT is the mean thermal deBroglie wavelength. Co
nection to thermodynamics occurs through the Helmho
free energyF, which is obtained fromZN ,

2bF~N,bV!5 ln ZN~b,V!. ~2.2!

In particular, this connection can serve as the starting p
for developing various thermodynamic functions in dens
power series, i.e., in cluster expansions.29

As a result of the free translation permitted by the pe
odic boundary conditions, the particle density will be stric
constant throughout the system. This will be true for
phases that might be present, either singly or in coexiste
and whether those phases are fluid or crystalline. Par
configurational order is revealed by the correlation functio
g(n) of orders n.1, whose definition in the effective
interaction canonical ensemble is substantially identica
form to that for conventional ~density independent!
interactions:30

g~n!~r1¯rN!5
VnN!

Nn~N2n!!YN
E

V
drn11¯E

V
drN

3exp@2bFN* ~r1¯rN# !. ~2.3!

Periodic boundary conditions ensure that allg(n) possess
translational invariance; rotational invariance can only be
pected for homogeneous fluid phases in the large sys
limit.

As pointed out in Sec. I, two distinct meanings, or inte
pretations, can be attached to the density dependence o
fective interactionsFN* . To keep these cases separate,
shall use correspondingly distinct notations.

Case I. This involves prior determination of an optim
effective interaction, using input data for the system of int
est, at number densityrd . We denote that effective interac
tion by FN* (r1¯rNurd). The vertical bar isolatesrd from the
configurational variables to emphasize that this quan
serves only as an index or identifier for the optimizati
loaded 22 Nov 2010 to 128.112.81.90. Redistribution subject to AIP licens
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process. Subsequent usage ofFN* (r1¯rNurd) for theoretical
modeling or computer simulation would not necessarily
restricted to number densityrd , but could in principle entail
any other number densityrÞrd . One must also bear in
mind that a series of similar optimizations could also
accomplished, each belonging to a discrete set or a cont
ous range ofrd’s; but for any one of these the correspondi
rd serves only as an index to the optimization, and impl
no density commitment for subsequent application. For t
reason, we can refer tor as merely a ‘‘passive’’ variable.

Case II. This alternative treatsr as a true independen
variable for the effective interactions, on the same ma
ematical footing asr1¯rN . Consequently, for this case w
write FN* (r1¯rN ,r). ‘‘Experimental’’ control over thisr
can be exercised by varying eitherN, or V, or both. By
contrast with the preceding Case I,r now plays the role of an
‘‘active’’ variable.

Suppose for the moment that the passive-r Case I inter-
pretation is applicable, with just one-particle and tw
particle effective interactions, as suggested earlier in
~1.2!, and which we now rewrite as follows:

FN* ~r1¯rNurd!5Nu1* ~ urd!1(
i , j

u2* ~r i j urd!. ~2.4!

In writing this expression we have recognized that allu1* ’s
are identical and position independent, and we have follow
the conventional assumption that theu2* ’s are spherically
symmetric. In this circumstance, the usual Clausius vi
relation gives the pressurep, with no contribution from the
singlet interactionsu1* . Whether it is inferred from a time-
averaged virial quantity, or by applying a volume scaling
the canonical partition function,31 the resulting expression
for the pressure is the following:

bp5r2~br2/6!E dr12r 12@du2* ~r 12urd!/dr12#

3g~2!~r 12,r,b!. ~2.5!

Furthermore, the Ornstein–Zernike relation27 that connects
the isothermal compressibility

kT52~] ln V/]p!N,b ~2.6!

to local density fluctuations viag(2) is also valid for Case I:

rkT /b511rE dr12@g~2!~r12,r,b!21#. ~2.7!

It must be stressed that the pair correlation functiong(2) to
be inserted in this relation must be the infinite-system lim
function ~for which the large-r 12 asymptote is indeed 1!, and
the upper integration limit is then allowed to pass to infini
The logical consistency between the two expressions~2.5!
and ~2.7! that involve the pressure is just the same as
conventional statistical mechanical models with true dens
independent pair potentials~e.g., the Lennard-Jones 12-6 p
tential model!.

The active-r Case II provides an illuminating contras
The analog of Eq.~2.4! for this alternative is
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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FN* ~r1¯rN ,r!5Nu1* ~r!1(
i , j

u2* ~r i j ,r!. ~2.8!

The explicit density dependences of the effective singlet
pair interactions appearing here generate additional te
contributing to the pressure in its virial-theorem form8,23,24,26

bp5r1br2
du1* ~r!

dr
1

br3

2 E dr12F]u2* ~r 12,r!

]r

2
r 12

3r

]u2* ~r 12,r!

]r 12
Gg~2!~r 12,r,b!. ~2.9!

The existence of the new terms reflects the additional
thermal reversible work that must be performed, wh
changing volumeV, in order to modify the interactions
among any fixed set of particles in the interior of the syste

Unless the new Case II~active r! contributions to the
pressure accidentally sum to zero over the density rang
interest~see Sec. V below!, the isothermal compressibility
kT will be modified from its Case I~passiver! counterpart.
However it is important to realize that correlation functio
g(n), Eq. ~2.3!, are identical for the two classes of effectiv
interactionsFN* (r1¯rNurd5r) and FN* (r1¯rN ,r), pro-
vided that the configuration-variable dependences of th
two alternatives are the same. In other words, short-
long-range particle order in the system under fixedN, V, b
conditions cannot depend on whether the effective inte
tions would, or would not, change ifV were to be changed
The implication is that the Ornstein–Zernike relation~2.7!
generally will not yield the correctkT for Case II.

III. MEAN FIELD APPROXIMATION

One of the simplest, and most familiar, examples of
fective interactions emerges from the mean field approxim
tion. Within the domain of classical statistical mechanics
continuum systems, this approximation usually appears
connection with a strategy to separate the fullN-body poten-
tial into short-range~s! and long-range~l! components. Such
a separation implicitly underlies the venerable van der Wa
equation of state,32 as well as the more modern revision cr
ated by Longuet-Higgins and Widom.33

Suppose that the initialN-body potential consisted onl
of pair terms, and let the separated form be written

FN~r1¯rN!5(
i , j

@u2
~s!~r i j !1u2

~ l !~r i j !#. ~3.1!

Here it will be supposed thatu2
( l ) comprises of primarily

attractive interactions, and is bounded and integrable,

4pE
0

`

r 2u2
~ l !~r !dr522A. ~3.2!

The basic idea of the mean field approximation is to pos
late thatu2

( l ) is pointwise sufficiently weak so as to hav
negligible effect on structure, but sufficiently long ranged
that it encompasses a macroscopic domain of neighbor
ticles ~whose number therefore scales with the overall d
sity r!. If that is the case, then the entire set of long-ran
loaded 22 Nov 2010 to 128.112.81.90. Redistribution subject to AIP licens
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pair interactions appearing in Eq.~3.1! can be replaced by
density-dependent singlet effective interactions,

(
i , j

u2
~ l !~r i j !>(

i 51

N

u1* ~ i !,

~3.3!
u1* ~ i !52Ar.

This approximation can be generated as the leading pe
bation term in a suitably crafted systematic expansion,
so-calledg expansion.34,35

In view of the fact thatu1* is independent of position
within the system, an alternative~but equivalent! formulation
of the mean field approximation is to replace Eq.~3.3! by the
following:

(
i , j

u2
~ l !~r i j !>(

i , j
u2

~ l !* ~ i , j !,

~3.4!

u2
~ l !* ~ i , j !5@u1* ~ i !1u1* ~ j !#/~N21!522Ar/~N21!.

In other words, the collection of long-range attractive int
actions becomes replaced by position-independent, v
weak pair interactions. For either formulation, the effecti
interaction for the entireN-body system is

FN* 5(
i , j

u2
~s!~r i j !2NAr. ~3.5!

The standard interpretation of the mean field approxim
tion conforms to Case II of the preceding Sec. II. That isr
becomes a true ‘‘active’’ variable in theN-body potential
function, which in the notational convention introduced e
lier would be writtenFN(r1¯rN ,r). Consequently the pres
sure should be evaluated from the extended form of the v
expression, Eq.~2.9!, with the familiar result equal to that fo
the short-range-interaction system (p(s)) supplemented by
the mean field correction

p~r,b!5p~s!~r,b!2Ar2. ~3.6!

Under the assumption that the short-range interactions
those for rigid spheres, this is just the result produced
Longuet-Higgins and Widom in their extension of the v
der Waals equation.33

The passive-r Case I interpretation~that is unnatural for
the mean field approximation! would establish the effective
interactions, whether singlet or pair, at a chosen dis
guished densityrd , and then insist on maintaining exact
the same effective interactions at any subsequently used
tem number densityr. In the notational convention define
earlier, one would write

FN* ~r1¯rNurd!5(
i , j

u2
~s!~r i j !2NArd . ~3.7!

The last term on the right-hand side of this express
merely amounts to a constant downward shift of all config
rational energies, and can have no influence on the pres
which is just that of the short-range-interaction system,p(s).
The corresponding isothermal compressibilitykT

(s) would be
given by the Ornstein–Zernike formula, Eq.~2.7!, using the
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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pair correlation function for the short-range-interaction s
tem. Note that the relation between the Case I and Cas
isothermal compressibilities is as follows:

1/kT51/kT
~s!22Ar2. ~3.8!

In spite of the fact that the pair correlation function is t
same regardless of which of Case I or Case II is invoked
is directly relevant for evaluating isothermal compressibil
only for the former; Eq.~3.8! must be used for the latter.

IV. ISO-g „2… PROCESSES

The introduction and examination of ‘‘iso-g(2)

processes’’18,36 has been motivated by the need to und
stand more deeply and in technical detail the connecti
between interparticle interactions and the equilibrium sta
tical correlations that they induce. As the name sugge
these processes seek to identify changes in pair poten
that manage exactly to preserve pair correlation function
invariants as the system number density varies isotherm
Put another way, the objective is to have density change
pair potential change exert precisely canceling effects on
pair correlation functiong(2)(r ). No singlet effective inter-
actionsu1* are involved. Detailed studies have thus far be
carried out for the rigid rod, disk, and sphere systems,18 as
well as the square-well system in three dimensions.36 One
straightforward example of an iso-g(2) process would be to
maintain the exact zero-density form of the pair correlat
function ~i.e., the Boltzmann factor for the initial pair poten
tial! as the density increases from zero, and to inqu
whether this condition can only be applied up to some ma
mum densityr* .0. In the following, we will assume for
convenience that the pair correlation function to be held c
stant has emerged from a system with pair interactions
finite range.

The pair potentials created by an iso-g(2) process are no
effective interactions in the usual sense of having emer
from an approximation method. Nevertheless, they are d
sity dependent, and the resulting many-body systems ca
interpreted according to either the passive-r Case I or the
active-r Case II protocol. The former involves a sequence
model systems with pair interactionsu2* (r i j urd), each cre-
ated specifically to reproduce the targetg(2) at a givenrd ,
but only at thatrd . The latter envisions a single model sy
tem with pair interactionsu2* (r i j ,r) that continuously
change form as the system volume varies continuously.

The structure factor is defined by

S~k!511rG~k!,
~4.1!

G~k!5rE dr12exp~ ik•r12!@g~2!~r 12!21#.

In an iso-g(2) setting,S(k) becomes strictly a linear functio
of r, as does itsk→0 limit, the Case I quantityrkT /b, Eq.
~2.7!. Under thermal equilibrium conditions, the structu
factor obeys the restriction

S~k!>0. ~4.2!

Consequently, ifG(k) has an absolute minimum that is neg
tive at somekmin ,
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G~kmin!,0, ~4.3!

then restriction~4.2! would be violated atkmin if r were to
exceed the upper limit

r* 521/G~kmin!. ~4.4!

An important group of applications leading to an upp
density limitr* of the form~4.4! havekmin50. In particular
this occurs for the rigid sphere model where the invari
g(2) is that for low or vanishing density.18 This implies that
the passive-r Case I isothermal compressibility continuous
approaches zero asr approachesr* from below, i.e., the iso-
g(2) system becomes arbitrarily ‘‘stiff’’ atr* . Evidently this
indicates that atr* the many body system has run out
particle arrangements that would be required to maintain
invariant pair correlation pattern under further density
crease.

In those instances wherekmin50, we can expandG(k)
around the origin ofk space as follows:

G~k!5G01G2k21O~k4!,
~4.5!

G0,0 , G2.0.

This can then be related to the small-k behavior of the Fou-
rier transform of the direct correlation function,C(k),37

C~k!5
G~k!

11rG~k!
5

21

dr1~G2 /G0
2!k2 1O~k4!. ~4.6!

Here we have set the density deficit belowr* equal todr,

r5r* 2dr. ~4.7!

When dr is small, only the leading term on the right-han
side of Eq.~4.6! needs to be considered, and this term p
duces a large and narrow peak at the origin. An inverse F
rier transform applied to that leading term then yields t
r-space form of the direct correlation function

c~r 12,r!>~2p!23E dk exp~2 ik•r12!

3$21/@dr1~G2 /G0
2!k2#%

52~G0
2/4pG2r 12!exp@2uG0u~dr/G2!1/2r 12#.

~4.8!

This Yukawa function continuously loses its exponent
damping upon approach to the upper density limitr* . The
O(k4) terms neglected in Eq.~4.8! can be expected to ad
short-range corrections to this long-range Yukawa result.

The Percus–Yevick~PY!38 and the hypernetted chai
~HNC!39 approximations supply connections between the
rect correlation function and the pair interactions that
present to produce it. Both approximations agree that in
asymptotic large-distance regime,

c~r 12,r!;2bu2* ~r 12!. ~4.9!

Equation~4.8! above then implies thatu2* will adopt a repel-
ling Yukawa form at large separations, which in ther→r*
limit becomes Coulombic,
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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u2* ~r 12ur!,u2* ~r 12,r!;~G0
2/4pbG2r 12!

3exp@2uG0u~dr/G2!1/2r 12#.

~4.10!

With either the Case I or Case II interpretation, this lon
range effective pair potential has a dominating influence
the system pressure. For the passive-r Case I, insertion of
form ~4.10! into the conventional virial expression~2.5! gen-
erates a pressure contribution that has the character
simple-pole divergence:

bp~r,b!;~r* !2/2dr ~Case I!. ~4.11!

This simple pole contribution is also present in the activr
Case II interpretation, of course, but it is itself dominated
a double-pole contribution that arises from the]u2* /]r con-
tribution appearing in the extended virial relation~2.9!:

bp~r,b!;~r* !3/2~dr!2 ~Case II!. ~4.12!

This contrasting pair of pressure results vividly illustrates
different thermodynamic implications that can emerge fr
the alternative interpretations. We remind the reader that
~4.11! expresses the pressure behavior of a sequence of
tems indexed byr and each examined at its indexingr,
whereas Eq.~4.12! refers to a single system for whichr is a
fundamental variable of the potential energy function.
view of this distinction, note that the vanishing atr* of the
sequence of isothermal compressibilities for Case I can
correctly be inferred from asymptote~4.11! by differentiation
with respect to density@which would erroneously sugges
proportionality to (dr)2#; in fact it follows from Eq. ~4.1!
above that the proportionality is linear indr at r* :

rkT /b5uG0udr ~Case I!. ~4.13!

V. CONCORDANCY CONDITION

Although Case I and Case II interpretations genera
will produce distinct pressure predictions, special circu
stances exist under which those distinctions will vani
Identifying those circumstances proceeds from the requ
ment that the conventional and the extended forms of
virial expression for pressure, Eqs.~2.5! and ~2.9!, respec-
tively, produce the same result. This is equivalent to dema
ing that the Case II interactions satisfy the condition

du1* ~r!

dr
5

r

2 E dr12

]u2* ~r 12,r!

]r
g~2!~r 12,r!. ~5.1!

As pointed out in Sec. III above, the singlet effective inte
actionsu1* could formally be absorbed into the definition
u2* . Thus the concordancy condition for the two interpre
tions would reduce to the following:

05E dr12

]u2* ~r 12,r!

]r
g~2!~r 12,r!. ~5.2!

For the purposes of this section, however, Eq.~5.1! offers the
more convenient starting point.

The singlet and pair effective interactions can both
developed into density power series
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u1* ~r!5u1,1r1u1,2r
21u1,3r

31¯ , ~5.3!

u2* ~r 12,r!5u2,0~r 12!1u2,1~r 12!r1u2,2~r 12!r
21¯ .

~5.4!

Notice that the first of these should have no constant (r0)
term. The leading term of the second simply represents
‘‘bare’’ pair interaction of two particles in isolation.

Under the conventional circumstances, where ‘‘true’’ i
teractions are involved that are short ranged and density
dependent, the pair correlation function can also be de
oped in a density power series using the cluster expan
technique.39,40The resulting expansion can be represented
the following manner:

g~2!~r 12,r!5exp@2bu2~r 12!#$11C~2,1!~r 12!r

1C~2,2!~r 12!r
21¯%. ~5.5!

Here theC(2,j )(r 12) would ber independent, andu2 would
be identified with u2,0 in Eq. ~5.4! above. But when
r-dependent effective interactions are under considerat
and the cluster sums are themselves constructed using t
effective interactions, a strict power series forg(2) would
require expanding eachC(2,j ), and then collecting all terms
in Eq. ~5.5! with a common order inr. Once this is done, and
all power series are inserted in Eq.~5.1! above, eachr order
generates its own constraint to enforce Case I–Case II c
cordancy. All constraints of orders up torn extracted from
Eq. ~5.1!, when enforced, assure that Case I and Cas
pressures will agree through orderrn12.

The leading-order constraint@O(r0)# from Eq. ~5.1! is
trivial:

u1,150, ~5.6!

and simply shows that the series~5.3! begins at quadratic
order. The next order@O(r)# leads straightforwardly to the
condition:

u1,25
1

4 E dr12u2,1~r 12!exp@2bu2,0~r 12!#. ~5.7!

This last relation can be viewed as a specification of
constantu1,2 once thatu2,1(r 12) has been selected. Alterna
tively, if interest lies in the subset of effective potentials th
have only short-range pair terms~and no singlet effective
interactions!, then Eq.~5.7! reduces to

05E dr12u2,1~r 12!exp@2bu2,0~r 12!#, ~5.8!

which requires thatu2,1 be orthogonal to the bare-pair
potential Boltzmann factor.

Proceeding to the next order@O(r2)#, it is necessary to
account for contributions tog(2) that ~a! arise fromC(2,1)

3(r 12), and~b! arise from the already-constrained effectiv
pair functionu2,1(r 12). One finds
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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u1,35
1

6 E dr12exp@2bu2,0~r 12!#H @2u2,2~r 12!

2b~u2,1~r 12!!2#1u2,1~r 12!E dr3 f ~r 13! f ~r 32!J ,

~5.9!

wheref is the Mayer cluster bond for the bare pair interacti

f ~r i j !5exp@2bu2,0~r i j !#21. ~5.10!

Only the two quantitiesu1,3 and u2,2(r 12) make their first
appearance in Eq.~5.9!, and are thus constrained for the fir
time.

It is clear that this systematic process could be contin
to higher orders, though the outcomes rise rapidly in co
plexity with increasing order. AtO(rn), one has first appear
ances ofu1,n and u2,n21 . If in fact the various density ex
pansions ~5.3!–~5.5! are convergent, the resultin
constrained effective interactionsu1* and u2* as represented
by density series~5.3! and ~5.4! should produce concordan
results for Case I and Case II pressures, at least up to
density of a phase transition. It should also be pointed
that if the effective pair potentialu2* (r 12,r) were a given
quantity, then Eq.~5.1! could be used to determine that si
glet function u1* (r) which would produce Case I–Case
pressure agreement, even across phase transitions.

We close this Sec. V with a brief examination of th
result obtained by applying the concordancy constraint to
iso-g(2) process discussed in Sec. IV. In this circumstan
the usual compressibility expression, Eq.~2.7! applies to
both Case I and Case II by construction. It can be written
the form

bS ]p

]r D
b

5@11rG~0!#21, ~5.11!

where G(0) is the excess pair correlation function spat
integral @Eq. ~4.1!#. In view of the fact thatG(0) is density
independent for iso-g(2) processes, the preceding Eq.~5.11!
can immediately be integrated to yield

bp5@G~0!#21 ln@11rG~0!#. ~5.12!

In other words, the constrained version of the iso-g(2) pro-
cess possesses an elementary explicit pressure equati
state over its full density range. Finally, it should be not
that in the limit of vanishingG(0), theexpression shown in
Eq. ~5.12! reduces identically to the ideal gas equation
state.

VI. CONCLUSIONS AND DISCUSSION

The desire to construct and analyze realistic models
technologically important substances is hindered by the c
plexity of the constituent particles and their interactions. F
reasons of practicality, it is desirable to limit the mathema
cal representation of interactions to low order in parti
number, for example to singlet and pair functions only.
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corporation of the effects of real many-body interactions c
often be well approximated by adroit choice of ‘‘effective
singlet and pair potentials, which generally can be expec
to display both temperature and density dependence.

The present study has been concerned with the co
quences of density dependence in effective potentials. T
distinct viewpoints, or interpretations, have been identifi
The first~Case I! involves determination of effective interac
tions at a set of one or more fixed densitiesrd , and then
treating each such determination as thoughrd were simply a
nonvarying parameter; the number densityr in a theoretical
or simulational application of interest is then permitted
vary from rd while treating the interaction functions as in
variant quantities. The second~Case II! treats the density
dependence of effective interactions as a legitimate varia
in the Hamiltonian of the many-particle system, on a ma
ematical footing equivalent to that of particle configuration
coordinates. These separate viewpoints generally prod
distinct thermodynamic functions. In particular, the viri
pressure appears in two different forms, Eqs.~2.5! and~2.9!
for Case I and for Case II, respectively. But in spite of th
distinction, both interpretations enjoy internal consisten
Which of Case I or Case II is to be the preferred interpre
tion in any given application cannot be decideda priori, but
must rest upon physical details of the specific materials
phenomena under consideration.

Section V explores the possibility that imposition of su
able constraints on the space of effective interactions, at l
at the singlet plus pair level, might cause the virial pressu
for the Case I and Case II interpretations to become eq
functions of the density. This special circumstance inde
seems to be realizable, and in the event that only short-ra
interactions are present, the constraints can be step
implemented in increasing integer orders in density. The s
ation is less straightforward if the particles comprised in
system bear electrostatic charges~e.g., fused salts, electro
lytic solutions!, because density expansions are inappro
ate. This aspect of the subject deserves an in-depth exam
tion in a future study.

Although the present work has concentrated on den
as a variable, we recognize that parallel issues exist conc
ing temperature dependence that could arise from any pr
dure used to assign effective interactions. The analogs of
Case I and Case II interpretations would hinge on whet
the temperature in the effective interactions were to
treated simply as an indexing parameterTd similar to rd

above~from which the operative temperature could depa!,
or whetherT were to be regarded as a ‘‘true’’ variable of th
effective interactions, controllable through the total energy
a microcanonical ensemble. It is clear that the respec
predictions of the heat capacities generally would differ,
though suitably constraining the space of effective inter
tions should once again produce concordancy. This is
other feature of the general subject whose full analysis m
await a later examination.
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APPENDIX: EFFECTIVE INTGERACTIONS FOR RIGID
SPHERES

The purpose of this Appendix is to record a few resu
for the specific model of rigid spheres with densit
dependent collision diametersa(r). The conventional rigid
sphere model, with a fixed collision diameter, provides
natural backdrop. The pressure for that fixed-a model can be
expressed in the following form:

bp5r f ~ra3!, ~A1!

where f possesses a convergent power series that gene
the virial series for the pressure

f ~x!511 f 1x1 f 2x21¯ . ~A2!

This function is related to the contact value of the rig
sphere pair correlation function as follows:41

f ~ra3!511~2p/3!ra3g~2!~r 125a,ra3!. ~A3!

The isothermal compressibility can simply be expressed
terms off,

rkT /b5@ f ~ra3!1ra3f 8~ra3!#21. ~A4!

The first-order freezing transition from isotropic fluid
face-centered-cubic crystal occurs over the density rang42

0.943,ra3,1.014, ~A5!

and over that coexistence rangef must be inversely propor
tional to r so that the pressure is constant.

The Case I interpretation simply utilizes expressio
~A1!–~A5! with insertion of the density-dependent collisio
diametera(r). If this kind of effective-diameter rigid spher
model is to be realistic in its description of the freezing tra
sition, a(r) would have to be a constant across the coex
ence range in order for the pressure to remain constant.
within either homogeneous phase interval of density, this
fective diameter could have nontrivial density variation. T
only requirements that must be obeyed bya(r) are that it
have a convergent density expansion,

a~r!5a01a1r1a2r21¯ , ~A6!

to permit a pressure virial series to exist, and that the obvi
close-packing condition be satisfied,

r@a~r!#3<21/2. ~A7!

Analysis of the Case II interpretation for the effectiv
diameter rigid sphere model begins with the extended fo
of the pressure virial expression, Eq.~2.9!. The new contri-
bution to be considered involves the density derivative of
effective pair interactionu2* (r 12,r). Because the singula
rigid sphere interaction is involved, the entire contribution
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the virial integral is concentrated at pair contact. Con
quently we can make the following formal replacement
volving the Dirac delta function:

S ]bu2* ~r 12,r!

]r Dg~2!~r 12,r!

→g~2!@a~r!#S da~r!

dr D d@r 122a~r!#, ~A8!

which is analogous to the replacement that converts the u
virial expression Eq.~2.5! to an expression involving just th
contact pair correlation function Eq.~A3! above.43 Equation
~A8! converts Eq.~2.9! to the following:

bp5rH 11~2p/3!ra3~r!g~2!@a~r!,r#F11
d ln a3~r!

d ln r G J
[rF@ra3~r!#. ~A9!

From this expression it follows that the Case II compressi
ity is given by

rkT /b5H F@ra3~r!#

1ra3~r!F8@ra3~r!#
d ln ra3~r!

d ln r J 21

. ~A10!
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