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We introduce the idea of an ‘‘equi-g(r ) sequence.’’ This consists of a series of equilibrium
many-body systems which have different number densitiesr but share, at a given temperature, the
same form of pair correlation function, termed ‘‘targetg(r ). ’’ Each system is defined by a pair
potential indexed byr as inur(r ). It is shown that for such a sequence a terminal densityr! exists,
beyond which no physically realizable system can be found. As an illustration we derive explicit
values ofr! for targetg(r ) that is based on a square-well potential in the limitr→0. Possible
application of this terminal phenomenon to the investigation into limiting amorphous packing
structures of hard spheres is proposed. Virial expansions ofur(r ) and pressure are carried out and
compared with the corresponding expressions for imperfect gas. The behaviors ofur(r ) and
pressure close tor5r! are examined as well, and associated exponents extracted when they exist.
The distinction between equi-g(r ) sequence and the related, recently introduced concept of ‘‘iso-
g(2) process’’ is briefly discussed. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1480864#
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I. INTRODUCTION

Given the interaction potential of a many-body system
atoms or molecules, statistical mechanics provides a me
of determining the structure and therefore the macrosco
properties of the system.1 We term this traditional and fruit-
ful approach the ‘‘forward’’ problem of statistical mechanic
By contrast, in light of the important role that the structu
plays in setting the macroscopic properties of the system
may be more meaningful to specify the structure at so
level of description and then find the corresponding inter
tion potential and bulk properties of the system. This is
‘‘inverse’’ problem of statistical mechanics2 and is consider-
ably less well developed than the forward problem. We
lieve that this inverse approach will lead to new and valua
physical insights regarding the nature of many-body syste
and opens up fascinating avenues of inquiry.

An interesting question that has recently been posed3 is,
for what range of densities at a given temperature can
maintain a specified but fixed pair correlation functiong(r )
and how does the potential change over this range of de
ties? This inverse question has been answered for the ca
a simple step-function pair correlation ind dimensions.3 It
was shown that there exists an upper limit on the pack
fraction (h51/2d) and the pair interaction develops a lon
ranged Coulombic character as this ‘‘terminal’’ density is a
proached. It is natural to ask what additional features m
the pair correlation function possess to increase the term
density above that value. The answer to this question
shed light on the nature of the information contained in
pair correlation, and has fundamental implications for und
standing geometric packing effects in many-body system

In the present paper, we take an initial step to addr
2970021-9606/2002/117(1)/297/11/$19.00
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this question by studying a pair correlation function that e
tends the one studied in Ref. 2 by adding attractive inter
tions. Specifically, we consider a pair correlation functi
corresponding to the dilute limit of the well-known squar
well potential. In what follows, we describe the proble
setup and then determine the terminal density for this c
of amorphous packings. We then derive expressions for
pair potential and pressure under dilute conditions and n
the terminal density. Finally, we remark on the distincti
between so-called equi-g(r ) sequences and iso-g(2) pro-
cesses~Ref. 20!.

II. PROBLEM SETUP

We consider a family of equilibrium many-body system
defined by a series of pair potentials,$u(r )%. At a given
temperature,T, these systems each have different num
densities,$r%, but share the special characteristic of having
pair correlation function,g(r ), of an identical form.@In this
paper we will use the shorthand notations ofu(r ) andg(r )
for u2(r ) and g(2)(r ), respectively.# According to classical
statistical mechanics,g(r ) is determined uniquely by the se
(T,u(r ),r).4 Sinceu(r ) represents an internal attribute of
system whileT andr serve as parameters that may be var
externally, it is natural, and common, to examine the beh
ior of g(r ) as a function ofT andr with u(r ) fixed.1 In this
study we are interested in fixingg(r ) instead and letting
u(r ) be determined by the requirement that this ‘‘targ
g(r )’’ be produced. We thus reinterpret the mapping pr
ciple of ‘‘( T,u(r ),r)°g(r )’’ and regard the alternative se
(T,g(r ),r) as uniquely determiningu(r ); in fact, T in this
case simply sets the energy scale ofu(r ) and the mapping is
reduced to ‘‘(g(r ),r)°bu(r )’’ where b51/kBT andkB de-
© 2002 American Institute of Physics
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notes the Boltzmann constant. Sincer will be the primary
tuning parameter, we index the series of pair potentials br
as in $ur(r )% and refer to the systems as forming an ‘‘equ
g(r ) sequence,’’ which is closely related to the recently
troduced concept of ‘‘iso-g(2) process,’’3 the distinction be-
tween the two is one of the topics we discuss. How thr
dependence ofur(r ) changes withr will depend, of course,
on the specific choice of targetg(r ) one makes. We explore
one such example.

Although its existence and uniqueness are w
established,4 the mapping relation above is analytically tra
table only at very low densities.1,5 Furthermore, it is only in
the limit r→0 that an expression in a mathematically clos
form is possible, given by

bu~r !52 ln$g~r !% ~r→0!. ~1!

In the familiar case of fixedu(r ), denoted byu0(r ), the
properties of a so-called imperfect gas are studied arounr
50.1,5 For example, the virial expansion ofg(r ) describes
how, asr is gradually increased,g(r ) departs from the lim-
iting behavior determined by Eq.~1! andu0(r ):

g~r !5exp$2bu0~r !%. ~2!

In an equi-g(r ) sequence, the connection betweenu(r ) and
g(r ) is reversed. Onceg(r ) is specified to maintain a targe
form g0(r ), the objective is to examine howur(r ) departs
from the limiting form determined byg0(r ),

bu~r !52 ln$g0~r !%. ~3!

Change in ther dependence ofur(r ) in turn affects how the
properties of the systems such as pressure vary withr. Since
u(r ) will appear most often in the form ‘‘bu(r ), ’’ we will
occasionally use the term ‘‘pair potential’’ to refer to th
productbu(r ) itself.

We may conduct a systematic comparison between
behaviors of an imperfect gas and an equi-g(r ) sequence by
choosingu0(r ) and g0(r ) such that at some temperatureT
5Tref , they satisfy

g0~r !5exp$2b refu0~r !%, ~4!

whereb ref51/kBTref . This establishes a common referen
state between the two in the limitr→0 and allows us to
study how, for example, the pressures along the two p
ways digress from each other asr is slowly increased. For
this purpose, we assign a square-well pair potential6 to
u0(r ):

u0~r !5H 1`, 0<r<s,

2«, s,r ,gs,

0, r>gs.

~5!

Here s is the hard-core diameter of the atoms or partic
and the depth of the attractive well is specified by«.0. If
«,0, u0(r ) represents a hard-core potential with a repuls
shoulder of heightu«u attached; our analyses will encompa
both possibilities. The width of the well or shoulder is give
by (g21)s with the conditiong>1 imposed. The targe
g0(r ) follows from Eqs.~4! and ~5!:
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g0~r !5H 0, 0<r<s,

exp~u!, s,r ,gs,

1, r>gs,

~6!

whereu is defined as

u5b ref«. ~7!

By setting«50 or g51, one recovers theu0(r ) of a hard-
sphere system andg0(r ) of a simple step-function form; this
special case was studied in a previous paper.3

Since the square-well potential embodies the van
Waals idea of a short-range repulsive core embellished b
longer-range attractive tail for two-body interaction, syste
derived therefrom exhibit physically reasonable behavio
i.e., behaviors that are exhibited also by real systems.
example, for certain combinations of« and g, a liquid–gas
phase transition appears in the phase diagram.6 The related
g0(r ), on the other hand, does not necessarily represe
physically reasonable form ofg(r ), especially at high den-
sities. Granted, thisg0(r ) by construction corresponds to
square-well system in the limitr→0, but experience tells us
that asr increases,g(r ) in general develops oscillatory fea
tures that reflect the discrete, atomic nature of many-b
systems, a feature absent in theg0(r ) above. The flat profile
of g0(r ) for r>gs, and to a lesser extent in the finite rang
s,r ,gs, can be maintained in an equi-g(r ) sequence only
if ur(r ) develops anr dependence that successfully count
acts the tendency of any oscillatory behavior to appea
g(r ). The burden of maintaining such an unnatural form
g(r ), however, becomes increasingly stringent uponur(r )
with increasingr, and leads eventually to a physical impo
sibility at a finite density,r5r!, at which point the equi-
g(r ) sequence is terminated: this is shown in the next s
tion.

Maintainingg(r )5g0(r ) at a fixedr but under changing
temperatureT is trivial ~in the context of classical statistica
mechanics!, regardless of the form of targetg0(r ). From
Eqs.~3! and ~4!, we have

u~r !5
T

Tref
u0~ t ! ~8!

and T emerges simply as a proportionality factor. An equ
g(r ) sequence is thus never terminated along the tempera
axis. From here on, we treatT as a fixed parameter and tak
r to be the only variable of interest.

III. TERMINAL DENSITY DEDUCED FROM
STRUCTURE FACTOR

The existence of a terminal densityr! can be demon-
strated on purely geometric grounds. Although we focus
three-dimensional systems in what follows, the argumen
equally applicable in any other space dimension.

For isotropic systems in three dimensions, the struct
factor,S(k), is related tor andg(r ) by1,5

S~k!511rE
0

`

4pr 2$g~r !21%
sinkr

kr
dr ~9!
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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with k denoting the modulus of reciprocal vector. This equ
tion is in effect the three-dimensional Fourier transform
$g(r )21% reduced in form to a one-dimensional integral v
angular integrations. The structure factor satisfies the n
negativity condition7

S~k!>0 for all k. ~10!

This inequality is a consequence of geometric constrai
S(k) is defined such that no arrangement of points repres
ing a collection of atoms or particles, nor any ensemble
such arrangements, can produce anS(k) that violates this
condition.7,8 Since geometric realizability by itself does n
guarantee physical realizability, Eq.~10! is only a necessary
condition that anS(k) must satisfy in order for a correspond
ing u(r ) to exist. Nevertheless, by combining the mappi
relation ‘‘(g(r ),r)°S(k)’’ provided by Eq. ~9! with the
conditionS(k)>0, one may not only ascertain the existen
of r! for a given targetg0(r ) but also obtain an upper boun
on r!.

For the purpose of presentation, we set

ĥ0~k!5E
0

`

4pr 2$g0~r !21%
sinkr

kr
dr ~11!

and

Sr~k!511rĥ0~k!. ~12!

The subscript 0 inĥ0(k) denotes that we are now conside
ing the targetg0(r ) derived from square-wellu0(r ), and the
subscriptr in Sr(k) is intended to accentuate the importan
of the r dependence ofS(k) in the following analysis. Car-
rying out the integration overr yields

ĥ0~k!54ps3H ~eu21!
g2 j 1~gx!2 j 1~x!

x
2

j 1~x!

x J ,

~13!

where x5ks is the scaled reciprocal-vector modulus a
j 1(x) the spherical Bessel function of order one:9 j 1(x)
5sin(x)/x22cos(x)/x. The functionĥ0(k) has the form of a
decaying oscillation, approaching the asymptoteĥ0(k)50 in
the limit k→`. If «50 or g51, the first term inside$¯%

vanishes and theĥ0(k) based on hard-sphereu0(r ) is
recovered.3

The conditionS(k)>0 is automatically satisfied forr
→0 sinceSr(k)→1 in this limit: in fact, this is true regard
less of the choice ofg0(r ). For any given combination of«
and g, however, one can always find ranges ofk in which
ĥ0(k),0 occurs and the non-negativity condition will b
violated at a finite densityr! asr is increased from 0. The
initial point of violation is determined by the value ofĥ0(k)
at its minimumk5kmin :

r!5
21

ĥ0~kmin!
. ~14!

Sinceĥ0(kmin),0, we haver!.0. This proves the existenc
of a terminal density for the square-well-basedg0(r ), and
more generally for equi-g(r ) sequence of any targetg0(r )
whose transformĥ0(k) assumes a negative value at its min
loaded 22 Nov 2010 to 128.112.81.90. Redistribution subject to AIP licens
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mum. Although, strictly speaking, the expression on t
right-hand side provides only an upper bound onr! as geo-
metric realizability does not ensure physical realizability, w
have assumed equality. The task of calculatingr! is reduced
to computingkmin .

We have found Eq.~13! to be analytically intractable for
obtaining an expression ofkmin in terms of « and g. For
example, the first derivative ofĥ0(k) is given by

dĥ0~k!

dk
54ps4H ~eu21!

2g3 j 2~gx!1 j 2~x!

x
1

j 2~x!

x J ,

~15!

where j 2(x) is the spherical Bessel function of order two9

Since its roots are not easily derived, we have resorted
numerical calculations. Nonetheless, it is possible to mak
few analytical statements. The Taylor expansion of Eq.~13!
aroundk50 yields

ĥ0~k!58ps3 F 1

3!
$~eu21!~g321!21%

2
2

5!
$~eu21!~g521!21%x2

1
3

7!
$~eu21!~g721!21%x4

2
4

9!
$~eu21!~g921!21%x61¯G . ~16!

We focus on the sign of the coefficient of thex2 term and set

a5~eu21!~g521!21. ~17!

If a,0, the functionĥ0(k) is convex downward at the origin
and x50 represents a local minimum. Fora50, the point
x50 is again a local minimum because the coefficient of
x4 term is positive,

~eu21!~g721!21

5$~eu21!~g521!21%1~eu21!~g72g5!

5
1

g521
g5~g221!.0. ~18!

The inequality follows from the original conditiong>1
combined with the additional condition ofgÞ1 when a
50. Numerical analyses turn out to show thatx50 is in fact
the global minimum ofĥ0(k) whena<0. Therefore

kmin50 for ~eu21!~g521!<1. ~19!

For a.0, an analytical expression forkmin is out of reach
and full numerical evaluations have had to be carried ou

We proceed to computer! for a<0. The value ofĥ0(k)
at kmin50 is given by the first term of Eq.~16!,

ĥ0~kmin!5 4
3ps3$~eu21!~g321!21%

for ~eu21!~g521!<1. ~20!

Instead ofr!, it is more convenient to consider the termin
packing fraction,h!, a dimensionless quantity defined as t
product ofr! and the volume of a sphere of diameters,1
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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h!5
p

6
s3r!. ~21!

It then follows from Eq.~14! that

h!5
1

8$12~eu21!~g321!%
for ~eu21!~g521!<1.

~22!

Here u is related toe by Eq. ~7!. A small check can be
performed on this result: settinge50 or g51 satisfies the
condition a<0 and correctly yieldsh!51/8, the three-
dimensional hard-sphere value derived previously.3

We combine Eqs.~19! and ~22! with the results of nu-
merical calculations performed fora.0. Figures 1 and 2
summarize the outcome in the form of contour plots of co
stantkmin andh!, respectively, in the planeu versusg. We
recall from Eq.~5! that u.0 andu,0 correspond, respec

FIG. 1. Contour plot of constantkmin in the planeu versusg. The gray
background denotes thatkmin50 everywhere below the boundary. The num
bers in parentheses show the values ofkmin of each contour curve. The
curves forkmin51.0 and 0.5, though not annotated in the graph, run betw
the boundary andkmin51.5, and eventually turn upward at largeg.

FIG. 2. Contour plot of constanth! in the planeu versusg. The thick
dashed line denotes the boundary defined by Eq.~23!. The numbers in
parentheses show the values ofh! of each contour curve. The curves fo
h!50.15 above and below the boundary meet each other at largeg; those
for h!50.1 and 0.05 do not. The curve forh!50.35 never crosses th
boundary.
loaded 22 Nov 2010 to 128.112.81.90. Redistribution subject to AIP licens
-

tively, to square-well and repulsive-shoulderu0(r )’s. In both
plots, a special boundary is defined by the curvea50,

u5 lnS 1

g521
11D @Boundary#. ~23!

Below this boundary,kmin50 everywhere and the contou
curves of constanth! are obtained by rearranging Eq.~22!,

u5 lnH S 12
1

8h!D 1

g321
11J . ~24!

Since the regionu,0 lies entirely below the boundary, th
terminal point of an equi-g(r ) sequence derived from
repulsive-shoulderu0(r ) is given full analytical characteriza
tion.

Above the boundary, contour curves of nonzerokmin de-
velop smoothly off the region ofkmin50 as Fig. 1 shows.
Higher values ofkmin are found for smallerg and largeru,
that is, in the upper-left direction of the plot. As one mov
way from the boundary, the curves become steeper andkmin

becomes increasingly independent ofu: for square-well
g0(r ) with large e and g, the value ofkmin is determined
predominantly byg. This is reasonable sinceg sets the width
of the attractive well, i.e., the spatial characteristic ofg0(r ).

The contour plot ofh! in Fig. 2 also exhibits continuous
behavior across the boundary. Along its upper side,h! shows
an oblique turnover feature: by fixingu and increasingg, or
conversely by fixingg and increasingu, one observesh! to
increase initially from the boundary, quickly reach a ma
mum, and then decrease monotonically to an appa
asymptotic value of 0. Far from the boundary, the curv
show monotonic and hyperbolalike dependences on bou
andg. The contour curves above and below meet each o
at some point for 0.125,h!,0.3125. Curves withh!

.0.3125 exist only above the boundary.
Bounds onh! in the regionu,0 are derived without

difficulty from Eq. ~22!:

0,h!, 1
8 @Repulsive-shoulderg0~r !#. ~25!

The lower bound 0 is obtained in the limitg→` while the
upper bound 1/8 arises in the hard-sphere limit of eitheu
→02 or g→11. Bounds foru.0, on the other hand, ar
given by

0,h!,hmax
! with hmax

! .
5

16
@Square-wellg0~r !#.

~26!

The lower bound 0 appears in the limitsu→` and g→`
while the maximum packing fraction,hmax

! , occurs in Fig. 2
along the upper side of the boundary in the limitu→`.
Although the precise value ofhmax

! is unknown, its lower
bound 5/16 can be derived by focusing on the contour cur
that cross the boundary. At this intersection, both Eqs.~22!
and ~23! hold, so we have

n

e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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TABLE I. Some important limiting densities in one, tow, and the three dimensions. Terminal densities f
step functiong(r ) and square wellg(r ). Included are the maximum densities for hard spheres.

State d51 d52 d53

Terminal density
@step-functiong(r )#, h*

0.5 0.25 0.125

Terminal density
@square-wellg(r )#, h*

0.75 0.5 0.3125

Maximum density,hmax 1.0 pA12'0.907 p/A18'0.740
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h!5
1

8H 12
1

g521
~g321!J 5

1

8 H 11
g21g11

g3~g11! J . ~27!

It then follows that for boundary-crossing curves,
1
8,h!, 5

16, ~28!

where 1/8 and 5/16 result from taking the limitsg→` and
g→11, respectively, andhmax

! .5/16 is obtained. Curves
with h!.5/16 thus remain above the boundary.

The valuehmax
! .5/16 is an improvement over the har

sphere value of 1/8, improvement in the sense that
threshold has been pushed higher and the range of exist
of equi-g(r ) sequence widened accordingly. This improv
ment arises because the square-wellg0(r ) has a physically
more reasonable form than does the simple hard-sphere
the hump in theg0(r ) right outside the hard core more o
less mimics the first peak of oscillation that develops in
g(r ) of real systems and accomodates for the formation
what may resemble a first shell of nearby neighbors. By
same reasoning, we expecthmax

! to be improved even furthe
if u0(r ), currently of a square-well form, is dressed with
additional repulsive hill outside the attractive well, som
what like a truncated Friedel oscillation.10 The new target
g08(r ) would then be

g08~r !55
0, 0<r<s,

exp~u!, s,r ,gs,

exp~2u8!, gs<r ,g8s,

1, r>g8s,

~29!

whereu.0, u8.0, andg8.g.1. The additional dent in the
rangegs<r ,g8s augments the incipient oscillatory beha
ior expressed by the square-wellg0(r ) and enhances th
physical realizability ofg08(r ). An immediate extension o
this procedure is to continue modifyingg0(r ) so thathmax

!

keeps improving until one reaches a limit. What is the va
of hmax

! in this limit? What type ofr dependence does th
correspondingg0(r ) attain? And what kind of hard-spher
packing structure does this limit represent?11,12 Addressing
these questions, however, is beyond the scope of the pre
work.

Similarly, the bounds onh! for repulsive-shoulderg0(r )
show diminishment in the range of equi-g(r ) sequence: the
depletion zone built into thisg0(r ) right outside the hard
core frustrates the way a many-body system naturally pa
with increasingr and it quickly becomes untenable to mai
tain suchg0(r ).
 to 128.112.81.90. Redistribution subject to AIP licens
e
nce
-

ne:

e
f
e

-

e

ent

ks

The bounds can be generalized tod dimensions. For an
isotropicd-dimensional system,S(k) is related tor andg(r )
by13

S~k!511rE
0

`

~2p!d/2r d21$g~r !21%
J~d/2!21~kr !

~kr !~d/2!21 dr,

~30!

where J(d/2)21(kr) is the Bessel function of order$(d/2)
21%. Applying the same analysis as above leads to

0,h!,
1

2d @Repulsive-shoulderg0~r !# ~31!

and

0 ,h!,hmax
! with hmax

! .
d12

2d11 @Square-wellg0~r !#.

~32!

Table I compares the terminal density in one, two, and th
dimensions to limiting densities in other systems. Spec
cally, we compare our results to the terminal density for
step-functiong(r ) as well as the maximum density for har
spheres.

IV. FUNCTIONAL FORM OF u r„r … AROUND THE
LIMITS r\0 AND r\r!

A target g0(r ), once specified, uniquely determine
bur(r ) for all r<r!. This in turn determines all the prop
erties of the systems within the sequence. Here we derive
expression forbur(r ) around two limiting values ofr; the
results are used in the next section to calculate the press
We first present what amounts to a virial expansion
bur(r ) aroundr50 and compare it with that ofg(r ) of
imperfect gas. We then show that asr approachesr! from
below, bur(r ) develops a singular behavior that signals t
end of equi-g(r ) sequence.

A general relationship betweenbu(r ) andg(r ) is given
by1

bu~r !52 ln$g~r !%1h~r !2c~r !1B~r !. ~33!

Hereh(r ), the total correlation function, represents the flu
tuational part ofg(r ), namely,

h~r !5g~r !21, ~34!

c(r ) is the direct correlation function defined in terms ofr
andh(r ) via the Ornstein–Zernike relation

h~r !5c~r !1rE c~ ur2r 8u!h~ ur 8u!dr 8, ~35!
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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and B(r ) is the so-called bridge function. Unless explicit
shown, the range of integration for all the integrals is~2`,
`! for each Cartesian coordinate. Although Eq.~33! is for-
mally exact, its usefulness hinges on how tractableB(r ) is:
In the limit r→0, one can carry out a density expansion
B(r ) in terms ofh(r ), and in the other limitr→r!, a mild
assumption onB(r ) allows us to extract the salient feature
bu(r ), but away from these two limits, the intractability o
B(r ) renders Eq.~33! of little practical use. For notationa
at
w
l

loaded 22 Nov 2010 to 128.112.81.90. Redistribution subject to AIP licens
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convenience, we rewrite Eq.~35! in a form that involves
particle indices,

h~r 12!5c~r 12!1rE c~r 13!h~r 32!dr3 ~36!

Herer i j 5ur j2r i u is the scalar distance between two partic
indexed byi andj, andr3 is a dummy variable of integration

First we consider the density expansion of Eq.~33!. For
c(r ), the Ornstein–Zernike relation leads to5
ed
c~r 12!5h~r 12!2rE h~r 13!h~r 32!dr31r2E E h~r 13!h~r 34!h~r 42!dr3 dr4

2r3E E E h~r 13!h~r 34!h~r 45!h~r 52!dr3 dr4 dr51¯ . ~37!

For B(r ), the corresponding density expansion is given by14

B~r 12!5
r2

2 E E h~r 13!h~r 14!h~r 34!h~r 32!h~r 42!dr3 dr41r3E E E h~r 13!h~r 14!h~r 34!h~r 45!h~r 32!h~r 52!

3Fh~r 15!H 11h~r 35!1
1

2
h~r 42!1

1

6
h~r 35!h~r 42!J 1h~r 35!Gdr3 dr4 dr51¯ . ~38!

Since the coefficient of the leadingr2 term here is a multiparticle integral,B(r ) in general is expected to be shorter rang
than h(r ).14 By inserting Eqs.~37! and ~38! into ~33!, the density expansion ofbur(r ) is obtained in terms ofh0(r )
5g0(r )21,

bur~r 12!52 ln$g0~r 12!%1rE h0~r 13!h0~r 32!dr31r2E E h0~r 13!h0~r 34!h0~r 42!H 1

2
h0~r 14!h0~r 32!21J dr3 dr4

1r3E E E h0~r 13!h0~r 34!h0~r 45!h0~r 52!H 11h0~r 14!h0~r 32!Fh0~r 15!H 11h0~r 35!1
1

2
h0~r 42!

1
1

6
h0~r 35!h0~r 42!J 1h0~r 35!G J dr3 dr4 dr51¯ . ~39!
This is the virial expansion ofbur(r ). It expresses how
bur(r ) departs from the initial form2 ln$g0(r)% as r is in-
creased from 0 while the constancy ofg0(r ) is maintained.

It is instructive to compare this virial expansion with th
of g(r ) for a conventional imperfect gas. For emphasis
denote the latterg(r ), governed by a fixed pair potentia
u0(r ), by gr(r ). Its virial expansion is given by5

gr~r 12!5exp$2bu0~r 12!%H 11rE f 0~r 13! f 0~r 32!dr3

1
r2

2 E E @2 f 0~r 13! f 0~r 34! f 0~r 42!

3$112 f 0~r 32!%1 f 0~r 13! f 0~r 14! f 0~r 32! f 0~r 42!

3$11 f 0~r 34!%#dr3 dr41¯J ~40!

where f 0(r ) stands for the Mayer function,

f 0~r !5exp$2bu0~r !%21. ~41!
e

The virial expansion of ln$gr(r)% is then derived to be

ln$gr~r 12!%52bu0~r 12!1rE f 0~r 13! f 0~r 32!dr3

1r2E E f 0~r 13! f 0~r 34! f 0~r 42!

3H 112 f 0~r 32!

1
1

2
f 0~r 14! f 0~r 32!J dr3 dr41¯ ~42!

which is the expression to be compared with Eq.~39!.
The condition Eq.~4! is equivalent to setting

f 0~r !5h0~r !. ~43!

A term-by-term comparison between Eqs.~42! and~39! then
shows that the effects of increasingr on ln$gr(r)% andbur(r )
are identical to linear order inr,
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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rE f 0~r 13! f 0~r 32!dr35rE h0~r 13!h0~r 32!dr3 . ~44!

This result can be given a physically intuitive interpretatio
For the ranges ofr 12 in which this first-order term is positive
gr(r 12) exhibits an increase asr is increased from 0. In an
equi-g(r ) sequence, such impending changes ing(r ),
changes that would occur if the initial form ofu0(r ) were
maintained, are suppressed, and the constancy ofg0(r ) at-
tained, by a corresponding increase inbur(r 12), that is, by a
development of repulsive interactions. Likewise, forr 12

where the first-order term is negative, the depletion that ta
place ingr(r 12) and which would have taken place ing0(r )
is offset by the emergence of attractive interactions
bur(r 12). Although the coefficients no longer match ea
other at orderr2 and presumably beyond, the notion
bur(r ) being tuned so as to balance out what would oth
wise occur tog(r ) should still be valid. Given the square
well g0(r ) and f 0(r )5h0(r ), one can derive analytical ex
pressions for the first few virial coefficients ofbur(r ) in
terms ofe andg by adapting the known results for imperfe
gas.15,16

The virial expansion above shows thatbur(r ) remains a
short-ranged function ofr aroundr50 if g0(r ) itself is short
ranged. This is not necessarily the case away fromr50. By
rewriting Eq.~33! in notations that stress the importance or
dependences, namely,

bur~r !52 ln$g0~r !%1g0~r !212cr~r !1Br~r !, ~45!

it is seen thatbur(r ) may become long ranged if eithe
cr(r ) or Br(r ) develops such a singular behavior.3 Indeed, it
follows from the Ornstein–Zernike relation that the Four
transform,ĉr(k), of cr(r ) is related toSr(k) by1

ĉr~k!5
1

r H 12
1

Sr~k!J ~46!

andcr(r ) becomes singular in the eventSr(k)→01 occurs,
i.e., when the geometric condition ofSr(k)>0 is violated. If
we make the mild assumption thatBr(r ) meanwhile remains
short ranged so as not to cancel out this singularity, an
sumption commonly accepted for the behavior ofB(r ) in
general, then this analysis points once again to the spe
significance ofr!. For the extraction of the salient, long
rangedr dependence that develops inbur(r ) in the limit r
→r!2, one need only look into the inverse Fourier tran
form of the singular term$rSr(k)%21 in Eq. ~46!,

bur~r !;
1

r

1

~2p!3 E 1

Sr~k!
eik•r dk ~47!

or upon angular integrations,

bur~r !;
1

r

1

~2p!3 E
0

`

4pk2
1

Sr~k!

sinrk

rk
dk. ~48!

We are now in a position to examine the specific case
square-wellg0(r ).

The development of a singularity in$Sr(k)%21 can be
viewed as being due to poles that approach the real ax
loaded 22 Nov 2010 to 128.112.81.90. Redistribution subject to AIP licens
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the complexk plane asr→r!2. The effect of these poles o
the functional form ofbur(r ) is evaluated by rewriting Eq
~48! in the complex form17

bur~r !;
1

r

1

8p2i

1

r H E
2`

` keirk

Sr~k!
dk2E

2`

` ke2 irk

Sr~k!
dkJ .

~49!

Focusing onSr(k) around its global minimum allows us t
approximate the behavior of the approaching poles
$Sr(k)%21. Manipulation of Eq.~12! gives

Sr~k!511rĥ0~kmin!1rĥ0~k!2rĥ0~kmin!

5S 12
r

r!D1r$ĥ0~k!2ĥ0~kmin!%, ~50!

where Eq.~14! has been applied. The next step is to expa

$ĥ0(k)2ĥ0(kmin)% aroundk5kmin and retain only the lowest
order term in (k2kmin). The specific formula depends on th
sign of a defined by Eq.~17!. We examine each case sep
rately.

a,0. This range ofa covers the combinations of« and
g for all repulsive-shoulderg0(r ) and some of square-we
g0(r ). From Eq.~19! we havekmin50 andSr(k) is approxi-
mated by

Sr~k!.S 12
r

r!D1
2ps3

15
~2a!r~ks!2. ~51!

The complex integration of Eq.~49! then yields

bur~r !;
15

8p2s6~2a!r2

s

r
expS 2

r

j,
D , ~52!

wherej, is given, in a form that isolates its singularr de-
pendence, by

j,5A,S 12
r

r!D 21/2

~53!

with the remaining factors subsumed intoA, :

A,5sA2ps3

15
~2a!r. ~54!

This bur(r ) has the form of a screened Coulomb pa
potential.1,3 In the limit r→r!2, the screening lengthj,

diverges with an exponent equal to21/2 andbur(r ) repre-
sents pure Coulombic repulsion.

a50. This is the boundary curve of Eq.~23!. We again
havekmin50 but the term retained inĥ0(k) is of the orderk4

as opposed tok2:

Sr~k!.S 12
r

r!D1
ps3

210
a4r~ks!4 ~55!

in which we have set

a45~eu21!~g721!21 ~56!

anda4.0 according to Eq.~18!. Complex integration yields

bur~r !;
105

4p2s6a4r2

j5

s

sin~r /j5!

r /j5
expS 2

r

j5
D , ~57!

wherej5 is given by
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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j55A5S 12
r

r!D 21/4

~58!

with

A55sS 2ps3

105
a4r D 1/4

. ~59!

This bur(r ) has the form of a damped oscillation who
period and decay lengths are both given byj5 . In the limit
r→r!2, the characteristic lengthj5 diverges with an expo-
nent equal to21/4.

a.0. Here we havekmin.0 but lack analytical expres
sions forkmin and ĥ0(k) aroundk5kmin . For the purpose of
analysis, we let an undetermined positive parameterD de-
note a coefficient of expansion and approximate$Sr(k)%21

by

1

Sr~k!
.

1

~12r/r!!1D~k2kmin!
2

1
1

~12r/r!!1D~k1kmin!
2 . ~60!

It is necessary to include both (k2kmin)
2 and (k1kmin)

2 so
that Sr(k) remains an even function ofk. In addition, we
have approximated$Sr(k)%21 instead ofSr(k) since it is
impossible to assign directly toSr(k) a function that is of the
orderk2 and at the same time has minima atk56kmin : the
$Sr(k)%21 above does have maxima atk56kmin for D.0
whenr<r!. Carrying out the complex integration yields

bur~r !;
1

2pDr
Akmin

2 j.
2 11

sin~kminr 1x!

r
expS 2

r

j.
D ,

~61!

where the lengthj. is defined as

j.5ADS 12
r

r!D 21/2

~62!

and the phase factorx satisfies

tanx5
1

kminj.
S 0,x,

p

2 D . ~63!

This bur(r ) has the form of a decaying oscillation. Unlike
the case ofa50, the decay length is given byj. whereas
the period is given independently ofj. by 2p/kmin . In the
limit r→r!2, the lengthj. diverges with an exponent equ
to 21/2.

These analyses also show why the sequence must te
nate atr5r! rather than simply pass through this point. F
a,0 anda.0, the lengthsj, and j. become imaginary
numbers whenr.r! and the exponential-decay term ex
(2r/j) in bur(r ) is converted into an oscillatory term; fo
a50, the lengthj5 becomes a complex number and gen
ates an oscillatory, nondecaying term out of the prod
sin(r/j5)exp(2r/j5). Since in three dimensionsu(r ) must
decay faster thanr 23 asr→` if a well-behaved system is to
be produced in the thermodynamic limit, and sincebur(r )
would decay only as fast asr 21 in all three cases ifr.r!,
the mathematical solutions obtained thereby must be reje
on physical grounds and the equi-g(r ) sequence terminated
loaded 22 Nov 2010 to 128.112.81.90. Redistribution subject to AIP licens
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V. BEHAVIOR OF PRESSURE AROUND THE LIMITS
r\0 AND r\r!

Oncebur(r ) and itsr dependence are derived, all th
properties of the systems within the sequence follow. A
representative example, we build upon the results of the
section to examine how the pressure,p, varies withr close to
the limits r→0 andr→r!.

The virial expansion ofp of an imperfect gas with fixed
u0(r ) is well known5

p

kBT
5r2

r2

2V E E f 0~r 12!dr1 dr2

2
r3

3V E E E f 0~r 12! f 0~r 23! f 0~r 31!dr1 dr2 dr3

2¯ . ~64!

Here V is the volume of the system andf 0(r ) the Mayer
function defined by Eq.~41!. The corresponding virial ex-
pansion for equi-g(r ) sequence is readily obtained from th
standard expression. For economy of presentation, we in
duce a shorthand notation for the density expansion
bur(r ),

bur~r !5bu0~r !1rbu1~r !1
r2

2
bu2~r !1

r3

6
bu3~r !1¯

5 (
n50

`
rn

n!
bun~r !. ~65!

We presume this series has a positive radius of converge
Explicit expressions for the coefficient functions$bun(r )% in
terms ofg0(r ) follow from Eq. ~39!; for example, the first
three are given by

bu0~r 12!52 ln$g0~r 12!%, ~66!

bu1~r 12!5E h0~r 13!h0~r 32!dr3 , ~67!

bu2~r 12!52E E h0~r 13!h0~r 34!h0~r 42!

3H 1

2
h0~r 14!h0~r 32!21J dr3 dr4 . ~68!

The density expansion of the Mayer function,f r(r ), of
bur(r ) is then derived to be

f r~r !5exp$2bur~r !%21

5 f 0~r !2r$11 f 0~r !%bu1~r !

1
r2

2
$11 f 0~r !%@$bu1~r !%22bu2~r !#2¯ .

~69!

The virial expansion we seek is obtained by inserting E
~69! into Eq. ~64!, collecting terms of like order inr, and
recalling Eq.~43!:
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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p̃

kBT
5r2

r2

2V E E f r~r 12!dr1 dr22
r3

3V E E E f r~r 12! f r~r 23! f r~r 31!dr1 dr2 dr32¯

5r2
r2

2V E E h0~r 12!dr1 dr22
r3

3V F E E E h0~r 12!h0~r 23!h0~r 31!dr1 dr2 dr3

2
3

2 E E $11h0~r 12!%bu1~r 12!dr1 dr2G2¯ . ~70!
y
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We have chosen to denote the pressure of an equi-g(r ) se-
quence by the symbolp̃ rather than byp in order to empha-
size a distinction: whilep refers to a single system defined b
a fixedu0(r ), p̃ refers to a family of systems, one at eachr
with a different pair potential.

A term-by-term comparison between Eqs.~70! and ~64!
reveals that the two virial expansions differ from each ot
at orderr3,

p̃

kBT
2

p

kBT
5

r3

2V E E $11h0~r 12!%bu1~r 12!dr1 dr21¯

5
r3

2V E E E $11h0~r 12!%h0~r 13!

3h0~r 32!dr1 dr2 dr31¯ . ~71!

The r2 term, the lowest-order term that captures non-ide
gas behavior, is identical forp̃ andp because the same form
of pair potential is initially shared: it is only in the subs
quent terms that the different effects of what is being h
fixed are manifested. It is straightforward to derive high
order terms ofp̃ beyond what appears in Eq.~70!. Given
square-wellg0(r ), one can also evaluate the integrals to d
rive analytical expressions for the coefficients in terms o«
andg based on those obtained for imperfect-gasp.15,16

For p̃ in the other limitr→r!2, we employ the pressur
equation5 presented in notations tailored for equi-g(r ) se-
quence,

p̃

kBT
5r2

r2

6 E
0

`

4pr 3
d$bur~r !%

dr
g0~r !dr. ~72!

For square-wellg0(r ), the sign ofa determines the form o
bur(r ) and hencep̃. Since our sole interest is in if and ho
p̃ diverges asr→r!2, we simplify this equation by first
inserting the square-wellg0(r ):

p̃

kBT
5r2

r2

6 E
s

gs

4pr 3
d$bur~r !%

dr
eu dr

2
r2

6 E
gs

`

4pr 3
d$bur~r !%

dr
dr. ~73!

A divergence inp̃, if it does indeed diverge, can come on
from the third term and so we approximatep̃ by

p̃

kBT
'2

r2

6 E
0

`

4pr 3
d$bur~r !%

dr
dr. ~74!
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An additional simplification of changing the lower limit from
gs to 0, which will not affect the divergence, has also be
made.

a,0. From Eq.~52!, we have

bur~r !;B,

1

r2

s

r
expS 2

r

j,
D , ~75!

whereB, is a positive constant whose actual formula ne
not concern us. Inserting this into Eq.~74! yields

p̃

kBT
;2

B,

6 E
0

`

4pr 3
d

dr H s

r
expS 2

r

j,
D J dr. ~76!

By changing the variable of integration fromr to y5r /j, ,
we obtain

p̃

kBT
;j,

2 ~21!
sB,

6 E
0

`

4py3
d

dy H 1

y
exp~2y!J dy. ~77!

The integral overy is independent ofr and is calculated
to be212p. Finally, by inserting the expression forj, from
Eq. ~53! and ignoring the constant factors, we arrive at

p̃

kBT
}S 12

r

r!D 21

. ~78!

Thus, for the combinations of« andg that satisfya,0, the
pressurep̃ diverges in the limitr→r!2 with an exponent
equal to21.

a50. Here Eq.~57! gives

bur~r !;B5

1

r2

j5

s

sin~r /j5!

r /j5
expS 2

r

j5
D ~79!

with B5 denoting a positive constant. Combining this e
pression with Eq.~74! leads to

p̃

kBT
;2

B5

6

j5

s E
0

`

4pr 3
d

dr H sin~r /j5!

r /j5

3expS 2
r

j5
D J dr. ~80!

Change of variable fromr to y5r /j5 for the integration
yields

p̃

kBT
;j5

4 ~21!
B5

6s E
0

`

4py3
d

dy H siny

y
exp~2y!J dy.

~81!

The integral overy is 26p. By recalling Eq.~58! for j5 , we
have
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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r̃

kBT
}S 12

r

r!D 21

~82!

and againp̃ diverges with an exponent equal to21: despite
the different functional forms ofbur(r ) that develop in the
limit r→r!2, the two casesa,0 anda50 yield the same
exponent.

a.0. The analysis becomes more involved fora.0.
We start by rewriting Eq.~61!,

bur~r !;
Akmin

2 j.
2 11

j.
B.

1

r

3
sin~kminr 1x!

r /j.
expS 2

r

j.
D ~83!

with B. representing a positive constant of no interest.
serting this expression into Eq.~74! gives

p̃

kBT
;

Akmin
2 j.

2 11

j.
~21!r

B.

6 E
0

`

4pr 3

3
d

dr H sin~kmin r 1x!

r /j.
expS 2

r

j.
D J dr. ~84!

By changing the variable of integration fromr to y5r /j. ,
one obtains

p̃

kBT
;l2Al211~21!r

B.

6kmin
2 E

0

`

4py3

3
d

dy H sin~ly1x!

y
exp~2y!J dy, ~85!

where we have set

l5kminj. . ~86!

The phase factorx is related tol, according to Eq.~63!, by

x5tan21
1

l S 0,x,
p

2 D . ~87!

Sincekmin.0 whena.0, the problem is reduced to exam
ining the behavior ofp̃ in the limit l→`. Here, however,
the integral overy in Eq. ~85! does not allow a simple ex
traction of itsl dependence and must be evaluated ana
cally. Straightforward calculation of this integral,I, yields

I 5E
0

`

4py3
d

dy H sin~ly1x!

y
exp~2y!J dy

512p
~l221!sinx22l cosx

~l211!2 . ~88!

Using Eq.~87!, we expand cosx and sinx aroundl2150,

cosx512
1

2

1

l2 1
3

8

1

l42¯ ~89!

and

sinx5
1

l
2

1

2

1

l3 1
3

8

1

l52¯ . ~90!

It then follows that
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212p

l3 ~l@1! ~91!

and in the limitr→r!2,

p̃

kBT
;r!

2pB.

kmin
2 . ~92!

Thus, p̃ reaches only a finite value fora.0 and does not
diverge as the terminal point is approached. It is eas
shown that the first derivative (] p̃/]r) also remains finite in
the same limit.

For square-wellg0(r ), the terminus is not characterize
by a divergence inp̃ whenkmin.0. This is because pressur
reflects the mechanical property of a system only atk50. If
one extends the pressure equation to define ak-dependent
pressure, for example, by

p̃~k!

kBT
5r2

r2

6 E
0

`

4pr 3
d$bur~r !%

dr
g0~r !

sinkr

kr
dr, ~93!

then thisp̃(k) will recapture the divergence atk5kmin asr

→r!2 regardless of the sign ofa. We believe the entropyS̃,
on the other hand, should be able to reflect the termina
without such extension to nonzerok.

VI. DISTINCTION BETWEEN Equi- g „r … SEQUENCES
AND Iso- g „2… PROCESSES

Equi-g(r ) sequence is closely related to the recently
troduced ‘‘iso-g(2) process.’’3 This is a process in which, a
r is varied, the constancy ofg(r ) is maintained by a single
system rather than by a family of systems. An iso-g(2) sys-
tem achieves this condition by a pair potential, denoted
u(r ;r), that has a direct dependence onr as opposed to the
indexed dependence ofur(r ). Although u(r ;r) and ur(r )
formally share the same functional form for a giveng0(r ),
differences arise in the properties of the systems. For
ample, the pressure of a system governed byu(r ;r) is given
by18,19

p

kBT
5r2

r2

6 E
0

`

4pr 3
]$bu~r ;r!%

]r
g~r !dr

1
r3

2 E
0

`

4pr 2
]$bu~r ;r!%

]r
g~r !dr. ~94!

The third term, which vanishes forur(r ), represents the ef
fect of the directr-dependence contained inu(r ;r). Further
discussion on the distinction betweenu(r ;r) andur(r ) and
its consequences is presented elsewhere.20

VII. CONCLUSIONS

We have introduced the idea of equi-g(r ) sequence. This
is defined by a family of systems which share the same fu
tional form g0(r ) for the pair correlation function at variou
r. Each system is specified by a density-indexed pair po
tial ur(r ). The sequence in general terminates at a fin
densityr! or packing fractionh! due to the non-negativity
condition on the structure factorS(k), and we have evalu-
atedh! for the specific choice ofg0(r ) derived from square-
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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well potential in the limitr→0. Observation ofhmax
! , the

maximum possibleh!, for this test case has suggested t
approach of deducing the limiting packing structure of ha
spheres via functional optimization ofg0(r ).

An expression forur(r ) has been derived in the tw
limits r→0 andr→r!. In the former, virial expansion lead
to the physically reasonable interpretation that features
velop inur(r ) so as to suppress a change ing(r ) that would
otherwise occur ifu(r ) remained unchanged. In the latte
simple analyses show thatur(r ) develops a singular behav
ior asr→r!2 because of the imminent violation of the co
dition S(k)>0. For square-wellg0(r ), the singularity is
characterized by a length constantj that diverges with an
exponent equal to21/2 whenaÞ0 and21/4 whena50.

The expressions forur(r ) thus obtained have allowed u
to compute the pressurep̃. A term-by-term comparison o
the virial expansions reveals thatp of imperfect gas andp̃
deviate from each other at orderr3. In the limit r→r!2, p̃
for square-wellg0(r ) diverges with an exponent equal to21
only whena<0, that is, whenkmin50. We have suggeste
an extended definition of pressure to nonzerok so that the
divergence is recaptured when the terminality is due t
nonzerokmin . Finally, we have discussed the distinction b
tween equi-g(r ) sequence and the related iso-g(2) process
and presented the different forms of the pressure equa
that apply to each case.

As acknowledged earlier, we have assumed that Eq.~14!
determines the equi-g(r ) terminal densityr!. Strictly speak-
ing, the expression should be interpreted only as an up
bound to that terminal density. If a case could be identified
which Eq. ~14! actually exceeded the terminal density, th
observation would constitute discovery of a new constra
on the family of g(r )’s that are indeed realizable.8 At
present, no evidence exists for the existence of such a
straint, and so it is reasonable to suppose that Eq.~14! as
written is a proper relation for determining the terminal de
sity r!. Nevertheless, the need to eliminate the remain
ambiguity about the interpretation of Eq.~14! is an important
objective for future research, and in particular properly d
signed computer simulations could play a significant role
loaded 22 Nov 2010 to 128.112.81.90. Redistribution subject to AIP licens
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In future work, we will seek to obtain configurations th
realize the ‘‘square-well’’g(r ) for the possible range of den
sities. This will be done using efficient stochastic optimiz
tion techniques to reconstruct realizations of atom
systems21 and digitized heterogeneous media.22
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