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We introduce the idea of an “equjfr) sequence.” This consists of a series of equilibrium
many-body systems which have different number densitibst share, at a given temperature, the
same form of pair correlation function, termed “targgr).” Each system is defined by a pair
potential indexed by as inu,(r). Itis shown that for such a sequence a terminal densitgxists,
beyond which no physically realizable system can be found. As an illustration we derive explicit
values ofp* for targetg(r) that is based on a square-well potential in the lipiit:0. Possible
application of this terminal phenomenon to the investigation into limiting amorphous packing
structures of hard spheres is proposed. Virial expansions (o) and pressure are carried out and
compared with the corresponding expressions for imperfect gas. The behaviorgryfand
pressure close tp=p* are examined as well, and associated exponents extracted when they exist.
The distinction between eqgjifr) sequence and the related, recently introduced concept of “iso-
g® process” is briefly discussed. @002 American Institute of Physics.

[DOI: 10.1063/1.1480864

I. INTRODUCTION this question by studying a pair correlation function that ex-
tends the one studied in Ref. 2 by adding attractive interac-
Given the interaction potential of a many-body system oftions. Specifically, we consider a pair correlation function
atoms or molecules, statistical mechanics provides a meam®rresponding to the dilute limit of the well-known square-
of determining the structure and therefore the macroscopiwell potential. In what follows, we describe the problem
properties of the systefnWe term this traditional and fruit- setup and then determine the terminal density for this class
ful approach the “forward” problem of statistical mechanics. of amorphous packings. We then derive expressions for the
By contrast, in light of the important role that the structure pair potential and pressure under dilute conditions and near
plays in setting the macroscopic properties of the system, ithe terminal density. Finally, we remark on the distinction
may be more meaningful to specify the structure at soméetween so-called equitr) sequences and isg?) pro-
level of description and then find the corresponding interaceessegRef. 20.
tion potential and bulk properties of the%system. This is the
“inverse” problem of statistical mechanitsind is consider-
ably less well developed than the forward problem. We be-”' PROBLEM SETUP
lieve that this inverse approach will lead to new and valuable  We consider a family of equilibrium many-body systems
physical insights regarding the nature of many-body systemdefined by a series of pair potentiafg(r)}. At a given
and opens up fascinating avenues of inquiry. temperature,T, these systems each have different number
An interesting question that has recently been pd&ed densities{p}, but share the special characteristic of having a
for what range of densities at a given temperature can ongair correlation functiong(r), of an identical form[In this
maintain a specified but fixed pair correlation functigpfr) paper we will use the shorthand notationsug¢f) andg(r)
and how does the potential change over this range of densier u,(r) andg®)(r), respectivelyl According to classical
ties? This inverse question has been answered for the casegiatistical mechanicg(r) is determined uniquely by the set
a simple step-function pair correlation thdimensions’ It (T,u(r),p).* Sinceu(r) represents an internal attribute of a
was shown that there exists an upper limit on the packingystem whileT andp serve as parameters that may be varied
fraction (7= 1/2%) and the pair interaction develops a long- externally, it is natural, and common, to examine the behav-
ranged Coulombic character as this “terminal” density is ap-ior of g(r) as a function ofl and p with u(r) fixed! In this
proached. It is natural to ask what additional features musstudy we are interested in fixing(r) instead and letting
the pair correlation function possess to increase the terminai(r) be determined by the requirement that this “target
density above that value. The answer to this question wilhg(r)” be produced. We thus reinterpret the mapping prin-
shed light on the nature of the information contained in theciple of “(T,u(r),p)—g(r)” and regard the alternative set
pair correlation, and has fundamental implications for under{T,g(r),p) as uniquely determining(r); in fact, T in this
standing geometric packing effects in many-body systems. case simply sets the energy scalau¢f) and the mapping is
In the present paper, we take an initial step to addresseduced to “Q(r),p)— Bu(r)” where 8=1/kgT andkg de-
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notes the Boltzmann constant. Singewill be the primary 0, O<r<o,
tuning parameter, we index the series of pair potentialg by
: ; . = <r<
as in{u,(r)} and refer to the systems as forming an “equi- 9o() expd), o<r<yo, ©®)
g(r) sequence,” which is closely related to the recently in- 1, r=vyo,
troduced concept of “is@® process,” the distinction be-  \yhere g is defined as
tween the two is one of the topics we discuss. How tthe
dependence difi(r) changes withp will depend, of course, 0= Brese - (7)

on the specific choice of targg(r) one makes. We explore By settinge =0 or y=1, one recovers thay(r) of a hard-
one such example. _ sphere system argh(r) of a simple step-function form:; this
Although its existence and uniqueness are We"special case was studied in a previous paper.
established,the mapping re_Iqtion above is ana_ly.tically t_rac— Since the square-well potential embodies the van der
table only at very low dens't'eg Furthermore, itis only in \yagjs idea of a short-range repulsive core embellished by a
the limit p—0 that an expression in a mathematically closedonger-range attractive tail for two-body interaction, systems
form is possible, given by derived therefrom exhibit physically reasonable behaviors,
__ R i.e., behaviors that are exhibited also by real systems. For
pu() Intg(} (p=0). @ example, for certain combinations efand v, a liquid—gas
In the familiar case of fixedi(r), denoted byuy(r), the phase transition appears in the phase diadrdine related
properties of a so-called imperfect gas are studied ar@und go(r), on the other hand, does not necessarily represent a
=0.1®° For example, the virial expansion gir) describes physically reasonable form af(r), especially at high den-
how, asp is gradually increasedy(r) departs from the lim- sities. Granted, thigy(r) by construction corresponds to a
iting behavior determined by Eql) andug(r): square-well system in the limjit— 0, but experience tells us
that asp increasesg(r) in general develops oscillatory fea-
g(r)=exp{— Buo(r)}. 2

u(r)= ®

tures that reflect the discrete, atomic nature of many-body
In an equig(r) sequence, the connection betwegin) and systems, a feature absent in tpr) above.. The flgt'profile
g(r) is reversed. Oncg(r) is specified to maintain a target 0f go(r) for r=yo, an_d toa Ie§ser extent in the finite range
form go(r), the objective is to examine how,(r) departs ¢ =F< 7o can be maintained in an eqgir) sequence only
from the limiting form determined bygy(r), if u,(r) develops am dependen_ce that succe_ssfully counter-
acts the tendency of any oscillatory behavior to appear in
Bu(r)=—In{go(r)}. (3) g(r). The burden of maintaining such an unnatural form of
_ ) g(r), however, becomes increasingly stringent upo(r)

Change in the dependence ai,(r) in turn affects how the  ith increasingp, and leads eventually to a physical impos-
properties of the systems such as pressure vary gviince sibility at a finite density,o=p*, at which point the equi-
u(r) will appear most often in the formu(r),” we will 4y sequence is terminated: this is shown in the next sec-
occasionally use the term “pair potential” to refer to the jgn.
productBu(r) itself. ' _ Maintainingg(r)=g,(r) at a fixedp but under changing

We may conduct a systematic comparison between thgmperatureT is trivial (in the context of classical statistical
behaviors of an imperfect gas and an eg(ni) sequence by mechanick regardless of the form of targef(r). From
choosingug(r) andgoe(r) such that at some temperatufe  gqs, (3) and(4), we have
=T, they satisfy

go(r)=exp — Breo(r)}, 4 fefu(’(t)
where So=1/KkgT . This establishes a common referenceand T emerges simply as a proportionality factor. An equi-
state between the two in the limit—0 and allows us to g(r) sequence is thus never terminated along the temperature
study how, for example, the pressures along the two pathaxis. From here on, we treditas a fixed parameter and take
ways digress from each other ass slowly increased. For p to be the only variable of interest.
this purpose, we assign a square-well pair potéhtial

Uo(r):
+o, O0<r<o, Ill. TERMINAL DENSITY DEDUCED FROM
STRUCTURE FACTOR
ug(r)=14 —e&, o<r<yao, (5)
0, r=yo. The existence of a terminal density can be demon-

strated on purely geometric grounds. Although we focus on
Here o is the hard-core diameter of the atoms or particleshree-dimensional systems in what follows, the argument is
and the depth of the attractive well is speC|f|edé33]O If equa”y app|icab|e in any other space dimension.
e<0, up(r) represents a hard-core potential with a repulsive  For isotropic systems in three dimensions, the structure
shoulder of heighte| attached; our analyses will encompassfactor, S(Kk), is related top andg(r) by*®
both possibilities. The width of the well or shoulder is given

by (y—1)o with the conditiony=1 imposed. The target
go(r) follows from Egs.(4) and (5):

sinkr q
kr '

S(k)=l+pJ:47Tf2{g(r)—l} 9
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with k denoting the modulus of reciprocal vector. This equa-mum. Although, strictly speaking, the expression on the
tion is in effect the three-dimensional Fourier transform ofright-hand side provides only an upper boundgdnas geo-
{g(r)—1} reduced in form to a one-dimensional integral via metric realizability does not ensure physical realizability, we
angular integrations. The structure factor satisfies the norhave assumed equality. The task of calculajfigs reduced
negativity conditiori to computingKn -

S(k)=0 for all k. (10) \(Vg have found Eq(.13) to be' analytically intractable for

obtaining an expression &, in terms ofe and y. For

This inequality is a consequence of geometric constraintsexample, the first derivative dfy(k) is given by
S(k) is defined such that no arrangement of points represent-
ing a collection of atoms or particles, nor any ensemble of ~ dho(k) [ =¥’ ja(y)+ja(x)  ja(X)
such arrangements, can produce %) that violates this dk =4mot) (e"-1) X + X |’
condition’® Since geometric realizability by itself does not (15

guarantee physical realizability, EQ0) is only a necessary \yhere,(x) is the spherical Bessel function of order tfo.
condition that ar(k) must satisfy in order for a correspond- gj e its roots are not easily derived, we have resorted to

ing u(r) to exist. Nevertheless, by combining the mapping, ;merical calculations. Nonetheless, it is possible to make a

relation “(g(r),p)—S(k)" provided by Eq. (9) with the (o anaivtical statements. The Taylor expansion of @6)
conditionS(k)=0, one may not only ascertain the existence, .y ndk=0 yields

of p* for a given targegy(r) but also obtain an upper bound
onp*.
For the purpose of presentation, we set

ho(k)=8ma® %{(eg— 1)(y*-1)—1}

" * ) sinkr 2 5
ho(k)=J0 Amr<{go(r)—1} K dr (11 —a{(e"—l)()f‘r’—l)_l}x
and 3
) + = {(e’ =1y -1 -1
S,(K)=1+ phg(Kk). (12 :
. . r . 4
The subscript 0 |mo(k) denotes that we are now consider- _ _I{(ee_ 1)(9°—1)— 1}x8+---|. (16)
ing the targegy(r) derived from square-welly(r), and the 9

subscriptp in S,(k) is intended to accentuate the importanceye focus on the sign of the coefficient of theterm and set
of the p dependence d®(k) in the following analysis. Car-

rying out the integration over yields a=(e’"-1)(y*~1) -1 (17)
- sl Y21 (yX)—j1(X)  ji(x) If <0, the functiorhy(k) is convex downward at the origin
ho(k)=4mo>) (e"—1) ” <~ |’ andx=0 represents a local minimum. Fer=0, the point

(13y  x=0is again a local minimum because the coefficient of the

4 . .
) ) X* term is positive,
where x=Kko is the scaled reciprocal-vector modulus and P

j1(x) the spherical Bessel function of order chgy(x) (e’—1)(y'—1)-1

=sin(X)/x*—cosk)/x. The functionﬁo(k) has trle form of a —{(e’—1)(y°—1)— 11+ (e~ 1)(y"— ")

decaying oscillation, approaching the asymptojék) =0 in

the limit k—o. If e=0 or y=1, the first term insidd- - -} _ 1 5(y2—1)>0 (18)
vanishes and theﬁo(k) based on hard-spherag(r) is -1 [ '

recovered. The inequality follows from the original condition=1

The conditionS(k)=0 is automatically satisfied fop  compined with the additional condition of#1 when a

—0 sinceS,(k)—1 in this limit: in fact, this is true regard- - Numerical analyses turn out to show thatO is in fact
less of the choice ogo(r). For any given comblrllatlon.of the global minimum oﬁo(k) when a<0. Therefore
and y, however, one can always find rangeskoih which

ho(k)<0 occurs and the non-negativity condition will be ~ Kmin=0 for (e’-1)(»*-1)=L. (19
violated at a finite densitp* asp is increased fromAO. The For o>0, an analytical expression fdt,, is out of reach
initial point of violation is determined by the value b§(k) and full numerical evaluations have had to be carried out.

at its minimumk= Kpn ! We proceed to compuie* for a=<0. The value ofiy(k)
at k=0 is given by the first term of Eq16),

-1
= : 14 .
’ F‘o(kmin) 19 ho(Kmin) = 3ma3{(e?—1)(y*—1)—1}
Sincehg(Kpin) <0, we havep*>0. This proves the existence for (e”=1)(»*-1)<1. (20)

of a terminal density for the square-well-basgg(r), and  Instead ofp*, it is more convenient to consider the terminal
more generally for equi{r) sequence of any targ€l(r)  packing fraction*, a dimensionless quantity defined as the
whose transforning(k) assumes a negative value at its mini- product ofp* and the volume of a sphere of diametet
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1.25 tively, to square-well and repulsive-shouldgy(r)’s. In both
100 plots, a special boundary is defined by the cume0,
0.75 | ( [ dary 23
0=In| =——+1 Boundary.
0 050 y -1

0.25 Below this boundaryk,,=0 everywhere and the contour

curves of constany* are obtained by rearranging E@2),

0.00

-0.25

,Y 0—'”[ 1_8_7f y3_1+l]. (24)

FIG. 1. Contour plot of constark,,, in the planeé versusy. The gray . . . .
background denotes thig},;, =0 everywhere below the boundary. The num- SINCe the regiorg<<0 lies entirely below the boundary, the

bers in parentheses show the valueskgf, of each contour curve. The terminal point of an equiy(r) sequence derived from
curves forky,=1.0 and 0.5, though not annotated in the graph, run betweerrepulsive-shouldeuy(r) is given full analytical characteriza-
the boundary anét,,;;=1.5, and eventually turn upward at large tion.
Above the boundary, contour curves of nonzkgg, de-
velop smoothly off the region ok,,,=0 as Fig. 1 shows.
T g, Higher values ok, are found for smallery and largeré,
=g P 2D thatis, in the upper-left direction of the plot. As one moves
way from the boundary, the curves become steeperkand
It then follows from Eq.(14) that becomes increasingly independent 6f for square-well
. 1 ) . Jo(r) w_ith large € anq Y the value ofk_min is determi_ned
7 B (e 1) (1)} for (e"=1)(y’—1)<L. predominantly byy. This is reasonable sincesets the width
(22) of the attractive well, i.e., the spatial characteristigg(r).
The contour plot ofy™ in Fig. 2 also exhibits continuous
behavior across the boundary. Along its upper sigleshows
an oblique turnover feature: by fixinggand increasingy, or
conversely by fixingy and increasing), one observeg™ to
increase initially from the boundary, quickly reach a maxi-
mum, and then decrease monotonically to an apparent
asymptotic value of 0. Far from the boundary, the curves
‘show monotonic and hyperbolalike dependences on Both
and+y. The contour curves above and below meet each other
at some point for 0.1257%*<0.3125. Curves withn*
>0.3125 exist only above the boundary.
Bounds on%* in the region<0 are derived without
difficulty from Eg. (22):

Here 6 is related toe by Eq. (7). A small check can be
performed on this result: setting=0 or y=1 satisfies the
condition <0 and correctly yieldsp*=1/8, the three-
dimensional hard-sphere value derived previogsly.

We combine Eqs(19) and (22) with the results of nu-
merical calculations performed fa¥>0. Figures 1 and 2
summarize the outcome in the form of contour plots of con
stantk,i, and »*, respectively, in the plané versusy. We
recall from Eq.(5) that §>0 and §<0 correspond, respec-

0<7*<% [Repulsive-shouldegy(r)]. (25

The lower bound 0 is obtained in the limjt—o while the
upper bound 1/8 arises in the hard-sphere limit of either

0 —0~ or y—1*. Bounds for#>0, on the other hand, are
given by
I * * H * 5
l (0.1) 0<7*<mnax With 7]max>1_6 [Square-wellgg(r)].
_ (0.05) (26)
-0.5 ‘

1.0 1.5 2.0

Y : The lower bound 0 appears in the limigs—c and y—©

while the maximum packing fractions;,,,,, occurs in Fig. 2
FIG. 2. Contour plot of constant* in the planed versusy. The thick  along the upper side of the boundary in the linfitso.
parentheses show the values g1 o aach contour cune. The curves for £ 10UgM the precise value ofiny, is unknown, its lower
;7= 0.15 above and below the boundary meet each other at farfwse bound 5/16 can be derived by foqusmg on the contour curves
for »*=0.1 and 0.05 do not. The curve fof"=0.35 never crosses the that cross the boundary. At this intersection, both EAg)

boundary. and (23) hold, so we have
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TABLE I. Some important limiting densities in one, tow, and the three dimensions. Terminal densities for the
step functiong(r) and square wel§(r). Included are the maximum densities for hard spheres.

State d=1 d=2 d=3
Terminal density 0.5 0.25 0.125
[step-functiong(r) ], »*
Terminal density 0.75 0.5 0.3125
[square-wellg(r)], »*
Maximum density,;™& 1.0 m\/12~0.907 /\18~0.740
1 1 Y2 +y+1 The bounds can be generalizeddaimensions. For an
7= 1 = + m - (27 isotropicd-dimensional systen$(k) is related tgp andg(r)
811- — (7’3_1)) by
v =1
It then follows that for bound i " (2m) 21 Jiaa -1 (KT)
en follows that for boundary-crossing curves, S(k)=1+p . (2m)%er {g(r)—l}Wdr,
%< 77*< 1%31 (28) (30)

where 1/8 and 5/16 result from taking the limigs- and  where Jqj,-1(kr) is the Bessel function of ordef(d/2)
y—17", respectively, andp;,,>5/16 is obtained. Curves —1}. Applying the same analysis as above leads to
with *>5/16 thus remain above the boundary. 1

The vaIuen;]ax>5/1§ is an improvgment over the hard- 0< 77*<§{ [ Repulsive-shouldeigy(r)] (31
sphere value of 1/8, improvement in the sense that the
threshold has been pushed higher and the range of existenggqg
of equig(r) sequence widened accordingly. This improve- 442
ment arises because the square-wgl(ir) has a physically % ; * }
more reasonable form than does the simple hard-sphere on(t)a:< 7" M WIN 7max = a1 [Square-well go(r) ]
the hump in thego(r) right outside the hard core more or (32
less mimics the first peak of oscillation that develops in theTable | compares the terminal density in one, two, and three
g(r) of real systems and accomodates for the formation ofjimensions to limiting densities in other systems. Specifi-
what may resemble a first shell of nearby neighbors. By theally, we compare our results to the terminal density for the

same reasoning, we expeg},,, to be improved even further step-functiong(r) as well as the maximum density for hard
if up(r), currently of a square-well form, is dressed with anspheres.

additional repulsive hill outside the attractive well, some-
what like a truncated Friedel oscillatidf.The new target |v. EUNCTIONAL EORM OF up(r) AROUND THE

go(r) would then be LIMITS p—0 AND p—sp*
0, Osr=oao, A target go(r), once specified, uniquely determines
exp(6), o<r<yo, Bu,(r) for all p<p*. This in turn determines all the prop-
go(r)= Y _ , (290 erties of the systems within the sequence. Here we derive the
exp—0'), yosr<y'o, expression forBu,(r) around two limiting values of; the
1, r=y'o, results are used in the next section to calculate the pressure.

whereg>0, 0’ >0, andy’ > y> 1. The additional dent in the We first present what amounts to a virial expansion of

rangeyo<r <y o augments the incipient oscillatory behav- AUs(f) aroundp=0 and compare it with that o(r) of
ior expressed by the square-weh(r) and enhances the MPerfect gas. We then show that aspproachep™ from

physical realizability ofgg(r). An immediate extension of below, Bu,(r) develops a singular behavior that signals the

. . g e « d of equig(r) sequence.

this procedure is to continue modifyirgy(r) so thatz,,, en . ; L
keeps improving until one reaches a limit. What is the value ¥ A general relationship betwegBu(r) andg(r) is given
of 7hax in this limit? What type ofr dependence does the
correspondingyy(r) attain? And what kind of hard-sphere Bu(r)=—In{g(r)}+h(r)—c(r)+B(r). (33
packing structure does this limit represéht? Addressing . .

. . H?reh(r), the total correlation function, represents the fluc-
these questions, however, is beyond the scope of the presel

work uational part ofg(r), namely,
Similarly, the bounds om* for repulsive-shouldeg(r) h(r)=g(r)—1, (34

ZhO\I/th|m|n|shm§n.tlt|r? tthet;]gnge of 'eCrﬁﬂF) f?guiﬂcehthg c(r) is the direct correlation function defined in terms gof
epletion zone built into thige(r) right outside the har andh(r) via the Ornstein—Zernike relation

core frustrates the way a many-body system naturally packs
with increasingp and it quickly becomes untenable to main- . o , ,

tain suchgo(r). h(r)=c(r)+p | c([r=r"h([r"[)dr’, (39
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andB(r) is the so-called bridge function. Unless explicitly convenience, we rewrite Eq35) in a form that involves
shown, the range of integration for all the integralg-is»e, particle indices,

o) for each Cartesian coordinate. Although E83) is for-

mally exact, its usefulness hinges on how tractdkye) is: h(rlz)zc(r12)+pj c(riz)h(raydrs (36)

In the limit p—0, one can carry out a density expansion of

B(r) in terms ofh(r), and in the other limip—p*, amild  Herer;;=|r;—ry| is the scalar distance between two particles
assumption oB(r) allows us to extract the salient feature of indexed byi andj, andr; is a dummy variable of integration.
Bu(r), but away from these two limits, the intractability of First we consider the density expansion of E2B). For
B(r) renders Eq(33) of little practical use. For notational c(r), the Ornstein—Zernike relation leads to

C(r12):h(|’12)_Pf h(r13)h(r32)dr3+p2ffh(r13)h(r34)h(r42)dr3dr4

_p3fffh(r13)h(r34)h(r45)h(r52)dl'3dl’4dr5+..._ -

For B(r), the corresponding density expansion is givet*by

2
B(rlz):%ffh(r13)h(r14)h(r34)h(r32)h(r42)dr3dr4+P3f J' f h(rim)h(ri)h(rz)h(rs)h(rzp)h(rsy)

X h(l’15) +h(l’35) dl’3dl’4dr5+"'. (38)

1 1
1+h(rzs)+ Eh(r4z)+ gh(rgs)h(rﬂ)

Since the coefficient of the leading term here is a multiparticle integra®(r) in general is expected to be shorter ranged
than h(r).'* By inserting Egs.(37) and (38) into (33), the density expansion QBu,(r) is obtained in terms ohy(r)
= gO(r) -1,

1
Bup(rlz):_m{go(rlz)}"‘Pf ho(rls)ho(rsz)dh*'l)zf f ho(rla)ho(r34)ho(r42)‘Eho(rm)ho(rsz)_l drzdry

1
+p3f jfhO(r13)h0(r34)h0(r45)h0(r52) 1+ho(r1a)ho(rsz)| ho(ris) 1+h0(r35)+§h0(r42)

1
+ gho(rss)ho(Uz) + ho(rss)Hdrs drydrs+---. (39

This is the virial expansion oBu,(r). It expresses how The virial expansion of {y,(r)} is then derived to be
Bu,(r) departs from the initial form—In{gy(r)} asp is in-
creased from O while the constancy @f(r) is maintained. _
It is instructive to compare this virial expansion with that M 9p(T12}=~BUo(r12)+p | To(r1afo(rsdrs
of g(r) for a conventional imperfect gas. For emphasis we

denote the Iatteg(r)_, _governed_ by_a ﬁxed pair potential +pzf f fo(r19) fo(Tan) fo(Fan)
Ug(r), by g,(r). Its virial expansion is given By

X1 142 fo(rsp)

0,122 =expl Buol 112} 1+ [ fo(rsfo(rsadr

: Lt oo
+%f f [2f0(r13)f0(r34)f0(r42) + 2f0(r14)f0(r32) drgdr4+ (42)

X {142 fo(rao)+ Folr19)Fo(r1a) Folr 32 fo(r 20 which is the expression to be compared with B29).
The condition Eq(4) is equivalent to setting

wherefy(r) stands for the Mayer function, A term-by-term comparison between E¢42) and(39) then
shows that the effects of increasipngn In{g,(r)} andBu,(r)
fo(r)=exp{— Bug(r)}—1. (41  are identical to linear order ip,
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the complex plane asp— p* . The effect of these poles on

Pf fO(r13)fO(r32)dr3:pf ho(r1g)ho(rs2)drs. (44 the functional form ofu,(r) is evaluated by rewriting Eq.
(48) in the complex forn’

This result can be given a physically intuitive interpretation. 1 1 1( (= ke'k . ke itk

For the ranges af;, in which this first-order term is positive, BU,(F)~= —5 _[ f — dk— f —dk] _

g,(r12 exhibits an increase gsis increased from 0. In an p 8w r | J-=Syk) = Sp(k)

equig(r) sequence, such impending changes gfr), (49

changes that would occur if the initial form of(r) were  Focusing onS,(k) around its global minimum allows us to

maintained, are suppressed, and the constan@(@f) at-  approximate the behavior of the approaching poles in

tained, by a corresponding increasesn,(r,), that is, by a {Sp(k)}*l. Manipulation of Eq(12) gives

development of repulsive interactions. Likewise, for, ~ R R

where the first-order term is negative, the depletion that takes ~ S,(K) =1+ pho(Kmin) + pho(K) — pho(Kpmin)

place ing,(r1,) and which would have taken place gg(r)

is offset by the emergence of attractive interactions in = ( 1— ﬁ* +P{ﬁo(k)_ﬁ0(kmin)}a (50)

Bu,(rip). Although the coefficients no longer match each p

other at orderp? and presumably beyond, the notion of where Eq.(14) has been applied. The next step is to expand

Bu,(r) being tuned so as to balance out what would othersf, (k) —f, (ki) aroundk =K., and retain only the lowest-

wise occur tog(r) should still be valid. Given the square- order term in k— k). The specific formula depends on the

well go(r) and fo(r)=ho(r), one can derive analytical ex- sign of o defined by Eq(17). We examine each case sepa-
pressions for the first few virial coefficients ¢fu,(r) in rately.

terms ofe and y by adapting the known results for imperfect a<0. This range ofx covers the combinations efand

asl®16 .
gas. v for all repulsive-shouldegy(r) and some of square-well

The virial expa_nsion above shows tlfmp(_r) rer_nains a  g,(r). From Eq.(19) we havek,,=0 ands, (k) is approxi-
short-ranged function afaroundp=0 if go(r) itself is short  5teq by

ranged. This is not necessarily the case away fpen®D. By
rewriting Eq.(33) in notations that stress the importancepof
dependences, namely,

BU,(r)=—In{go(r)} +0o(r)—1—c,(r)+B,(r), (45 The complex integration of Eq49) then yields

p 2o’
Sy(k)=|1— o +

15 (—@p(ko)?. (51)

it is seen thatBu,(r) may become long ranged if either Bup(r)w%iexp( _L), (52)
c,(r) or B,(r) develops such a singular behavidndeed, it 8o (—a)p” T é<
follows from the Ornstein—Zernike relation that the Fourierywhere£_ is given, in a form that isolates its singularde-

transform,&,(k), of c,(r) is related toS,(k) by* pendence, by
1 1 p -1/2
¢, (k)=—11- 46 =A (1——*) 53
andc,(r) becomes singular in the eve8f(k)—0" occurs, with the remaining factors subsumed ima :
i.e., when the geometric condition 8f(k)=0 is violated. If 2w
we make the mild assumption tha(r) meanwhile remains A_=0\/ 15 (—a)p. (54)

short ranged so as not to cancel out this singularity, an as-
sumption commonly accepted for the behaviorBifr) in ~ This gu,(r) has the form of a screened Coulomb pair
general, then this analysis points once again to the speciabtential’ In the limit p—p*~, the screening lengtl_
significance ofp*. For the extraction of the salient, long- diverges with an exponent equal t6l/2 andBu,(r) repre-
rangedr dependence that develops fiu,(r) in the limit p sents pure Coulombic repulsion.
—p*~, one need only look into the inverse Fourier trans-  «=0. This is the boundary curve of E(R3). We again
form of the singular ternfpS,(k)} ~* in Eq. (46), havek,,=0 but the term retained iny(k) is of the orderk*

as opposed té?:

7T0'3 4
T ayp(Ko) (55

1 1 1 ik-r dk
B~ | 500 7 b

Sp(k)z(l—F

or upon angular integrations, . )
in which we have set

aa
P 0 P anda,>0 according to Eq(18). Complex integration yields
We are nolw in a position to examine the specific case of 105 £ sin(r/é_) r :
square-wellgy(r). Bu,(r) A% o TlE ) (57)

The development of a singularity i{ﬁp(k)}‘1 can be
viewed as being due to poles that approach the real axis iwhereé_ is given by
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p -4 V. BEHAVIOR OF PRESSURE AROUND THE LIMITS
£ =A_(1— 7) (58)  p—0 AND p—p*
with Once Bu,(r) and itsp dependence are derived, all the
3 1a properties of the systems within the sequence follow. As a
_ [2m0o representative example, we build upon the results of the last
A_=0o asp (59 ) . . .
105 section to examine how the pressysgyaries withp close to

the limits p—0 andp—p*.
The virial expansion op of an imperfect gas with fixed
uo(r) is well knowr?

This Bu,(r) has the form of a damped oscillation whose
period and decay lengths are both givenéyy. In the limit
p—p”*~, the characteristic lengtfL diverges with an expo-
nent equal to—1/4. 2
a>0. Here we havé,,;;>>0 but lack analytical expres- i: — p_f f fo(ripdrydr,

. N B keT © 2V
sions forki, andhg(k) aroundk=Kk,,. For the purpose of

analysis, we let an undetermined positive paramBtete- p
note a coefficient of expansion and approximée(k)} * - WJ f f fo(rifo(ras)fo(rspdrydradrs
by
e 4
1 1 (64)
S,(k)  (1—plp*)+D(K—Kmin)* HereV is the volume of the system arfg(r) the Mayer

function defined by Eq(41). The corresponding virial ex-
1 _ (60) pansion for equg(r) sequence is readily obtained from this
(1= plp*)+ D (K+Kpyin)® standard expression. For economy of presentation, we intro-
It is necessary to include bott ki) and (k+K.;)? SO duce a shorthand notation for the density expansion of
that S,(k) remains an even function d€ In addition, we Bu,(r),
have approxmateqs (k)} ! instead ofS ,(K) since it is 2 3
impossible to assign directly ®,(k) a function that is of the BU, (1) = Buo(r) + pBuy(r)+ = Bun(r) + 2 Bus(r) +
orderk? and at the same time has minimakat =K, the ’ 2 6
{S,(k)}~ 1 above does have maxima lat = K, for D>0

whenp=<p*. Carrying out the complex integration yields 2 p_ un(r). (65)
Ao n!
1 ————sin(Kpinr +x) r
Bu,(r)~ 2mDp min&> r exp — g ! We presume this series has a positive radius of convergence.

(61)  Explicit expressions for the coefficient functioh8u,(r)} in
terms ofgg(r) follow from Eg. (39); for example, the first

where the lengtlg-. is defined as three are given by

~172
¢&.=\b|1- f) (62 Buo(r12)=—In{go(r 1)}, (66)
and the phase factoy satisfies
1 - Bul(r12):J' ho(r13)ho(rs2)drs, (67)
tany=— £ (O<X<§>. (63

This Bu,(r) has the form of a decaying oscillation. Unlike in ~ BU2(r12)=2 f f ho(r 13)No(134)M0(T 42)
the case ofa=0, the decay length is given b§.. whereas

the period is given independently £ by 27/K,. In the X{Eh (r i) ho(r 2)—1]dr dr (68)
limit p— p*~, the length¢-. diverges with an exponent equal 2 0 T3 3tla-
to —1/2.

These analyses also show why the sequence must termi'€ density expansion of the Mayer functiofy,(r), of
nate atp=p* rather than simply pass through this point. For 8U,(r) is then derived to be
a<0 anda>0, the lengthst. and £~ become imaginary _
numbers wherp>p* and the exponential-decay term exp fo(r)=exp{=Bu,(r)}—1
(=r/§) in Bu,(r) is converted into an oscillatory term; for =fo(r)—p{l+fo(r)}Buy(r)
a=0, the lengthé_ becomes a complex number and gener-
ates an oscillatory, nondecaying term out of the product P 2_ .
sin(r/gz)exp(—rlgz). Since in three dimensiong(r) must T I To(MITAULN}"— fux(r)]
decay faster than 2 asr —« if a well-behaved system is to (69)
be produced in the thermodynam|c limit, and singe,(r)
would decay only as fast as ! in all three cases ip>p*, The virial expansion we seek is obtained by inserting Eqg.
the mathematical solutions obtained thereby must be rejectd@9) into Eq. (64), collecting terms of like order ip, and
on physical grounds and the eqy(f) sequence terminated. recalling Eq.(43):
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P p? p°
kB_T_p_W fp(rlz)drldr2_3_v fo(riaf, (raa)f,(rs)drydrodrs—

2 3
<o gy | [ rutrssdran= 25 [ [ [ noramoranraparyaraar,

3
_Ef f{1+h0(r12)},3U1(r12)dr1drz}_'“- (70)

We have chosen to denote the pressure of an gqui-se-  An additional simplification of changing the lower limit from
guence by the symbd rather than byp in order to empha- o to 0, which will not affect the divergence, has also been
size a distinction: whilg refers to a single system defined by made.

a fixedug(r), P refers to a family of systems, one at egch a<0. From Eq.(52), we have
with a different pair potential.
A term-by-term comparison between E§20) and (64) Bu (r)NB<_12 gex;{ _ ' (75)
reveals that the two virial expansions differ from each other g r <
at orderp?,

whereB_ is a positive constant whose actual formula need
not concern us. Inserting this into E.4) yields

P p
kB_T_kB_T:Ef f{1+h0(r12)}:8u1(r12)dr1dr2+'” P _B<f . .40 q 26
keT 6 LA T eR - §< - (76)
——Vf f f{1+ ho(r12)}No(r 13) By changing the variable of integration fromto y=r/¢_,
we obtain

Xho(r32)dr1dr2dr3+"'. (71)

P < [ df1
The p? term, the lowest-order term that captures non-ideal- |(B_-|—~§2< - Jo 4wy3®[yexp(—y)]dy. (77
gas behavior, is identical fg&¥ andp because the same form
of pair potential is initially shared: it is only in the subse- The integral ovey is independent op and is calculated
guent terms that the different effects of what is being heldo be —127. Finally, by inserting the expression fér from
fixed are manifested. It is straightforward to derive higher-Eq. (53) and ignoring the constant factors, we arrive at

order terms ofp beyond what appears in E¢70). Given ~

-1
square-wellgo(r), one can also evaluate the integrals to de- loc( 1— ﬁ*) ) (78)
rive analytical expressions for the coefficients in terms of keT p
; ; 16
and y based on those obtained for imperfect-ge$ Thus, for the combinations af and y that satisfya<0, the

For in the other limitp— p*~, we employ the pressure pressurel diverges in the limitp—p*~ with an exponent
equation presented in notations tailored for eqy(F) se- equal to—1.

guence, a=0. Here Eq.(57) gives
P d{B N} 1 6 sin(r/§-) r
TP —f go(r)dr. (72) BuyN)~Ba - e exp( - Z) (79

f with B_ denoting a positive constant. Combining this ex-

For square-welby(r), the sign ofa determines the form o
quare-welbo(r) 'gn Otex ! W pression with Eq(74) leads to

Bu,(r) and hencé. Since our sole interest is in if and ho

P diverges asp—p”~, we simplify this equation by first P B_ & sin(r/é_)
inserting the square-wegjy(r): kB_TN "6 o Jo dr e
P fw d{ﬁup( o ‘
kBT =p Xexp — i dr. (80)
2 . . .
pe (= s d{Bu,(n)} Change of variable front to y=r/&_ for the integration
A divergenge irp, if it does indeed div_erge, can come only %“§f(—l)§—=fm4wy3d£[smyexp(—y)]dy
from the third term and so we approximgieby B o yry -
~ 2 -
PPy, r3wdr (74 ~ Theintegral ovey is —6. By recalling Eq.(58) for £, we

kgT 6 Jo 7 dr ' have
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p
kot 1T

ﬂ) -
p*
and agairp diverges with an exponent equal tol: despite
the different functional forms oBu,(r) that develop in the
limit p—p*~, the two casesr<<0 anda =0 yield the same
exponent.

a>0. The analysis becomes more involved fer-0.
We start by rewriting Eq(61),

v krznin§2> +1 B
&

p
SIN(Kminf + x) r
r/é. EXF( - §_>
with B. representing a positive constant of no interest.
serting this expression into E(¢4) gives

(82

1

>

Bu,(r)~

(83

iw\/kﬁqin§2>+1(_1) B_>F4ﬂ3
ksT & P76 Jo
d | sin(Kpyint + x)
XE{TEX §> dr. (84)
By changing the variable of integration fromto y=r/¢- ,
one obtains
P
kT~ NN 1(— 1)p6k§mf 47y®
d [sin(Ay+x) ]
X— 1 ————exp(—y)dy, 85
dy[ y A—y)dy (89)
where we have set
N =Kniné= . (86)
The phase factoy is related to\, according to Eq(63), by
=t -1t 0<y<2 8
x=tan "+ X<7|- (87)

Sincekpin>0 whena>0, the problem is reduced to exam-

ining the behavior of in the limit A —o. Here, however,

Sakai, Stillinger, and Torquato

— 127
~=—5 (=1 (91)
and in the limitp—p*~,
P 27TB>
92
kBT P I(mm ( )

Thus,p reaches only a finite value fag>0 and does not
diverge as the terminal point is approached. It is easily
shown that the first derivative/p/dp) also remains finite in
the same limit.

For square-welby(r), the terminus is not characterized
by a divergence i whenk,,;,>0. This is because pressure
reflects the mechanical property of a system onlig=a0. If
one extends the pressure equation to defidedapendent

In-pressure, for example, by

k ,d
p()—P——f {B p( )}

kgT
then thisp(k) will recapture the divergence &=k, asp

—p*~ regardless of the sign af. We believe the entrop$,
on the other hand, should be able to reflect the terminality

without such extension to nonzeko

sinkr
kr

(r) dr, (93

0

VI. DISTINCTION BETWEEN Equi- g(r) SEQUENCES
AND Iso- g® PROCESSES

Equi-g(r) sequence is closely related to the recently in-

troduced “isog® process.” This is a process in which, as

p is varied, the constancy a@f(r) is maintained by a single
system rather than by a family of systems. An {gé! sys-

tem achieves this condition by a pair potential, denoted by
u(r;p), that has a direct dependence mas opposed to the
indexed dependence of,(r). Although u(r;p) andu,(r)
formally share the same functional form for a givgg(r),
differences arise in the properties of the systems. For ex-
ample, the pressure of a system governedipyp) is given

by18,19

kBT p__f

0{BU(r p)} o(r)dr

the integral ovely in Eq. (85) does not allow a simple ex-

traction of its\ dependence and must be evaluated analyti-

cally. Straightforward calculation of this integrdl,yields
°° Sin(Ay+
- f 4y |M
dy

y p(—y)]dy
(N2—

1)siny—2\ cosy
(A2+1)?

=127 (88)

Using Eq.(87), we expand cog and siny around\ ~1=0,
11 31

COS)(=1—§F+§F—"' (89
and

o111 31

sz—X—E 5—5— (90)

It then follows that

3
p o0
_l’_

z),

> 4ar

A pu(r;p)}

2

p g(r)d (94
The third term, which vanishes far,(r), represents the ef-
fect of the directp-dependence contained irfr;p). Further
discussion on the distinction betwes(r;p) andu,(r) and
its consequences is presented elsewffere.

VII. CONCLUSIONS

We have introduced the idea of equ(ir) sequence. This
is defined by a family of systems which share the same func-
tional formgq(r) for the pair correlation function at various
p. Each system is specified by a density-indexed pair poten-
tial u,(r). The sequence in general terminates at a finite
densityp™ or packing fractions* due to the non-negativity
condition on the structure fact@(k), and we have evalu-
atedn™ for the specific choice ofy(r) derived from square-
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well potential in the limitp— 0. Observation ofy},,, the In future work, we will seek to obtain configurations that

maximum possiblep*, for this test case has suggested the'®@lize the “square-wellg(r) for the possible range of den-

approach of deducing the limiting packing structure of hard?'t'es- This _W|II be done using efficient _stoghas'uc opt|m|ze}-

spheres via functional optimization gf(r). tion technlque_s. _to reconstruct realizations of atomic
An expression foru,(r) has been derived in the two systemé&' and digitized heterogeneous meéfa.

limits p—0 andp— p*. In the former, virial expansion leads

to the physically reasonable interpretation that features dGACKNOWLEDGMENTS
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