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We report results from a systematic simulational study of the ultimate mechanical strength ofn-alkane glasses
for carbon numbersn ) 1, 2, 3, 4, 6, 8, 16, 24, and 48. The ultimate isotropic tensile strength was determined
by constructing the equation of state of energy landscape for this homologous series. The tensile strength
depends nonmonotonically on carbon number, exhibiting a maximum atn ) 3. The mass density at which
fracture occurs initially increases with chain length and then reaches a plateau value forn > 8. The predictions
of the landscape equation of state are entirely consistent with results generated by a direct inherent structure
deformation procedure. Although the ultimate isotropic tensile strength maximum atn ) 3 would seem to
contradict physical intuition regarding chain entanglement, we present a simple mean-field theory that reveals
the underlying physics responsible for the tensile strength maximum, namely the simple competition between
intermolecular interactions and intramolecular packing effects.

I. Introduction

The vitreous state of matter is ubiquitous in modern technol-
ogy. For example, waveguides composed of pure, glassy silica
provide the infrastructure for high-speed fiber optic networks.1

In the pharmaceutical industry, glassy matrices composed of
sugar and water are used to store and preserve labile proteins.2

Most polymeric engineering plastics are amorphous solids, and
their manufacture serves as a major driving force in the chemical
industry. Bulk metallic glasses have been shown to exhibit levels
of mechanical strength substantially higher than even the most
carefully processed conventional metals and ceramics.3,4 Com-
bined with their relatively low electrical conductivity, high
corrosion resistance, and low density, this particular family of
glasses offers exciting possibilities for high-performance materi-
als in the future. Despite its widespread technological utility
and promising prospects, the vitreous state remains the most
poorly understood state of matter at the molecular level.

Although much theoretical work remains to be done to explain
the microscopic mechanisms underlying the extraordinary
viscosity slow-down that is the hallmark of the glass transition,
a number of practical routes to the glassy state are known,
ranging from vapor deposition to ion implantation and cold
compression of crystals.5-7 Historically, the most common route
to the glassy state is to supercool a liquid fast enough to avoid
crystallization. The resulting material lacks long-range crystal-
line order, and its properties are closely related to those of its
precursor, the supercooled liquid. However, what distinguishes
a glass from a liquid is its ability to resist shear deformation.
In other words, glasses exhibit proportionality between stress
and deformation: they deform reversibly under shear and
possess a shear modulus, much like crystalline solids. Unlike
crystalline materials, and because they possess inherently
liquidlike disorder, glasses tend to exist in bulk form as
homogeneous solids devoid of microscopic defects and micro-
structural heterogeneities that their polycrystalline analogues

possess, and which facilitate void nucleation or crack propaga-
tion. The important consequence of this is that amorphous solids
can exhibit surprisingly high mechanical strength.

Ultimate mechanical strength is an important material prop-
erty to consider in any engineering application. Experimental
determination of a material’s ultimate strength is commonly
done dynamically, by deforming a specimen at a fixed rate of
strain until mechanical failure occurs.8,9 The ultimate strength
is the stress at the point of failure. Because the results are
sensitive to the experimental parameters, such as strain rate and
specimen size, several measurements are usually performed to
obtain reliable statistics. However, destructive testing can be
potentially expensive, especially for materials that are difficult
to produce, and it is thus desirable to predict their ultimate
mechanical properties by nondestructive means. Theory and
simulation can play a useful role in this respect. Because most
practical theories for glasses, in particular those describing their
mechanical properties, remain phenomenological,10 computer
simulation presents itself as a useful alternative not only for
predicting the properties of these materials, but also for aiding
in the development of rigorous, microscopic theory.

In this spirit, there has been considerable effort devoted
toward predicting the ultimate tensile strength of engineering
materials. Because their atomic positions can be determined
experimentally, crystalline solids have historically been the focus
of such studies. Traditionally, the study of material strength in
a lattice has been formulated as a stability problem.11 More
recently, at the microscopic-length scale, significant effort has
been devoted toward predicting the tensile and shear strength
of crystalline solids using sophisticatedab initio and quantum
mechanical simulations.12-17 Although much of this work, in
addition to classical simulation studies, has provided important
insight into failure mechanisms operating in ideal solids,18-26

there still remains significant disagreement between computa-
tional predictions and experimental measurement.13

Because glasses possess history-dependent structure and are
hence not in equilibrium, they pose difficulties for theoretical
and computational modeling not encountered with crystals.
Polymeric systems have received special attention due to their
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industrial prominence.27-29 Ab initio molecular dynamics studies
have focused on the rupture strength of the carbon-carbon bond
in simple n-alkane chains in various conformations but are
limited to systems of only a few molecules.30-33 Kinetic Monte
Carlo methods,34,35which are capable of incorporating a variety
of failure mechanisms, such as bond rupture and chain slippage,
have proven quite useful in modeling the actual experimental
tensile strength protocol, but at the outset assume rate laws for
the microscopic mechanisms included in the simulation. In such
an approach, because the microscopic structure is unknown, a
very coarse-grained representation of the amorphous network
is employed.36-38

Since its introduction, the energy landscape formalism39,40

has provided valuable insight into the molecular-level phenom-
ena occurring in supercooled liquids and glasses.41,42However,
only in recent years has the connection between the landscape
and the mechanical properties of glasses been demonstrated.43-45

In particular, it is the so-called equation of state of the energy
landscape that bridges the gap between the two, and it is this
thermodynamicconstruction that can be exploited to predict the
ultimate strength of glassy materials. Thus far, investigations
of the ultimate isotropic tensile strength of glasses have been
limited to monatomic fluids,43,46water,47 and simple hydrocar-
bons.48 What remains unknown is the connection between
molecular architecture and mechanical strength. Elucidation of
this relationship requires systematic study, and as a starting
point, we have performed such a study for then-alkane glasses.
Interest here in then-alkanes is motivated by the fact that these
simple linear hydrocarbons exhibit a rich range of thermody-
namic behavior as a function of the simplest molecular
parameter, namely chain lengthn. For example, surface-freezing
phenomena49-53 and the even-odd effect54 in their freezing
temperatures have recently received special attention. Their
critical pressure and mass density exhibit maxima atn ) 2 and
6,55-57 respectively, and display power-law dependence for large
n.58 Furthermore, then-alkanes serve as a convenient starting
point for studying amorphous polymeric systems.

In this paper, we present results from a systematic study of
the ultimate isotropic tensile strength of then-alkane glasses
using the energy landscape formalism. The most striking result
of this work is that the strength within this family of glasses is
maximized atn ) 3. The outline of this paper is as follows.
Section II reviews the landscape formalism and its relation to
the mechanical strength of glasses. Section III describes the
simulation model for then-alkanes and methods used in this
study. Results and discussion are presented in Section IV.
Finally, Section V contains the main conclusions and lists the
open questions suggested by this work.

II. Energy Landscape/Inherent Structure Formalism

The potential energy hypersurface or energy landscape,Φ(rN),
is simply the relationship between a system’s total potential
energy and its degrees of freedom, and it naturally contains all
the physics that govern its dynamics and thermodynamics.
Although the complexity of this surface precludes its detailed
description in all but the simplest systems, significant simpli-
fication can be achieved by configurational mapping to topo-
logically important features in the landscape, namely potential
energy minima. By definition, these minima are mechanically
stable, and provided that every point in configuration space (with
the possible exception of a zero-measure subset) can be mapped
uniquely to a minimum, they represent the mechanically stable
atomic packings that a system inherently samples as it explores
configuration space. Accordingly, these local potential energy

minima are called inherent structures, and configurations that
map to the same minimum are collectively referred to as a basin
of attraction. Given a unique configurational mapping process,
it can be rigorously shown that the thermodynamics of glasses
and supercooled liquids can be described in terms of the
distribution of inherent structure energies;39 at the same time,
dynamics are related to transitions between basins.59 Within the
energetic hierarchy of this formalism, it naturally follows that
crystalline solids are systems occupying the lowest-lying energy
basins; glasses are systems trapped within amorphous inherent
structures whose energies are higher than that of the crystal;
and deeply supercooled liquids are systems that move infre-
quently between amorphous basins.

Mathematically, for a system ofN atoms in the canonical
ensemble, the simplest configurational mapping takes each atom
i along a steepest descent path39,40

where r i is the coordinate vector of atomi, Φ is the total
potential energy of the system, ands is a generic progress
variable. As s f ∞, solutions to these equations satisfy
mechanical equilibrium

It should be emphasized that because the potential energy is an
explicit function of atomic coordinates, it is therefore an implicit
function of bulk density.60 Notice that this configurational
mapping procedure corresponds to the physical process of
making a glass by cooling or quenching a fluid instantaneously
to T ) 0. Thus, the properties of a system’s inherent structures
are intimately related to those of its glass.

The connection between the landscape and macroscopic
properties of a glass is provided by the equation of state of the
energy landscape, that is to say average inherent-structure
pressurePIS as a function of bulk density.44 It is precisely this
thermodynamic construction that is exploited here as a method
to determine the ultimate isotropic tensile strength of a glass.
Because a glass is a liquid trapped within a potential energy
minimum or inherent structure, the equation of state of the
energy landscape physically corresponds to the equation of state
of a liquid in the T ) 0 limit. In the canonical ensemble,
construction of the landscape equation of state involves taking
configurations from a thermally equilibrated simulation at some
temperature and density, minimizing their potential energies by
eq 1, and then calculating the average inherent-structure
pressure. This procedure is repeated at other densities, while
maintaining the same equilibration temperature. Although the
equilibration temperature affects the average inherent-structure
energy, that is the average basin depth the system samples, the
equation of state of the landscape (pressure vs density) is largely
insensitive to it as long as the equilibration temperature is
sufficiently high (i.e., greater than the critical temperature). A
notable exception is water whose energy landscape is usually
studied under conditions where the liquid is supercooled and
therefore exhibits slow inter-basin dynamics.47,61,62For illustra-
tive purposes, the complete equation of state of the energy
landscape forn-hexane is shown in Figure 1. It is clear that the
landscape equation of state depends nontrivially on density and
its shape resembles the isotherms of analytical equations of state
for liquids. However, there are two important distinctions. First,
although points along an isotherm in a real equation of state

dri

ds
) - ∂Φ

∂r i
(1 e i e N) (1)

∂Φ
∂r i

) 0 (1 e i e N) (2)
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are directly connected by a continuum of thermally equilibrated
states, points along the equation of state of the landscape are
only indirectly connected to each other via the thermally
equilibrated simulation runs from which they were obtained.
Second, points along the “unstable” portion of the landscape
EOS are mechanically stable (i.e., they represent local-minimum
energy configurations), whereas corresponding points in analyti-
cal equations of state are unphysical (i.e., experimentally
unattainable). These subtleties aside, the equation of state of
the landscape exhibits behavior that is characteristic of a real
equation of state. For example, the density at which the average
inherent-structure energyEIS reaches a minimum coincides with
the density at which the average inherent-structure pressurePIS

is zero.48 It should be emphasized that although the phrase
“equation of state of an energy landscape” has other meanings
in the literature,45 our usage of the phrase in this paper follows
the original definition,44 namely the average inherent structure
pressure as a function of bulk density. Physically, this construc-
tion can be interpreted as theT ) 0 isotherm of a liquid, in the
sense that the system is equilibrated under conditions where it
can sample all energy minima, but its properties are studied
upon removal of the kinetic energy.

For systems studied to date,43,46-48 the equation of state of
the landscape can generally be subdivided into three density
regions, as shown in Figure 1. The high-density regionA is
characterized by compressed inherent structures. At intermediate
densities, regionB, inherent structures are under isotropic
tension. The pressure here decreases with decreasing density
until a minimum in pressure is reached. As in regionB, inherent
structures in regionC are also under tension, but the pressure
here increases with decreasing density and eventually vanishes
as density approaches zero. The density at which the minimum
pressure,FS, is attained is called the Sastry density,FS, and
separates regionB from C.

BothPS andFS are characteristic material properties and have
special physical significance. Statistical geometric analyses of
inherent structures in atomic and simple molecular fluids have
shown that they are spatially heterogeneous belowFS, that is to

say inherent structures below this limiting density consist of
densely packed regions of molecules coexisting with voids or
cracks.43,48Thus, the Sastry density represents the lowest density
at which a homogeneous glass can exist and hence corresponds
to the maximally stretched glass. Therefore, the isotropic tension
at this density,-PS, is the maximum tension that a homoge-
neous glass can sustain prior to fracture, otherwise known as
its ultimate isotropic tensile strength. These arguments strongly
suggest that the Sastry point is theT ) 0 limit of the superheated
liquid spinodal,43,44 and represents a fundamental limit to
homogeneous glass formation. For monatomic fluids equili-
brated above their critical temperature, the Sastry point bears a
simple yet intriguing relationship to the critical point. The ratio
of the Sastry density to critical density is roughly 3, whereas
the ratio of the ultimate isotropic tensile strength to critical
pressure is approximately-27.42 An important aspect of this
work is to investigate whether such simple relationships hold
for molecular fluids.

The equation of state of the energy landscape is not only the
means by which to study the mechanical properties of glasses
within the landscape formalism. Alternatively, one can probe
their mechanical behavior by directly deforming the inherent
structures themselves.27-29,63By using a series of steps consist-
ing of incremental deformations and subsequent energy mini-
mizations under constant strain, the mechanical response of
glasses under various loading conditions can be investigated in
the low-temperature limit. Although the majority of these studies
have focused on how the underlying landscape changes as a
result of structural rearrangements that accompany macroscopic
strain, in particular, the relationship between mechanical yielding
and the disappearance of energy minima,60,64,65such an approach
can, in principle, also be used to determine the ultimate
mechanical strength of glasses.66

We have studied the ultimate isotropic strength of then-alkane
glasses using two methods. In the first, the ultimate isotropic
strength is determined by constructing the equation of state of
the energy landscape and locating the Sastry point. In the second
method, high-density inherent structures are processed by a
sequence of incremental isotropic expansions and energy
minimization steps. This series of steps is repeated until the
system fractures, that is to say a minimum in pressure as a
function of density is reached.A priori, it is unclear how the
fracture properties determined by the two processes relate to
each other, and hence an important part of this investigation is
to clarify this relationship.

III. Simulation Model and Methods

In this work, then-alkanes are modeled as fully flexible chains
of united atoms with each interaction site corresponding to a
CH4 molecule or either a-CH3 or -CH2- group. For a linear
chain of united atoms of lengthn, its conformation is completely
specified by the set ofn-1 bond lengthsd, n-2 bond anglesθ,
n-3 dihedral anglesφ, and three Euler angles (ϑ, Θ, andΨ)
describing the relative orientation of the first two bonds in the
chain. This set constitutes the chain’s generalized coordinates.
In conjunction with the position of the first united atom within
the chain, the spatial coordinates of each interaction site can be
specified completely by 3ndegrees of freedom.

Bond stretching and bending are described by harmonic
potentials67,68

Figure 1. Equation of state of the energy landscape forn-hexane. This
zero-temperature isotherm can generally be divided into three density
regionsA, B, andC. In regionA, PIS > 0. In regionB, PIS < 0. In
region C, the inherent structures are fissured and the packings are
spatially inhomogeneous.

ustretch(d) ) Kr(d - deq)
2/2 (3)

ubend(θ) ) Kθ(θ - θeq)
2/2 (4)
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whereKr ) 96 500 K/Å2, Kθ ) 62 500 K/rad2, deq is a species-
dependent equilibrium bond length, andθeq is the equilibrium
bond angle which is fixed at 114°.68 Equilibrium bond lengths
for CH3-CH3, CH3-CH2, and CH2-CH2 bonds are set to
1.839, 1.687, and 1.535 Å, respectively.69 The dihedral angles
are governed by a potential of the form70

whereV0 ) 0, V1 ) 355.03 K,V2 ) -68.19 K, andV3 ) 791.32
K. Within a chain, united atoms separated by more than three
bonds interact via the same nonbonded potential that governs
the interaction between united atoms on different molecules.
In this work, the nonbonded potential is described by the
Buckingham exponential-6 potential

whereε is the depth of the potential well,R controls the width
of the potential well,rmin is the distance at which the potential
reaches its minimum, andrmax is the smallest distance for which
dunb(r)/dr ) 0, the position of a maximum of the form shown
in eq 6. A characteristic diameterσ analogous to that of the
Lennard-Jones interaction potential corresponds to the distance
at which unb(r) ) 0. The advantage of the Buckingham
exponential-6 form is that it offers an additional degree of
freedom in optimizing the model relative to the traditional
Lennard-Jones potential. The parameters for each united atom
type are summarized in Table 1. Interaction parameters between
different united atom types are obtained by standard arithmetic
and geometric averages

The total potential energy of the system,Φ, is simply a
summation over all of the above energetic contributions.

The above model for then-alkanes was developed and
optimized by Errington and Panagiotopoulos69,71 to fit experi-
mental liquid-vapor equilibrium data. There are two key
features to the model. First, the methyl and methylene groups
differ in size and possess different energy well depths. In Table
1, it seems counterintuitive that a methyl group should be smaller
than a methylene group, but this is actually consistent with other
force fields designed for simulatingn-alkanes.67,72 Second,
adjacent united atoms within the same chain overlap by virtue
of specification of the equilibrium bond lengths. It has been
shown that these are essential requirements in order for a united
atom model to reproduce the maxima in critical pressure and

density as a function of chain length.58 The Buckingham
exponential-6 potential was cut and shifted so that the force
vanishes smoothly at 15 Å. This was necessary because the
energy minimization procedure requires a continuous force for
numerical stability. Although this modification changes the
potential slightly from its original form, it is expected that
deviations from the experimental properties for which the
parameters were optimized will be systematic (in the same
direction) for all carbon numbers.

To construct the equation of state of the energy landscape
for the n-alkanes, either configurational-biased Monte Carlo
(CBMC)73,74 or multiple time-step molecular dynamics (MTS
MD)75 simulation was used to generate thermally equilibrated
configurations in the canonical ensemble for energy minimiza-
tion. These more sophisticated simulation methods were required
to deal efficiently with the stiff degrees of freedoms in the
chains. The choice of simulation was based on computational
convenience. A system consisting of 1600-2000 united atoms
in a cubic simulation box with periodic boundary conditions
was used in all cases. All species were equilibrated at ap-
proximately 1.5× the experimental critical temperature, to
ensure that the system could in principle sample the overwhelm-
ing majority of local energy minima in the landscape. The Monte
Carlo simulations consisted of an equilibration period of two
million trials followed by a production period in which
configurations were saved every 200 000 trials. In the molecular
dynamics simulations, the equilibration period lasted for 200
ps using a large and small time step of 2.0 and 0.5 fs,
respectively. Temperature was thermostated using a Nose-
Hoover chain of length five, and the equations of motion were
integrated using an explicit reversible multiple time step
integrator as developed by Martyna et al.76 Configurations were
saved every 10 ps for energy minimization. For each species,
thirty configurations per state point were generated, with the
exception ofn ) 48, where forty configurations were saved to
obtain better statistical sampling. Energy minimization was
performed using the conjugate gradient method77 and was
terminated when the relative fractional energy difference
between the previous and current step was less than 1× 10-8.

Investigation of ultimate tensile strength via direct inherent
structure deformation was only performed forn-alkanes of
lengthn < 48. High-density inherent structures corresponding
to PIS ) 0 were taken as the starting configurations. Each of
these was expanded isotropically stepwise by 5 kg/m3 and then
its potential energy was minimized. This process was repeated
until a minimum in pressure as a function of density was
reached. For each chain length, results were averaged over
fifteen such runs.

IV. Results and Discussion

We have studied the ultimate isotropic tensile strength of the
n-alkane glasses by constructing their landscape equations of
state. Before proceeding, we first demonstrate that the Sastry
point also corresponds to a condition of fracture for complex
molecular fluids, such as those investigated here, and not just
for atomic systems.43 Representative inhomogeneous and ho-
mogeneous inherent structures forn ) 8 from both sides of the
Sastry density are shown in Figures 2 and 3, respectively. It is
clear that the fractured inherent structure, Figure 2, contains
significant cavity space, which not surprisingly resembles a
crack in the system, whereas the homogeneous inherent
structure, Figure 3, is devoid of such defects. The connection
between the Sastry point and mechanical strength can be
demonstrated quantitatively by statistical geometric analysis of

TABLE 1: Parameters for the Buckingham Exponential-6
Potential in Lennard-Jones Form

group,i σi [Å] εi/kB [K] Ri

CH4 3.741 160.3 15
CH3 3.679 129.6 16
CH2 4.000 73.5 22

utor(φ) ) V0 +
V1

2
(1+cosφ)+

V2

2
(1-cos2φ)+

V3

2
(1+cos3φ)

(5)

unb(r) )

{ ε

1 - (6/R)[6
R

exp(R[1 - r
rmin]) - (rmin

r )6] r > rmax

∞ r < rmax

(6)

σij ) 1
2
(σi + σj) (7)

εij ) xεiεj (8)

Rij ) xRiRj (9)
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the void space78 present in the inherent structures as a function
of density. In Figure 4, the average inherent-structure pressure
and void fraction are plotted as a function of density forn ) 8.
As in the case for simple fluids, high density inherent structures
are spatially homogeneous aboveFS and inhomogeneous below.
More importantly, as the system is expanded isotropically,
Figure 4 clearly shows that the density at which cavities begin
to form is practically coincident with the density at which the
minimum in pressure occurs, namely the Sastry density. Notice
that the size of these initial cavities is of the order of atomic
dimensions. Because harmonic bonding potentials are used here,
bond rupture is precluded as a viable fracture mechanism, and
therefore, fracture in this case is driven solely by the relative
displacements of individual molecules. The loss of cohesion
below FS is directly related to the creation of void space. The
physical picture that emerges from these observations is that
the Sastry point corresponds to the maximally stretched mo-
lecular glass, whereas the pressure at this point is its ultimate
isotropic tensile strength, or the maximum tension that can be
sustained just prior to fracture. Although results have only been
presented forn ) 8, identical behavior is observed for all chain
lengths investigated in this work.

The equations of state of the energy landscape for the
n-alkanes of chain lengthn ) 1, 2, 3, 4, 6, 8, 16, 24, and 48

are shown in Figure 5. All of the curves have similar shapes
and extend significantly into the negative pressure region where
the system is under isotropic tension. More importantly, notice
that pressure on they-axis is given in units of kbar, which is
the same order of magnitude as the tensile strength of steel
alloys.8 There are two important trends to glean from Figure 5,
namely the chain length dependences ofFS and-PS. For clarity,
these two quantities are plotted separately as a function of
inverse chain length in Figures 6 and 7.

Figure 6 shows that the Sastry density initially increases with
chain length but then reaches a plateau value at approximately
n ) 16. This nontrivial chain length dependence is due to the
fact that adjacent united atoms within the same chain are actually
interpenetrating spheres by virtue of the bonding constraints in
the simulation model. Consequently, the volume occupied by
m unbonded united atoms is larger than that ofm bonded ones.
Because the Sastry density is the lowest density at which a
mechanically stable amorphous solid can exist absent of any

Figure 2. Representative fractured inherent structure forn-octane (F
< FS). Dark spheres correspond to methyl groups, and the lighter ones
are methylene groups.

Figure 3. Representative homogeneous inherent structure forn-octane
(F > FS). Dark spheres correspond to methyl groups, and the lighter
ones are methylene groups.

Figure 4. Equation of state of the energy landscape (circles) and the
average void volume fraction (squares) in the inherent structures as a
function density forn-octane,n ) 8.

Figure 5. Equations of state of the energy landscape for then-alkanes
studied in this work,n ) 1, 2, 3, 4, 6, 8, 16, 24, and 48.
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void space, this limiting density should at least initially increase
with carbon number. Beyond some intermediate chain length,
the homogeneous amorphous packing problem that is associated
with the Sastry density becomes insensitive to carbon number.
In other words, in the long chain limit wheren is large, a system
composed of chains of lengthn is indistinguishable from a
system composed of chains of lengthn+1 at least from a
molecular packing point of view. This naturally gives rise to
an asymptotic approach to a limiting value ofFS in the limit of
largen.

In Figure 7, the ultimate isotropic tensile strength,-PS, is
plotted as a function of inverse chain length. There are two
striking features to this plot. The first is the tensile strength
maximum atn ) 3, which is reminiscent of the maximum in
critical pressure for then-alkanes atn ) 2. The second is that
the isotropic tensile strength decreases with increasing carbon

number beyondn ) 3. In contrast, we note that the average
inherent structure energy per molecule at the Sastry point
(EIS(FS) < 0) decreases monotonically with carbon number
throughout the entire range of chain lengths studied. The tensile
strength results are quite remarkable because physical intuition
would lead one to believe that it should in fact increase with
carbon number simply due to chain entanglements. Although
the degree of chain entanglement is unknown in these systems,
work by Saitta and Klein32 suggests that systems composed of
united atomn-alkanes are capable of exhibiting some degree
of topological chain entanglement starting atn ) 9 even though
they do not display rheological entanglement dynamics. It has
been found experimentally that the ultimate tensile strength for
amorphous low density, linear polyethylene under uniaxial
tension decreases with molecular weight.79 In reference to
previous work on the ultimate isotropic tensile strength of simple
hydrocarbons,48 the complex chain length dependence found
here is consistent with the observation that chains of length
n ) 2 and 5 possess very similar tensile strength.

That the ultimate isotropic tensile strength should be maxi-
mized atn ) 3 is not obvious. Because fracture is initiated by
voids,8,9 a statistical geometric analysis of then-alkane glasses
at their Sastry density was performed to see if the defects that
drive mechanical failure could provide physical insight into the
origin of the tensile strength maximum. Details of the geometric
algorithm, which allows calculation of the volume, surface area,
and connectivity of voids, have been given elsewhere.78 The
average void fraction and defect density are plotted as a function
of inverse chain length in Figures 8 and 9, respectively. It is
interesting to see that the void fraction at the Sastry density,
Figure 8, behaves non-monotonically with chain length. Although
this quantity does not correlate perfectly with tensile strength,
it too displays an extremum at small chain length. However,
the defect density, which is defined as the number of cavities
per unit volume at the Sastry point, correlates quite well with
tensile strength, exhibiting a minimum nearn ) 3. The
observation that the void fraction and defect density at the Sastry
point correlate with tensile strength suggests that molecular
packing effects play a basic role in determining the relative
ultimate mechanical strength ofn-alkane glasses. This should
not be entirely surprising because the manner in which

Figure 6. Relationship between the Sastry density and inverse chain
length for then-alkanes studied in this work. The line is a guide to the
eye.

Figure 7. Relationship between the ultimate isotropic tensile strength
determined by the landscape equation of state and inverse chain length
for the n-alkanes studied in this work. The line is a guide to the eye.

Figure 8. Average void fraction in then-alkane inherent structures at
their respective Sastry densities plotted as a function inverse carbon
number. The line is a guide to the eye.
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molecules pack together directly affects their propensity to form
voids and cavities which can lead to failure.

We have also determined the ultimate isotropic tensile
strength by directly deformingn-alkane inherent structures for
carbon numbersn ) 1, 2, 3, 4, 6, 8, 16, and 24. Recall that the
computational procedure consists of a series of isotropic
expansion and energy minimization steps and, thus, closely
resembles the experimental protocol one would use to measure
isotropic tensile strength. These deformation curves are shown
in Figure 10. In this case too, the ultimate isotropic tensile
strength corresponds to the minimum in pressure, and the
corresponding density is likewise analogous to the Sastry
density. Statistical geometric analysis also shows that this density
signals the sudden emergence of void space as the system is
expanded isotropically. Although the deformation curves and
the equations of state of the landscape have similar shapes, the
deformation curves are noticeably sharper in the vicinity of the

pressure minimum, which is indicative of a brittle, catastrophic
failure mode. Interestingly, the density at which fracture occurs,
as determined by both constructions, is the same. We note that
although each curve in Figure 10 represents an average over
fifteen runs, the density at which each run fractured occurred
over a range of values around the Sastry density. Moreover,
this density range increased with chain length. In Figure 11,
the tensile strengths calculated by the two methods are plotted
simultaneously for comparison. The direct deformation process
gives rise to a slightly greater tensile strength than that obtained
by isochoric energy minimization (the equation of state of the
landscape). Because the initial configuration of the deformation
process is itself an inherent structure, the intuitive expectation
is that the process is restricted at the outset to sample lower-
lying energy basins. This is in contrast to the isochoric quench
procedure, in which higher-energy minima are accessible during
the high-temperature equilibration simulation that connects
points along the equation of state of the energy landscape. To
the extent that these lower-lying basins are closer to the ground
state, and hence more crystal-like than the higher-energy ones,
they represent “stronger” states.48 This difference aside, the
deformation curves and the landscape equation of state both
predict the same nonmonotonic chain length dependence for
the tensile strength, with a maximum atn ) 3. For completeness,
the defect densities at fracture for the two computational
protocols are shown in Figure 12. Again, results generated by
the two processes exhibit the same dependence on chain length.
Also, in accord with the expectation that the defect density
should correlate with material strength, the defect density at
fracture by direct deformation is less than that observed in the
landscape equation of state. As before, this correlation suggests
that the nonmonotonic chain length dependence is related to
molecular packing effects. In Appendix A, a simple theory that
captures this nontrivial behavior and exposes the underlying
physics is presented.

Because the extent of chain entanglement increases with chain
length, the intuitive expectation is that ultimate tensile strength
should increase with carbon number. We again point to the work
of Klein and co-workers30-33 who have investigated the effect

Figure 9. Defect density in then-alkane inherent structures at their
respective Sastry densities plotted as a function of inverse carbon
number. The line is a guide to the eye.

Figure 10. Inherent structure deformation curves for then-alkanes of
chain lengthn ) 1, 2, 3, 4, 6, 8, 16, and 24.

Figure 11. Comparison of the ultimate isotropic tensile strength
determined by the landscape equation of state (circles) and direct
inherent structure deformation (squares) versus inverse carbon number.
Lines are guides to the eye.
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of topological constraints, including chain entanglements and
self-knots, on the rupture strength of the unsaturated carbon-
carbon bond inn-alkane molecules ranging fromn ) 9 to n)
35. Their work suggests that chains of length greater thann )
8 should contain topological interchain entanglements, even
though they might not exhibit rheological entanglement dynam-
ics. Although the topological problem of identifying chain
entanglements at the atomistic level remains unsolved,37,80-86

visual inspection of the configurations for the longer chains,n
) 16, 24, and 48, confirms that the molecules tend to adopt
curled or folded conformations and tend to intertwine, indicating
there is some degree of entanglement present. However, results
from the landscape equations of state and the deformation curves
show a counterintuitive trend, namely that the tensile strength
decreases with chain length beyondn ) 3. The disagreement
between intuition and the results presented here stems from
differences between the experimental and computational (this
work) protocols used to measure ultimate strength. Experimen-
tally, tensile strength tests are performed while deforming the
specimen at a constant strain rate. The measurement is therefore
a dynamical one. Thus, what is being measured is actually a
time-dependent response to a perturbation. Because chain
entanglements only affect the dynamic response of a system,87

one should expect experimental measurements of tensile strength
to increase with chain length if the time scale for chain relaxation
is longer than that of the imposed strain rate. However, the
computational methods employed here, namely construction of
the landscape equations of state and the deformation curves,
provide only static measures of material strength. It is important
to emphasize that the equation of state of the energy landscape
is a purely thermodynamic construction that corresponds to the
zero-temperature isotherm of a liquid.44 Ultimate tensile strength
determined via this construct is based solely on thermodynamic
stability. Although the inherent structure deformation curves
were constructed using a protocol that more closely resembles
an experimental isotropic tensile strength test, the procedure
does not involve any dynamic component because after each
deformation, the potential energy of the resulting structure is
minimized, allowing the system to attain a mechanically stable
condition. In other words, the inherent structure deformation

curves correspond to the stress-strain curves one would
generate in an experimental measurement using an infinitely
slow strain rate, in the low-temperature limit. Because the
computational procedures used in this work determine ultimate
tensile strength within a purely thermodynamic framework,
chain entanglements should not be expected to influence the
predicted material strength. In fact, it might be more appropriate
to refer to material strength measured within the inherent
structure formalism as the material’sintrinsic mechanical
strength.

We now point out another interesting trend that can be seen
in Figures 5 and 10. Looking at the equation of state of the
energy landscape, Figure 5, it can be seen that the curves become
smoother with increasing chain length, particularly on the low
density side just after fracture. Although the deformation curves,
Figure 10, are fairly sharp near the fracture point, the curvature
clearly decreases with carbon number. This effect is a reflection
of increasing material toughness, that is to say resistance to
mechanical failure in the presence of a defect,88 with chain
length. In Figure 13, the evolution of void space beyond the
Sastry density is shown for the isochoric energy minimization
procedure. Notice the systematic decrease in slope with increas-
ing chain length, indicating that systems composed of short
chains are particularly susceptible to the creation of void space.
The same qualitative trends are observed for the direct deforma-
tion process. Physically, the data point to the fact that systems
composed of small molecules are unable to accommodate
“internal” void space and simply come apart catastrophically.
In contrast, as the density is lowered below the Sastry point,
chain molecules partially unbind to create void space, but the
voids thus created are not catastrophic. The constraints associ-
ated with chemical bonding serve as “stitching points” that hold
the system together. Consequently, because the number of
“stitching points” increases with chain length, it becomes
increasingly difficult to create cavity space beyond that already
present at the Sastry point.

It has been shown that the Sastry point for simple fluids
practically coincides with theT ) 0 limit of the superheated
liquid spinodal and, hence, bears a simple relationship to the
critical point.42,44,48In Figure 14, the ratios of the Sastry density
to experimental critical density and the ultimate isotropic tensile

Figure 12. Comparison of the defect density at fracture for the equation
of state of the energy landscape construction (circles) and the direct
inherent structure deformation curve (squares). Lines are guides to the
eye.

Figure 13. Evolution of void space beyond the Sastry density for the
equation of state of the energy landscape of then-alkanes.
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strength to experimental critical pressure are plotted as a function
of chain length. The ratios for united atom methane (FS/FC )
2.89,-PS/PC ) 34) are close to the corresponding values for
the Lennard-Jones fluid (FS/FC ) 2.76, -PS/PC ) 39.8).
Although the experimental critical density and pressure of the
n-alkanes both depend nonmonotonically on chain length, it is
interesting to see that both Sastry-to-critical point ratios increase
monotonically with carbon number and appear to diverge in
the infinitely long chain limit. Vega and co-workers89,90 have
shown that the critical density and pressure of then-alkanes
scale asn-3/2 in the long-chain limit. Because the Sastry density
reaches a plateau value, the ratioFS/FC should indeed diverge
in the limit of largen. However, based on our tensile strength
calculations, it is not clear a priori how the ratio-PS/PC should
behave in the infinitely long chain limit. We can deduce that
the scaling exponent for-PS as a function ofn is less than 3/2.

The chain length dependence of the maximum in ultimate
isotropic tensile strength,-PS, within the family of n-alkane
glasses is a surprising result and has yet to be confirmed
experimentally. Microscopic theories designed to capture the
liquid-vapor phase behavior of simple molecular fluids, such
as that of Sanchez-Lacombe,91 do not predict complex chain
length dependence of the pressure in theT ) 0 limit of the
superheated liquid spinodal and thus the underlying physics is
not at all obvious. To elucidate the underlying physics, it is
useful to examine the relationship between tensile strength-PS

and the cohesive energy densityδ2 which is defined thermo-
dynamically to be

where∆Uvaporizationis the internal energy change of vaporization
for a volume of liquidVL. Physically,δ2 is just a measure of
the strength of the intermolecular interactions in the liquid phase.
If the vapor is considered ideal, then the cohesive energy density
reduces to

whereEintermolecular
L is the total intermolecular interaction energy

in the liquid. For small molecules and within small density
ranges, the cohesive energy density is proportional to the partial
derivative of the total internal energy of the liquid with respect
to volume at constant temperature92

where the proportionality constanta is close to unity. In fact,
for the van der Waals fluid it is exactly unity. Using the
differential form of the fundamental equationU(S,V), whereS
is the entropy, and a Maxwell relation,93 it is straightforward
to show that

where RP is the thermal expansion coefficient andκT is the
isothermal compressibility. Exploiting the fact that the equation
of state of the energy landscape is theT ) 0 isotherm for a
liquid, the ultimate isotropic tensile strength becomes

A subtle point to note in moving from eq 13 to 14 is that the
Sastry point is a limit of mechanical stability, and thus, both
the thermal expansion coefficient and the isothermal compress-
ibility diverge there. It is therefore unclear how the ratio of these
two quantities behaves in the limit of theT ) 0 superheated
liquid spinodal. However, we can deduce how the ratioRP/κT

behaves in this limit by examining its behavior for two model
fluids with intermolecular potentials that bracket the range of
reasonable repulsive interactions in real systems. To this end,
the van der Waals fluid and the soft sphere fluid consisting of
an inverse ninth-power repulsion with a mean-field attraction
were examined. By definition, the ratioRP/κT is just the partial
derivative of pressure with respect to temperature at constant
density (∂P/∂T)F. Because the equation of state of a fluid can
generally be expressed in terms of pressure as a function of
density and temperature,P(F,T), the total differential of pressure
is

Along the liquid spinodal where (∂P/∂F)T ) 0, eq 15 reduces
to

which states that the pressure-temperature projection of the
liquid spinodal curve is an envelope of isochores.7 Using the
chain rule, eq 16 can be rewritten as

For the van der Waals equation of state, one can show that the
ratio RP/κT diverges at the Sastry density in the limit ofT ) 0.
However, it does so asT-1/2, and so the termT(RP/κT) in eq 13
vanishes asT f 0. For the soft sphere fluid, we have verified
numerically thatRP/κT does not diverge but approaches a finite
value in this limit. Therefore, we assume the general validity

Figure 14. Ratios of the Sastry density to the experimental critical
density (squares) and ultimate isotropic tensile strength to the experi-
mental critical pressure (circles) as a function of inverse chain length
for the n-alkanes. Lines are guides to the eye.
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of this conclusion, and assume that the first term on the right-
hand side of eq 13 vanishes at the Sastry density asT f 0. It
then follows that

To test this result, we plot the tensile strength against the
corresponding cohesive energy density in Figure 15. The linear
correlation is quite good, suggesting that in order to explain
the tensile strength maximum atn ) 3, one simply needs to
develop a theory for the chain length dependence of the cohesive
energy density.

In Appendix A, a simple theory capable of reproducing the
maximum in cohesive energy, and therefore tensile strength, is
presented. Here, we briefly summarize its key points. Notice
in eq 18 that the ultimate isotropic tensile strength has been
decomposed into energetic and geometric contributions. Each
is treated separately in the theory. The energetic contribution
to the cohesive energy density is calculated by making an
analogy to the conceptual framework of lattice models where
it is assumed each lattice site is occupied by a chain segment.
Invoking a simple mean field approximation, the average
intermolecular interaction energy per molecule can be calculated
while accounting for different characteristic interaction energies
for the methyl and methylene groups. The geometric contribu-
tion to the cohesive energy density, or the total volume of the
system, is approximated as a simple summation over all
molecular volumes, accounting for the fact that adjacent pairs
of united atoms within the same molecule overlap (i.e., they
are interpenetrating spheres by virtue of chemical bonding).
Within this simple framework, the theory is not only able to
reproduce a maximum in cohesive energy density atn ) 3, but
also predicts that the cohesive energy density, and therefore
tensile strength, decreases with chain length beyondn ) 3 and
approaches a finite asymptotic value asn f ∞. Furthermore,
when extended to calculate the Sastry density, the theory predicts
the same qualitative behavior as observed in the simulations,
namely thatFS initially increases with carbon number and then
reaches a plateau value.

As shown in Appendix A, these simple arguments allow the
cohesive energy density to be written in the following general
form

whereê(n) is defined as the negative of the average intermo-
lecular interaction energy per united atom within a chain, and
ω(n) is the intramolecular united atom, or carbon, density. The
maximum in tensile strength is just a reflection of the competi-
tion between these energetic and intramolecular packing con-
tributions. The average intermolecular interaction energy per
carbonê(n) decreases with chain length simply because the
characteristic interaction energy of a methyl group is less than
that of a methylene group, which is consistent with other force
fields used to simulate hydrocarbons. This tends to decreaseδ2

with increasing carbon number. On the other hand, the average
intramolecular carbon density behaves much like the Sastry
density and increases with chain length mainly due to intramo-
lecular packing effects, that is to say how the united atoms fit
together within a chain, and this tends to causeδ2 to increase
with carbon number. The consequence of this competition
naturally gives rise to a maximum. In the situation where the
characteristic energies of the methyl and methylene groups are
equal, the theory predicts thatδ2 increases monotonically with
carbon number and should track the behavior of the Sastry
density. In fact, we have located the Sastry point for then-alkane
simulation model with this energetic modification forn ) 1, 2,
3, 4, 8, and 16. We find that the Sastry density is largely
insensitive to the energetics of the model. More importantly,
as predicted by the theory, the ultimate isotropic tensile strength
in this case initially increases with chain length and then flattens
out, much like the Sastry density.

V. Conclusions

A systematic study of the ultimate isotropic tensile strength
of n-alkane glasses up ton ) 48 has been performed. We have
shown that the equation of state of the energy landscape and
the inherent structure deformation curve provide two indepen-
dent measures of the isotropic tensile strength for these glasses.
In particular, it is the pressure minimum in both curves that
corresponds to the maximum isotropic tension that a system
can sustain prior to fracture. Although both methods predict
the same density at which fracture occurs, the deformation curve
systematically predicts a higher tensile strength than the
landscape equation of state simply because the process is biased
to sample basins of lower energy. This difference aside, both
constructions exhibit similar trends with respect to the Sastry
density and tensile strength dependence on chain length. The
Sastry density initially increases with carbon number and then
reaches a plateau value at some intermediate carbon number.
More interesting, however, is the nonmonotonic chain length
dependence of the ultimate isotropic tensile strength with a
maximum atn ) 3, which is reminiscent of the maximum in
critical pressure atn ) 2 for this homologous series. By relating
the cohesive energy to pressure in the zero-temperature limit,
it can be shown by means of a simple theory that the observed
chain length dependence of the Sastry point is driven by a
competition between intermolecular energetic and intramolecular
packing effects. Although the results seem to contradict intuitive
expectations regarding the connection between mechanical
strength and molecular structure, in particular, the notion that
strength should increase with chain length, the crucial distinction
between the actual experimental protocol and computational

Figure 15. Correlation between ultimate isotropic tensile strength
determined by the isochoric quench process and cohesive energy density
for the n-alkanes studied in this work.
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methods used here is the following. Experimental measurements
inevitably are determined while the sample is deformed at an
externally imposed strain rate, and the measured strength is
therefore a reflection of the dynamic response of the system to
a perturbation. It should therefore be expected that features such
as chain entanglements and even cross-links increase the
experimentally observed tensile strength. In this work, mechan-
ical strength has been determined within a purely static
framework and ultimate strength corresponds to a limit of
mechanical stability. Because the computational protocols used
in this work correspond to an experimental measurement using
an infinitely slow strain rate, points of chain entanglements are
always allowed to relax, and thus do not influence the intrinsic
tensile strength.

From an interesting theoretical perspective, we have shown
that the relationship between the Sastry point and the critical
point is more complex for molecular than for monatomic fluids.
Both ratios,FS/FC and -PS/PC, diverge in the infinitely long
chain limit. Combined with theoretical work by Vega and co-
workers89,90showing that the critical density and critical pressure
for then-alkanes scale asn-3/2, this behavior should be expected
in light of the theory for tensile strength summarized in Section
IV and presented in Appendix A which predicts an asymptotic
approach to a limiting value asn f ∞.

A number of interesting issues are raised by this work and
deserve further investigation. Experimentally, the ultimate
strength of a material usually refers to its mechanical response
under uniaxial loading. Shear strength is also an important
mechanical property in engineering applications. These par-
ticular properties can be determined using the inherent structure
formalism, and it would be interesting to see if they exhibit
complex chain length dependence. We have also pointed out
that the equations of state of the energy landscape and the
inherent structure deformation curves become smoother with
carbon number, particularly just after the point of fracture. This
smoothing effect is believed to be associated with “stitching
points” provided by longer chain molecules by virtue of
chemical bonds which serve to hold the system together. The
implication of this subtle trend is that amorphous solids
composed of longer chains are mechanically tougher, that is to
say less susceptible to mechanical failure when a void defect is
present, than shorter, smaller molecules. Experimental studies
of the chain-length dependence of toughness are necessary to
confirm or disprove this prediction.

Appendix A: Mean-Field Theory for Cohesive Density

In this appendix, we present a simple mean-field theory
capable of capturing the qualitative behavior of the cohesive
energy density, and therefore tensile strength, as a function of
chain length. The starting point for this theory is eq 18 which
decomposes the cohesive energy density into purely energetic
and geometric contributions, each of which is treated indepen-
dently in what follows.

The total intermolecular interaction energy is calculated using
a simple mean-field approximation. To facilitate such a calcula-
tion, we make an analogy to the conceptual framework of lattice
models, where we crudely assume that each chain segment
occupies a lattice site. All sites are assumed to be occupied
because the system of interest is at its Sastry density, where
the only voids are interstitial. Surrounding each site arez near-
neighbors. In this work, we take the coordination number to be
an adjustable parameter.94 For a chain of lengthn > 2, there
are two CH3 groups and (n-2) CH2 groups. Intermolecular
methyl-methyl interactions have a characteristic energyε11, and

methylene-methylene interactions are characterized by an energy
ε22. A geometric mean is used to define interactions between
different united atoms

In a mean-field sense, the probability,p1(n), that a near-neighbor
lattice site is occupied by a CH3 group of another molecule is

Accordingly, the probability,p2(n), that a near-neighbor site is
occupied by a CH2 group of another molecule is

The average intermolecular interaction energy per molecule,
φ(n), due to near-neighbor interactions is therefore

Note that a factor of has been included to account for double
counting. Analogous expressions for united atom methane and
ethane can be easily derived. The total intermolecular interaction
energy for the system is

whereNmol is the number of molecules in the system.
Because the Sastry point is the lowest density at which a

homogeneous glass can exist, that is to say it corresponds to
the onset of void formation, the total volume of the system is
approximated as a simple summation over all molecular
volumes. Implicit in this approximation is the assumption that
although intermolecular overlaps do exist, the overlap volume
occupies only a small fraction of the total system volume which
is largely composed of the volume of the molecules themselves.
The average molecular volume can be written in the following
general form

whereVtangent(n) is the average molecular volume calculated by
assuming the united atoms are tangent spheres andVoverlap(n) is
the average total overlap volume between adjacent sites in a
chain and is important in this particular case because of chemical
bonding. For simplicity, only overlaps between adjacent pairs
of united atoms sites are considered. Given the schematic setup
in Figure A1, the overlap volumeVo between two interpenetrat-
ing spheres of radiir1 andr2 whose centers are separated by a
distanced is

where

ε12 ) xε11ε22 (A1)

p1(n) ) 2
n
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p2(n) ) n - 2
n
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Eintermolecular
L ) Nmolφ(n) (A5)
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and

The total overlap volume within a molecule is therefore just a
summation over all adjacent united atom pairs. In the present
context, the natural length scale is assumed to be the radius of
the united atom’s exclusion sphere, which is of the order of the
Lennard-Jones diameterσ. Such a choice is consistent with
the statistical geometric analysis already performed that dem-
onstrates the emergence of void space at the Sastry density.
The radius of a CH3 group is denoted byσ1 and that of a CH2
group byσ2. It naturally follows that the system volume is

Combining eqs 18, A5, and A10, a closed-form expression for
the cohesive energy density as a function carbon number can
be obtained

where the proportionality constanta in eq 18 is taken to be of
order unity. Notice that the cohesive energy density is now
expressed as the ratio of single-molecule quantities. The relative
sizes and characteristic energies of the united atom types in the
theory are set to be consistent with the simulation model. The
only adjustable parameters in the theory are the coordination
numberz and equilibrium bond lengths, which are chosen to
be species-specific. To fit the cohesive energy data, the optimum
values for the bond lengths between CH3-CH3, CH3-CH2, and
CH2-CH2 groups were found to be 0.140, 0.590, and 0.265
σ1, respectively, for a “coordination number”z ) 51. We note
that the value ofz does not affect the qualitative behavior as a
function of chain length and only scales up or down the value
of the cohesive energy density. This is consistent with previous
studies that have shown using the coordination number as an
adjustable parameter does not affect qualitative trends but only
serves to improve agreement between theory and experiment.94

With these parameters, eq A11 exhibits a maximum atn ) 3.
Beyondn ) 3, the theory predicts that the cohesive energy
density actually decreases monotonically with carbon number

and approaches a finite value in the infinitely long chain limit.
This behavior is consistent with observed trends for solubility
parameter calculations in polymeric systems.95 Because the
system volume at the Sastry point is calculated explicitly, the
theory can also be used to determine the Sastry density. It is
straightforward to show that the Sastry density predicted by this
theory initially increases with chain length and then reaches a
plateau value in the long-chain limit.

It has already been pointed out in Section IV how packing
effects relate to the behavior of the Sastry density as a function
of carbon number. However, more intriguing is the ultimate
tensile strength, and therefore cohesive energy density, maxi-
mum atn ) 3. The underlying physics that give rise to this
maximum can be elucidated by multiplying and dividing eq A11
by n

whereê(n) ) -φ(n)/n andω(n) ) n/V(n). Physically,ê(n) is
just the intermolecular energy per united atom within a chain,
and ω(n) is just the intramolecular united atom, or carbon,
density. As pointed out in Section IV, the maximum in tensile
strength is a simple consequence of the competition between
these energetic and intramolecular packing contributions. Be-
causeε22 < ε11, ê(n) decreases withn. On the other hand, the
average intramolecular carbon densityω(n) behaves much like
the Sastry density due to intramolecular packing effects and
increases with chain length. Therefore, the product of these two
contributions gives rise to a maximum. Although the present
theory is by no means rigorous, it is a simple, physically based
theory that simultaneously captures the complex chain length
dependence of the tensile strength and Sastry density observed
in our simulations.
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