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Computer generation of dense polydisperse sphere packings
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We present an extension of the Lubachevsky and Stillinger@J. Stat. Phys.60, 561 ~1990!# packing
algorithm to generate packings of polydisperse spheres. The original Lubachevsky–Stillinger
algorithm is a nonequilibrium protocol that allows a set of monodisperse spheres to grow slowly
over time eventually reaching an asymptotic maximum packing fraction. We use this protocol to
pack polydisperse spheres in three dimensions by making the growth rate of a sphere proportional
to its initial diameter. This allows us to specify a size distribution of spheres, which is then preserved
throughout the growth process~except the mean diameter increases!. We use this method to study
the packing of bidisperse sphere systems in detail. The packing fractions of the configurations
generated with our method are consistent with both previously generated experimental and
simulated packings over a large range of volume ratios. Our modified Lubachevsky–Stillinger
protocol, however, extends the range of sphere volume ratios well beyond that which has been
previously considered using simulation. In doing so, it allows both small volume ratios and large
volume ratios to be studied within a single framework. We also show that the modified
Lubachevsky–Stillinger algorithm is appreciably more efficient than a recursive packing method.
© 2002 American Institute of Physics.@DOI: 10.1063/1.1511510#
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I. INTRODUCTION

The hard-sphere model is one of the simplest repres
tations of condensed matter systems. Examples of sys
that are well described by dense packings of hard-sph
include colloids, amorphous metals, and simple liquids.
many experimental circumstances, however, the compo
spheres are not uniform in size but rather display some
tribution of sizes. While there are several algorithms for g
erating dense packings of monodisperse spheres,1–4 com-
paratively few are effective for polydisperse spheres~see,
e.g., Ref. 5 and references therein!. In addition, previous ef-
forts have focused on relatively narrow distributions
sphere radii. As shown by Schaertl and Sillescu,6 increasing
polydispersity increases the maximum packing fraction,f,
of an amorphous hard sphere system. Accordingly, a me
that allows for the investigation of hard sphere packings o
a wide range of polydispersity and packing fraction would
valuable.

We present a modification of the concurrent algorithm
Lubachevsky and Stillinger1 to treat polydisperse system
The Lubachevsky–Stillinger~L–S! algorithm is essentially a
nonequilibrium molecular dynamics simulation in which t
spheres grow over time. Once the initial conditions are fix
the system evolves deterministically. Thus, any randomn
in a packing generated with the L–S algorithm is deriv

a!Author to whom correspondence should be addressed. Electronic
torquato@electron.princeton.edu
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from the initial conditions. This algorithm has a single p
rameter which represents the sphere growth rate relativ
the mean sphere speed. As the spheres grow larger, the
lision frequency increases and a maximum packing fract
is asymptotically approached. In monodisperse system
has been shown that this maximum packing fraction is
pendent on the growth rate of the spheres.1,7 Roughly speak-
ing, by choosing a high growth rate, the structure of t
initial configuration is preserved to some extent leading t
more random final configuration. A slower growth rate a
lows the spheres more time to equilibrate and so yields m
dense, but somewhat more ordered, final systems. If the
algorithm is run with a high compression rate, however,
packing fraction of the resulting configurations reaches a p
teau atfm;0.645. Note that if the initial configuration i
ordered~e.g., the spheres are placed at the sites of the
lattice!, the final structures are very likely to remain crysta
line, independent of the kinetic parameter chosen. The L
algorithm also has the attractive property of generat
strictly jammed packings for monodisperse sphe
systems.8,9 While the same claim has not been shown to h
for polydisperse systems using the extended method, the
of the same termination condition~a divergence in the rate o
collisions! offers some promise that this claim will hold.

Using the extended L–S algorithm, we study the int
esting case of a binary mixture of hard spheres of differ
sizes. It has been shown that such mixtures can have a
variety of equilibrium phase behaviors.10–13 An example of
il:
2 © 2002 American Institute of Physics
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the equilibrium phase diagram for a particular binary mixtu
is shown in Fig. 1. This figure gives the phase diagram fo
fixed ratio of sphere volumes. Because we fix the relat
volume fraction of large and small spheres, our work rep
sents a cut through this plane~indicated by the dotted line in
the figure emanating from the origin!. In analogy to the gen-
eration of dense packings for monodisperse spheres,
possible to create amorphous packings of bidisperse sph
at higher packing fractions than the limit of the fluid phase
the equilibrium system. Note that compared to the mono
perse case, hard-sphere systems with some polydispe
tend to remain amorphous over a more broad range of p
ing fractions. This is evidenced by the large portion of t
phase diagram in which fluid or glassy phases are prese

In this paper, we study the maximum packing fracti
obtainable for three-dimensional amorphous binary packi
using the L–S algorithm as a function of the volume ra
between the two types of spheres. We also present an
lytical formula for the packing fraction obtained using
simple recursive method of combining separate packing
large and small spheres. The following section outlines
changes made to the original L–S algorithm to allow po
disperse sphere systems to be generated. Section III det
recursive method of generating dense binary packings
combining two monodisperse packings. Section IV discus
the results of the L–S packing algorithm applied to bina
sphere systems. This is followed by some brief conclud
remarks in Sec. V.

II. DESCRIPTION OF THE ALGORITHM

Our adaptation of the L–S algorithm~like the original
algorithm! begins with a dilute system of spheres or poin
In our adaptation, the initial configuration has a distributi

FIG. 1. A schematic of the phase diagram of a binary sphere mixtur
which the large spheres have a volume 800 times that of the small sph
Figure is adapted from Imhof and Dhont~Ref. 12!. Solid curves denote
phase boundaries. ‘‘F’’ indicates a fluid, ‘‘G’’ a glassy phase, and ‘‘C’’
crystal phase. Where each size of sphere has different phase behavio
scripts indicate the size of sphere present in each phase. The ‘‘M’’ indic
a region in which the fluid phase is metastable. The dotted line~emanating
from the origin! indicates systems in which the large spheres occupy th
times the volume of the small spheres, which is the case in all of the re
presented in this work.
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of sphere volumes. The initial size distribution has the sa
shape as the desired final distribution, but the radii are
creased by a constant factor. So, for example, to genera
high-density packing with a uniform distribution of sphe
volumes such that the largest spheres in the system are t
the volume of the smallest spheres, the algorithm might
initialized with a set of spheres whose volumes are uniform
distributed between 0.5 and 1~assuming these volumes giv
a small overall packing fraction!. By beginning with a low
overall packing fraction~f;0.35!, we are able to use the
RSA algorithm14 to generate an initial packing, which shou
ensure that our starting configuration is quite random.

The principle modification we perform on the origin
algorithm is in the treatment of the growth rate. In order
maintain the proper sphere volume distribution, we allo
each sphere to grow at its own rate. Like the original alg
rithm, this approach requires a single parameter,d, to control
the rate of growth of the spheres relative to the mean sph
speed. The growth rate of an individual sphere,d i , is fixed
as

d i5ds i ,0 , ~1!

wheres i ,0 is the initial diameter of the spherei. This ensures
that the relative distribution of sphere volumes around
mean is constant over time, but the mean sphere volu
increases uniformly with time.

Careful attention must be given to the treatment of c
lisions between spheres in this algorithm. One simple c
cern regards collisions between spheres of different si
The postcollision velocities of spheres will depend on th
initial velocities and their masses. We have chosen to g
each sphere the same mass in our simulations, effecti
assigning a lower internal density to large spheres. An al
native would be to fix the internal density of the spheres a
calculate the masses based on their volumes. Our own e
rience suggests that this change does not have a pronou
impact on the packings generated, though we have not
plored this issue in great detail. If the collisions were simp
elastic, postcollision velocities for sphere systems can be
culated using simple momentum and energy balances.
growth of the spheres, however, requires that a small amo
of additional energy be imparted to each sphere during e
collision. This is because the growth of the spheres cau
the sphere surfaces to move towards one another more
idly than do the sphere centers. Consequently, it is neces
to force the spheres to move apart slightly more rapidly th
would be predicted from an elastic collision. The addition
velocity provided to a sphere is equal in magnitude to
rate of increase of that sphere’s radius and oriented along
line of the sphere centers. For monodisperse spheres,
means an equal change in the velocity of each sphere, b
opposite directions, leaving the velocity of the center-
mass of the system unchanged~as is the case in the origina
L–S algorithm!. For spheres of different sizes, however, th
formulation imparts a larger change in velocity to the larg
sphere. Thus, the center-of-mass velocity in the present
sion of the algorithm is not conserved during the collisio
This method of allocating the additional energy is not uniq
and other possible allocations may work equally well. Ov
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time the additional energy created during collisions wo
accelerate the spheres, but this is avoided by regularly
scaling the velocities to hold the mean speed constant.

These changes allow the L–S algorithm to generat
dense packing of polydisperse spheres in a concurrent f
ion. While the changes themselves are relatively straight
ward, the resulting algorithm runs significantly more slow
than the monodisperse version. This is caused in large
by the use of neighbor lists in the algorithm. Neighbor lis
are a standard method in molecular dynamics simulation
increase the efficiency of the calculation for the time
which the next collision occurs.15 Essentially, these lists re
strict the number of candidates with which any given sph
may collide to those that are nearest the sphere. In poly
perse systems, however, the number of candidates that
be included may be significantly larger than in monodispe
systems. This is because a single large particle may h
many small particles as nearest neighbors. In addition,
cause large particles grow more rapidly, the neighbor l
must also be updated more frequently than in monodisp
simulations. As a result, a 10 000 sphere system with a la
range of particle volumes requires roughly 48 h to run on
GHz Pentium computer, while a comparably sized monod
perse system could be run in approximately 1 h. Both al
rithms scale as roughlyN2 in execution time, whereN is the
total number of spheres.

III. RECURSIVE BINARY PACKINGS

One simple mechanism for creating a dense, amorph
packing in a binary system of spheres is to first creat
packing of only the large spheres and then to fill the rema
ing free space with a random packing of the small sphe
Given a fixed volume fraction to which monodisper
spheres can be randomly packed,fm , the most naive esti-
mate of the packing fraction obtainable using this recurs
packing method,f0 , is

f05fm1~12fm!fm . ~2!

Equation ~2! assumes that a full random packing of lar
spheres is created first~occupyingfm) and then the remain
ing space is also packed to a volume fraction offm using the
small spheres. Forfm50.64, this recursive method leads
a maximum packing fraction off050.87. Note that this ap
proximation is similar in form to the strict bounds on th
packing fraction of multiscale packings discussed
Torquato.16 Specifically, if we do not constrain our conside
ation to random packings, then the maximum packing fr
tion attainable by a binary packing in three dimensio
fstrict, is bounded by

f fcc<fstrict<12~12f fcc!
2, ~3!

wheref fcc'0.74048 is the packing fraction of the fcc lattic
~i.e., the densest possible packing of monodisperse sphe!.
The packing fraction of any amorphous binary system is
turn, bounded from above byfstrict'0.93265.

A simple example, however, will suffice to show that t
estimate in Eq.~2! can be very inaccurate. Consider a syst
in which we have two types of spheres, one type of diame
sa and a second of diametersb . Equation~2! suggests tha
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for any combination ofsa and sb , it is possible to pack
them to a packing fractionf050.87. But if we let sa

5sb , then we have a monodisperse packing and the m
mum packing fraction isfm50.64.

This gross overestimation of the maximum attaina
packing fraction is caused, in large part, because Eq.~2!
ignores the excluded volume which surrounds the first se
spheres placed. Consider a packing of large spheres of d
etersL . These spheres can be placed anywhere in spac
that they will not overlap another sphere. Thus all of spa
can be filled to a packing fraction offm . When the next set
of spheres~the small spheres of diametersS) is placed, how-
ever, they cannot be placed in all of the space not filled
the large spheres. Instead, they must be placed such that
centers are at least a distancesS/2 away from the surface o
any large sphere. Thus only a fraction of the space not oc
pied by the large spheres can be packed by the sm
spheres.

To get a better estimate of the volume fraction of bid
perse spheres packed recursively, we can use the inter
etrable sphere~or ‘‘cherrypit’’ ! model.16,17In this model each
sphere has a hard-core which is surrounded by a penetr
shell. A two-dimensional sketch of these spheres is show
Fig. 2. Each interpenetrable sphere has a hard core, w
cannot overlap any other sphere’s core. Surrounding th
cores is an outer shell which can be penetrated by the h
cores. Letting the hard cores correspond to the large sph
in our bidisperse packing, any packing of large spheres
permissible packing in the cherrypit model. We can then
the thickness of the shell around each large sphere co
spond to the radius of the small spheres. In doing so, we
that the space occupied by the interpenetrable spheres

FIG. 2. Two-dimensional schematics illustrating valid and invalid config
rations in the cherrypit model. Three interpenetrable spheres are shown
hard-cores of the spheres~shown in gray! cannot penetrate one another. Th
outer shells, indicated by the dashed lines, can be penetrated by one an
and by the cores. In the bottom configuration, the hard cores of the
spheres on the left overlap. This is not permitted in the cherrypit mode
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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8215J. Chem. Phys., Vol. 117, No. 18, 8 November 2002 Generation of dense polydisperse sphere packings
cluding the outer shells, is the region that is inaccessible
the small sphere’s centers. As such a better estimate o
packing fraction of a recursive packing of bidisperse sphe
fcp, is

fcp5fm1favailablefm , ~4!

wherefavailableis the fraction of space not filled by the larg
spheres or their surrounding shells. Assuming that the h
core configurations are taken from the equilibrium ensem
in three dimensions, Torquato16 showed that the fraction o
space available to the small spheres is given by

favailable~h,l!5~12hl3!expF2
~12l3!h

~12hl3!3GA~h,l!,

~5!

where

A~h,l!5expH 2
h2l3~l21!

2~12hl3!3
@~7l217l22!

22hl3~7l225l11!1h2l6~5l227l12!#J .

In this expression,h is the packing fraction of the hard core
~i.e., the packing fraction of the large spheres!, while l is the
ratio of the core diameter (sL) to the total diameter of an
interpenetrable particle (sL1sS).16 If we are interested in
examining dense, random packings, the hard cores are n
equilibrium. However, monodisperse packings can
thought of as the metastable extension of the equilibri
hard sphere fluid.4 As such, while Eq.~5! is not exact for our
system, it is likely to be a very good approximation.

To test this result, we can create a recursive packing
bidisperse hard spheres. We begin by creating two mono
perse packings, one of large spheres and a second of s
spheres, using the L–S algorithm. Both of these packi
should be generated for the same size simulation box, w
the number of spheres in each packing determined by
volume ratio desired, as well as some limits on the maxim
and minimum number of spheres. We have required tha
least 30 spheres be present in the large sphere packing
that at least 1000 spheres be present in the final comb
packing. Both of the individual packings will have a packin
fraction off'0.64. We then combine the two packings, d
carding any small spheres that overlap with the large sphe
The packing fraction of such packings is plotted in Fig. 3
several ratios of particle volumes. Also plotted in the figu
is the packing fraction predicted by Eq.~4!. Note that for all
volume ratios, the packing fraction obtained in the simu
tion procedure is very close to the predicted value. One pa
ing was generated for each volume ratio; averaging o
many packings would likely increase the agreement betw
the simulated packings and the predicted fractions. Howe
the agreement shown in Fig. 3 is sufficient to conclude t
Eq. ~5! is a good approximation of the free space in a bid
perse packing.
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IV. LUBACHEVSKY–STILLINGER BINARY PACKINGS

From Fig. 3, it is clear that the recursive method is a
to pack bidisperse spheres efficiently only in the limit of
very large volume ratio between the two types of spher
This is because no effort is made to restrict the exclud
volume in the large sphere packing. It is reasonable to c
jecture that for smaller volume ratios a concurrent meth
could produce higher packing fractions than the recurs
method by generating local particle arrangements that m
mize the amount of excluded volume.18,19We have employed
the extended L–S algorithm to produce amorphous~as evi-
denced by the radial distribution function discussed belo!
packings of binary sphere mixtures over a wide range
sphere volume ratios. By packing the complete mixture c
currently, it is possible to take advantage of collective
rangements of large and small spheres that will allow
higher packing fractions. An example of efficient collectiv
packings are the~ordered! superlattices that some binar
hard sphere systems can adopt with packing fractions
exceed that of the monodisperse fcc crystal.11,20 While we
are interested in amorphous packings, the same principl
taking advantage of collective packings with a higher lo
packing fraction than possible in an amorphous monod
perse system still applies.

To employ the L–S algorithm for a binary system it
necessary to choose several parameters for each pac
First, it is necessary to specify a growth rate for the sphe
Because the difference in sphere sizes tends to suppress
tallization, any reasonable growth rate should produce am
phous packings. Limited computational experimentation
shown that the final packing fraction of a bidisperse pack
does not have a strong dependence on the growth rate~in
contrast to monodisperse systems!. For this reason, we hav
chosen a rapid growth rate~d50.1! to minimize the time
required for the simulation. A more important parameter
the ratio of sphere volumes. We have investigated sph
over a range of volume ratios extending fromVL /VS51 to

FIG. 3. A plot of the packing fraction of bidisperse sphere systems cre
recursively as a function of the volume ratio of the sphere. The long das
lines indicate the assumed packing fraction of a monodisperse sphere sy
(fm50.64) and the packing fraction of a bidisperse packing calculated f
Eq. ~2!. Note that in one case~a volume ratio of 4.64! the bidisperse packing
fraction is belowfm . This occurs because the large sphere monodisp
packing generated in that example had a relatively low packing fraction~i.e.,
the estimate offm was incorrect for that particular configuration!.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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FIG. 4. ~a! Sample packing resulting from the modified Lubachevsky–Stillinger algorithm applied to a binary mixture in which the volume ratio isVL /VS

5215. ~b! The radial distribution function of the small spheres in this packing. The dashed line indicates a value of unity. Note that minima
significantly below the dashed line compared to a dense monodisperse packing.
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VL /VS51000, whereVL andVS are the volumes of the larg
and small spheres, respectively. In addition, we need
specify the number of large and small spheres in each p
ing. We have chosen to set the number of small spheres
large sphere,xS , as

xS5
1

3

VL

VS

. ~6!

This number ratio fixes the total volume of the small sphe
to be 1/3 the total volume of the large spheres. This is cl
to the total volume ratio that would be predicted based
Eq. ~2!. Defining the number of spheres in our system in t
fashion does create a computational hurdle, however. In
ticular, at large volume ratios there are many times m
small spheres than large. However, we still must inclu
enough large spheres to generate a dense packing so the
number of spheres in the system can become quite large
have chosen to set the minimum number of large sphere
30 and the minimum number of total spheres at 1000. In
most extreme volume ratios considered here, this requir
system of 10 000 spheres.

Figure 4~a! shows an example of a resulting packin
with a volume ratio ofVL /VS5215. It is difficult to appre-
ciate any order in this system from a visual inspection of
packing. More quantitative evidence is given by the rad
distribution function shown in Fig. 4~b!. Before discussing
the features of this plot, it is necessary to elaborate on
exact nature of the radial distribution function considered
particular, we have only considered the presence of
smaller spheres in this calculation. One could also evalu
the radial distribution function in which only the larg
spheres are considered or one considering both type
spheres, but the small proportion of large spheres makes
a calculation more prone to error. As can be seen from
figure, beyond 4 small sphere diameters, the radial distr
Downloaded 11 Mar 2003 to 128.112.81.90. Redistribution subject to A
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tion function becomes quite flat. The presence of the la
spheres can be seen in the gradual increase in the ra
distribution function between 5 and 7 diameters~the large
sphere diameter is approximately 6 times that of the sm
spheres for this volume ratio!. The presence of the larg
spheres also introduces a substantial short-range density
relation among the small spheres as can be observed by
ing that the first two minima of the radial distribution func
tion dip only slightly below unity~as compared to a dens
monodisperse sphere packing!.

To avoid excessive computational costs, 100 configu
tions were generated forVL /VS<100 while only 10 configu-
rations were generated for each larger volume ratio. The
sults of these simulations are plotted in Fig. 5. Also shown
the figure are the packing fractions of binary systems p
dicted or observed using several other approaches. B
Clarke and Wiley18 and Heet al.19 have developed Monte
Carlo methods for packing spheres based on minimiz
overlaps in a system in which the sphere centers are initi
uncorrelated. Yerazuniset al.21 generated experimental pack
ings of binary mixtures for a variety of different sphere size
In that work an empirical ‘‘distortion parameter’’ is used
model the deviation of the packing fraction from the limit
an infinite volume ratio. Also shown in Fig. 5 are the packi
fractions of some dense superlattices.20 The number ratios
required to form such superlattices are not generally
same as the value ofxS defined by Eq.~6!, but the maximum
packing fractions possible for such structures still serve a
useful comparison. Finally, the density of several packin
generated using the recursive method outlined in the pr
ous section are shown as well. Again the number ratios
these systems differs from those of the concurrent packin

As expected, the concurrent packing methods prod
packings appreciably more dense than those resulting f
the recursive method. It is interesting to note the striki
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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8217J. Chem. Phys., Vol. 117, No. 18, 8 November 2002 Generation of dense polydisperse sphere packings
agreement in the packing fractions obtained using the
tended L–S algorithm with those from the Monte Ca
methods for small volume ratios, and with those obtain
experimentally at high volume ratios. While such agreem
has proven to be misleading in the case of monodisp
sphere systems,7 it still forms a useful starting point for the
theoretical consideration of dense binary packings.

At sufficiently high volume ratios (VL /VS.40), the
amorphous packings produced using the extended L–S a
rithm have a higher packing fraction than the phase separ
system of pure crystals. This is particularly relevant in vie
of the hypothesis put forth by Sanders22 that a superlattice
will form only if its maximum packing fraction exceeds th
of the phase-separated system. The same type of space-fi
agreement then suggests that the amorphous state shou
more stable than a phase separated system of pure fcc
tals in the case of large volume ratio and high packing fr
tions. This observation is supported by the experimental
dence of Imhof and Dhont,12 who found a stable glass
phase under these conditions~see Fig. 1!. The comparison of
packing fraction between the amorphous binary systems
the superlattices also raises interesting questions. Forem
the question of what superlattice structure has the maxim
packing fraction for large sphere volume ratios. The res
presented here offer a lower bound on the maximum pack
fraction that would be necessary in a superlattice to have
ordered phase develop spontaneously at high packing
tions.

In addition, as the volume ratio increases, the impro
ment relative to the recursive method initially becom
greater. Interestingly, however, forVL /VS.100 the improve-
ment relative to the recursive packing method begins to
cline. In the infinite volume ratio limit, the recursive packin
method should produce the most dense amorphous pack
possible (fcp50.87). At intermediate volume fractions

FIG. 5. Packing fraction of bidisperse sphere systems using severa
proaches as a function of the volume ratio between large and small sph
The solid symbols indicate random packings generated using concu
methods~simulation or experimental!. The packing fraction predicted by Eq
~5! are indicated by ‘‘3’’ symbols. The open diamonds are ordered sup
lattice packings. The dashed lines indicate the assumed density of an a
phous monodisperse packing (fm50.64) and the density of the pure cryst
fcc lattice (f fcc50.74). The solid line is drawn as a guide for the eye.
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however, we are not aware of any strict bound that preve
the packing fraction of an amorphous bidisperse system f
exceeding this limit. Whether such a high packing fraction
physically realizable is an open question.

V. CONCLUSIONS

We have outlined the extension of the Lubachevsk
Stillinger algorithm for the concurrent generation of den
polydisperse sphere systems. By allowing each spher
grow at a rate proportional to its initial diameter, we mainta
the same distribution of sphere volumes as in a given ini
condition. Because the initial condition is a very dilute co
figuration, a wide range of polydispersity can be eas
handled using this algorithm.

Using the extended L–S algorithm, we have conside
the packing of a binary sphere mixture over a wide range
sphere volume ratios. This method is effective for sign
cantly greater volume ratios than have been previously d
onstrated in the literature. As such, it allows both small a
large volume ratios to be considered within a single fram
work. Using the interpenetrable sphere model, we can ac
rately approximate the maximum packing fraction that a
cursive packing algorithm could obtain. We show that t
L–S algorithm is able to pack bidisperse spheres sign
cantly more efficiently than a recursive method over t
range of sphere volume ratios considered here. At large
ume ratios, the improvement in packing fraction using a c
current method vs a recursive method begins to decline,
haps because both are approaching the same limit.

Interestingly, the packing fractions presented here
consistent with those obtained by other packing algorithm
This consistency represents an attractive starting point
further theoretical investigations of binary sphere packin
For example, it is reasonable to ask if it is possible to cre
slightly higher packing fractions by introducing some degr
of order to the system. Another challenging direction for f
ture research is the investigation of order in binary syste
For example, one could ask if a state analogous to the m
mally random jammed state defined by Torquatoet al.7 could
be identified for a binary system. Finally, we note that in
future study we will apply the concurrent algorithm to inve
tigate packing in the analogous two-dimensional proble
i.e., the packing of hard circular disks with a polydispers
in size. Here it will be interesting to determine to what d
gree the tendency for disk packings to crystallize persists
the degree of polydispersity increases. Another fascina
issue worth exploring is the extent to which order in bina
disk packings can be controlled.23
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