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Computer generation of dense polydisperse sphere packings
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We present an extension of the Lubachevsky and StillipdeStat. Phys60, 561 (1990 ] packing
algorithm to generate packings of polydisperse spheres. The original Lubachevsky—Stillinger
algorithm is a nonequilibrium protocol that allows a set of monodisperse spheres to grow slowly
over time eventually reaching an asymptotic maximum packing fraction. We use this protocol to
pack polydisperse spheres in three dimensions by making the growth rate of a sphere proportional
to its initial diameter. This allows us to specify a size distribution of spheres, which is then preserved
throughout the growth procesgexcept the mean diameter incregs&¥e use this method to study

the packing of bidisperse sphere systems in detail. The packing fractions of the configurations
generated with our method are consistent with both previously generated experimental and
simulated packings over a large range of volume ratios. Our modified Lubachevsky—Stillinger
protocol, however, extends the range of sphere volume ratios well beyond that which has been
previously considered using simulation. In doing so, it allows both small volume ratios and large
volume ratios to be studied within a single framework. We also show that the modified
Lubachevsky-Stillinger algorithm is appreciably more efficient than a recursive packing method.
© 2002 American Institute of Physic§DOI: 10.1063/1.1511510

I. INTRODUCTION from the initial conditions. This algorithm has a single pa-
The hard-sph del i f the simplest rameter which represents the sphere growth rate relative to
_'he hard-spnere model 1S one of the SIMpIest represenpy 04y sphere speed. As the spheres grow larger, the col-
tations of condensed matter systems. Examples of systems. . : . .
liSion frequency increases and a maximum packing fraction

that are well described by dense packings of hard-spherei-g asymptotically approached. In monodisperse systems, it

include colloids, amorphous metals, and simple liquids. Inh s been shown that this maximum packing fraction is de-
many experimental circumstances, however, the componemf'jl P 9

spheres are not uniform in size but rather display some dis_[-)endent on thg grovvth rate of the spheré®Roughly speak-
tribution of sizes. While there are several algorithms for gen-!n_g_' by choosmg a high growth rate, the structure_ of the
erating dense packings of monodisperse spHefespm- initial conflgura'glon is prgservgd to some extent leading to a
paratively few are effective for polydisperse sphefsse, MOre random final conf.|gurat|on. A slower growth rate al-
e.g., Ref. 5 and references thedeim addition, previous ef- lows the spheres more time to equmbrate and so yields more
forts have focused on relatively narrow distributions of dense, but somewhat more ordered, final systems. If the L—S
sphere radii. As shown by Schaertl and SilleSéucreasing algorithm is run with a high compression rate, however, the
polydispersity increases the maximum packing fractign, packing fraction of the resulting configurations reaches a pla-
of an amorphous hard sphere system. Accordingly, a metho@2au at¢y,~0.645. Note that if the initial configuration is
that allows for the investigation of hard sphere packings oveprdered(e.g., the spheres are placed at the sites of the fcc
a wide range of polydispersity and packing fraction would belattice), the final structures are very likely to remain crystal-
valuable. line, independent of the kinetic parameter chosen. The L-S
We present a modification of the concurrent algorithm ofalgorithm also has the attractive property of generating
Lubachevsky and Stillingérto treat polydisperse systems. strictly jammed packings for monodisperse sphere
The Lubachevsky—Stillinggi.—S) algorithm is essentially a system£:® While the same claim has not been shown to hold
nonequilibrium molecular dynamics simulation in which the for polydisperse systems using the extended method, the use
spheres grow over time. Once the initial conditions are fixedpf the same termination conditida divergence in the rate of
the system evolves deterministically. Thus, any randomnessollisions offers some promise that this claim will hold.
in a packing generated with the L—-S algorithm is derived  Using the extended L-S algorithm, we study the inter-
esting case of a binary mixture of hard spheres of different
dAuthor to whom correspondence should be addressed. Electronic maiﬁizes' It has been shown that such mixtures can have a rich
torquato@electron.princeton.edu variety of equilibrium phase behaviot$:*3 An example of

0021-9606/2002/117(18)/8212/7/$19.00 8212 © 2002 American Institute of Physics

Downloaded 11 Mar 2003 to 128.112.81.90. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



J. Chem. Phys., Vol. 117, No. 18, 8 November 2002 Generation of dense polydisperse sphere packings 8213

0.7 of sphere volumes. The initial size distribution has the same
shape as the desired final distribution, but the radii are de-
creased by a constant factor. So, for example, to generate a
high-density packing with a uniform distribution of sphere
volumes such that the largest spheres in the system are twice
the volume of the smallest spheres, the algorithm might be
initialized with a set of spheres whose volumes are uniformly
distributed between 0.5 and(assuming these volumes give

a small overall packing fractionBy beginning with a low
overall packing fraction¢~0.35, we are able to use the
RSA algorithnt* to generate an initial packing, which should
ensure that our starting configuration is quite random.

The principle modification we perform on the original
yra— ; 3 0. algorithm is in the treatment of the growth rate. In order to
maintain the proper sphere volume distribution, we allow
each sphere to grow at its own rate. Like the original algo-
FIG. 1. A schematic of the phase diagram of a binary sphere mixture irfithm, this approach requires a single parameigeto control

which the large spheres have a volume 800 times that of the small spheregye rate of growth of the spheres relative to the mean sphere

Figure is adapted from Imhof and DhoffRef. 12. Solid curves denote P P
phase boundaries. “F” indicates a fluid, “G” a glassy phase, and “C” a speed. The growth rate of an individual sphefg, is fixed

crystal phase. Where each size of sphere has different phase behavior, si#S

scripts indicate the size of sphere present in each phase. The “M” indicates

a region in which the fluid phase is metastable. The dotted(énanating 6,=00j, (1)

from the origin indicates systems in which the large spheres occupy three

times the volume of the small spheres, which is the case in all of the resultgvhereo; ; is the initial diameter of the sphereThis ensures

presented in this work. that the relative distribution of sphere volumes around the
mean is constant over time, but the mean sphere volume

the equilibrium phase diagram for a particular binary mixture!Cr€ases umform_ly with time. .
Careful attention must be given to the treatment of col-

is shown in Fig. 1. This figure gives the phase diagram for
I Wn in 719 'S lgure giv b 'ag 3sions between spheres in this algorithm. One simple con-

fixed ratio of sphere volumes. Because we fix the relativ d lisi bet h f diff ¢ si
volume fraction of large and small spheres, our work repre-Cern regards collisions between sSpheres ot different Sizes.

sents a cut through this plariedicated by the dotted line in The postcollision velocities of spheres will depend on their
the figure emanating from the origirin analogy to the gen- initial velocities and their masses. We have chosen to give
eration of dense packings for monodisperse spheres, it gach sphere the same mass in our simulations, effectively

possible to create amorphous packings of bidisperse spherggs.'gnmg alldlti)wer |?terr|;1al_ densn?/(;to Iarge ?p;]eresr.] An alte(rj-
at higher packing fractions than the limit of the fluid phase inhative would be to fix the interna gnsny of the spheres an
calculate the masses based on their volumes. Our own expe-

the equilibrium system. Note that compared to the monodis-, hat this ch q h d
perse case, hard-sphere systems with some polydispers nce suggesits t aFt Is change does not have a pronounce
impact on the packings generated, though we have not ex-

tend to remain amorphous over a more broad range of pac lored this | . t detail. If th llisi imol
ing fractions. This is evidenced by the large portion of theP Ored this 1ISSue In great aetail. € collisions were simply

phase diagram in which fluid or glassy phases are presenteIaStiC’ postcollision velocities for sphere systems can be cal-
In this paper, we study the maximum packing fractionculated using simple momentum an(_JI energy balances. The
obtainable for three-dimensional amorphous binary packinggrOWth_ 9f the spheres, h_owever, requires that a smal! amount
using the L-S algorithm as a function of the volume ratioOf aFdF"“O”a'.ef.‘ergy be imparted to each sphere during each
between the two types of spheres. We also present an an ollision. This is because the growth of the spheres causes
lytical formula for the packing fraction obtained using at Ie tsr?her; stﬂrfacehs to mO\ie tov(\éards one ?InOt.T?r more rap-
simple recursive method of combining separate packings dldy an do the spnere centers. Lonsequently, 11S hecessary
large and small spheres. The following section outlines the? force the spheres to move apart slightly more rapidly than
changes made to the original L—S algorithm to allow poly_Would be predicted from an elastic collision. The additional
disperse sphere systems to be generated. Section IlI detailsvgloc'ty provided to a sphere’ IS equal n mqgmtude to the
recursive method of generating dense binary packings b te of increase of that sphere’s radius a_nd oriented along th_e
combining two monodisperse packings. Section IV discusse ne of the sphere centers. For mopod|sperse spheres, th_|$
the results of the L—S packing algorithm applied to Ioinarymeans an equal change in the velocity of each sphere, but in

sphere systems. This is followed by some brief concludin pposite directions, leaving the velocity of the center-of-
remarks in Sec. V. ass of the system unchanges is the case in the original

L—S algorithm). For spheres of different sizes, however, this
formulation imparts a larger change in velocity to the larger
sphere. Thus, the center-of-mass velocity in the present ver-
Our adaptation of the L—S algorithiflike the original  sion of the algorithm is not conserved during the collision.
algorithm begins with a dilute system of spheres or points.This method of allocating the additional energy is not unique
In our adaptation, the initial configuration has a distributionand other possible allocations may work equally well. Over
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Il. DESCRIPTION OF THE ALGORITHM
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time the additional energy created during collisions would N
accelerate the spheres, but this is avoided by regularly re- ’_\/
scaling the velocities to hold the mean speed constant. I~

N
/
/
4

These changes allow the L-S algorithm to generate a F§ "
dense packing of polydisperse spheres in a concurrent fash- l‘
ion. While the changes themselves are relatively straightfor- \

ward, the resulting algorithm runs significantly more slowly
than the monodisperse version. This is caused in large part
by the use of neighbor lists in the algorithm. Neighbor lists Permissible Configuration
are a standard method in molecular dynamics simulations to
increase the efficiency of the calculation for the time at
which the next collision occurs. Essentially, these lists re-
strict the number of candidates with which any given sphere
may collide to those that are nearest the sphere. In polydis-
perse systems, however, the number of candidates that must
be included may be significantly larger than in monodisperse
systems. This is because a single large particle may have
many small particles as nearest neighbors. In addition, be- s ~—=-7

cause large particles grow more rapidly, the neighbor lists . x . .

must also be updated more frequently than in monodisperse Imperm|SS|bIe Conflguratlon

simulations, AS a resuilt, a 10 O.OO sphere system with & IargeIG 2. Two-dimensional schematics illustrating valid and invalid configu-
range of particle volumes requires roughly 48 h to run on a ations in the cherrypit model. Three interpenetrable spheres are shown. The
GHz Pentium computer, while a comparably sized monodiShard-cores of the spheréshown in gray cannot penetrate one another. The
perse system could be run in approximately 1 h. Both algoeuter shells, indicated by the dashed lines, can be penetrated by one another

rithms scale as roughIMZ in execution time. wherd\l is the and by the cores. In the bottom configuration, the hard cores of the two
total number of spheres ’ spheres on the left overlap. This is not permitted in the cherrypit model.
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Ill. RECURSIVE BINARY PACKINGS for any combination ofo, and oy, it is possible to pack

One simple mechanism for creating a dense, amorphou§em to a packing fractionp,=0.87. But if we leto,
packing in a binary system of spheres is to first create & b, then we have a monodisperse packing and the maxi-
packing of only the large spheres and then to fill the remainmum packing fraction isp,= 0.64.
ing free space with a random packing of the small spheres. This gross overestimation of the maximum attainable
Given a fixed volume fraction to which monodispersepacking fraction is caused, in large part, because (2§.
spheres can be randomly packef,, the most naive esti- ignores the excluded volume which surrounds the first set of
mate of the packing fraction obtainable using this recursivespheres placed. Consider a packing of large spheres of diam-

packing methodgy, is etero . These spheres can be placed anywhere in space so
B that they will not overlap another sphere. Thus all of space
$o= b+ (1= bm) dm- @ can be filled to a packing fraction @f,,. When the next set

Equation(2) assumes that a full random packing of large of spheregthe small spheres of diameteg) is placed, how-
spheres is created fir@ccupyingé,,) and then the remain- ever, they cannot be placed in all of the space not filled by
ing space is also packed to a volume fractiompgfusing the  the large spheres. Instead, they must be placed such that their
small spheres. Fop,,=0.64, this recursive method leads to centers are at least a distaneg’2 away from the surface of

a maximum packing fraction ap,=0.87. Note that this ap- any large sphere. Thus only a fraction of the space not occu-
proximation is similar in form to the strict bounds on the pied by the large spheres can be packed by the smaller
packing fraction of multiscale packings discussed byspheres.

Torquato™® Specifically, if we do not constrain our consider- To get a better estimate of the volume fraction of bidis-
ation to random packings, then the maximum packing fracperse spheres packed recursively, we can use the interpen-
tion attainable by a binary packing in three dimensionsgtrable spheréor “cherrypit”) model'®*In this model each

ict» 1S bounded b sphere has a hard-core which is surrounded by a penetrable
Dstricts y p yap

_ <1—(1— 2 3) shell. A two-dimensional sketch of these spheres is shown in

Prec Pstier= 1~ (1~ drec)”, Fig. 2. Each interpenetrable sphere has a hard core, which

where ¢~ 0.74048 is the packing fraction of the fcc lattice cannot overlap any other sphere’s core. Surrounding these
(i.e., the densest possible packing of monodisperse spheresores is an outer shell which can be penetrated by the hard
The packing fraction of any amorphous binary system is, ircores. Letting the hard cores correspond to the large spheres
turn, bounded from above by~ 0.93265. in our bidisperse packing, any packing of large spheres is a
A simple example, however, will suffice to show that the permissible packing in the cherrypit model. We can then let
estimate in Eq(2) can be very inaccurate. Consider a systenthe thickness of the shell around each large sphere corre-
in which we have two types of spheres, one type of diametespond to the radius of the small spheres. In doing so, we see
o, and a second of diametet,. Equation(2) suggests that that the space occupied by the interpenetrable spheres, in-
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cluding the outer shells, is the region that is inaccessible to 0.90
the small sphere’s centers. As such a better estimate of the
packing fraction of a recursive packing of bidisperse spheres, 085 — ke
¢Cp! IS 080 L

¢cp: DT PavailablePm » (4) < 075
where ¢ qiianieiS the fraction of space not filled by the large 0.70 |
spheres or their surrounding shells. Assuming that the hard- 0.65 |
core configurations are taken from the equilibrium ensemble ' 7
in three dimensions, Torqudfoshowed that the fraction of 0.60 - . .
space available to the small spheres is given by 10 10 10 10

Volume ratio, V Vg
3 (1- 7\3) n FIG. 3. A plot of the packing fraction of bidisperse sphere systems created
Davailabld 7,M) = (1= 7\>)exg — —1 \3)3 A(7.\), recursively as a function of the volume ratio of the sphere. The long dashed
(1- 7 ) lines indicate the assumed packing fraction of a monodisperse sphere system

5 (¢m=0.64) and the packing fraction of a bidisperse packing calculated from
Eq.(2). Note that in one cas@ volume ratio of 4.6¥the bidisperse packing
where fraction is below¢,,. This occurs because the large sphere monodisperse
packing generated in that example had a relatively low packing fraGtmn
the estimate ofp,,, was incorrect for that particular configuratjon

7N (A —1)
A(n,\)= exp{ - W[(?)\z-F IN—2)
g IV. LUBACHEVSKY-STILLINGER BINARY PACKINGS
—29\3(TAN2—BN+1)+ 7]2)\6(5)\2_7)\+2)]}. From Fig. 3, it is clear that the recursive method is able
to pack bidisperse spheres efficiently only in the limit of a
very large volume ratio between the two types of spheres.
In this expressiony is the packing fraction of the hard cores This is because no effort is made to restrict the excluded
(i.e., the packing fraction of the large spheresghile N is the  volume in the large sphere packing. It is reasonable to con-
ratio of the core diametero( ) to the total diameter of an jecture that for smaller volume ratios a concurrent method
interpenetrable particleo( + o5).%® If we are interested in could produce higher packing fractions than the recursive
examining dense, random packings, the hard cores are not inethod by generating local particle arrangements that mini-
equilibrium. However, monodisperse packings can beamnize the amount of excluded volur&!®We have employed
thought of as the metastable extension of the equilibriunthe extended L—S algorithm to produce amorph@ssevi-
hard sphere fluid As such, while Eq(5) is not exact for our denced by the radial distribution function discussed bglow
system, it is likely to be a very good approximation. packings of binary sphere mixtures over a wide range of
To test this result, we can create a recursive packing o$phere volume ratios. By packing the complete mixture con-
bidisperse hard spheres. We begin by creating two monodisurrently, it is possible to take advantage of collective ar-
perse packings, one of large spheres and a second of smedingements of large and small spheres that will allow for
spheres, using the L—S algorithm. Both of these packingigher packing fractions. An example of efficient collective
should be generated for the same size simulation box, witpackings are thgordered superlattices that some binary
the number of spheres in each packing determined by thkard sphere systems can adopt with packing fractions that
volume ratio desired, as well as some limits on the maximunexceed that of the monodisperse fcc crystaP While we
and minimum number of spheres. We have required that are interested in amorphous packings, the same principle of
least 30 spheres be present in the large sphere packings atading advantage of collective packings with a higher local
that at least 1000 spheres be present in the final combingghcking fraction than possible in an amorphous monodis-
packing. Both of the individual packings will have a packing perse system still applies.
fraction of $~0.64. We then combine the two packings, dis- To employ the L—S algorithm for a binary system it is
carding any small spheres that overlap with the large spheresecessary to choose several parameters for each packing.
The packing fraction of such packings is plotted in Fig. 3 forFirst, it is necessary to specify a growth rate for the spheres.
several ratios of particle volumes. Also plotted in the figureBecause the difference in sphere sizes tends to suppress crys-
is the packing fraction predicted by E@l). Note that for all  tallization, any reasonable growth rate should produce amor-
volume ratios, the packing fraction obtained in the simula-phous packings. Limited computational experimentation has
tion procedure is very close to the predicted value. One packshown that the final packing fraction of a bidisperse packing
ing was generated for each volume ratio; averaging ovedoes not have a strong dependence on the growth(irate
many packings would likely increase the agreement betweecontrast to monodisperse systentsor this reason, we have
the simulated packings and the predicted fractions. Howevetghosen a rapid growth rateS=0.1) to minimize the time
the agreement shown in Fig. 3 is sufficient to conclude thatequired for the simulation. A more important parameter is
Eq. (5) is a good approximation of the free space in a bidis-the ratio of sphere volumes. We have investigated spheres
perse packing. over a range of volume ratios extending fram/Vs=1 to
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FIG. 4. (a) Sample packing resulting from the modified Lubachevsky—Stillinger algorithm applied to a binary mixture in which the volumeM\atidgs
=215. (b) The radial distribution function of the small spheres in this packing. The dashed line indicates a value of unity. Note that minima are not
significantly below the dashed line compared to a dense monodisperse packing.

V| IVs=1000, where/, andVg are the volumes of the large tion function becomes quite flat. The presence of the large
and small spheres, respectively. In addition, we need tgpheres can be seen in the gradual increase in the radical
specify the number of large and small spheres in each packlistribution function between 5 and 7 diametétise large
ing. We have chosen to set the number of small spheres pephere diameter is approximately 6 times that of the small
large spherexg, as spheres for this volume ralioThe presence of the large
spheres also introduces a substantial short-range density cor-
1v, :
= (6) relation among the small spheres as can be observed by not-
3 vg ing that the first two minima of the radial distribution func-

This number ratio fixes the total volume of the small sphere§Ion d'P only slightly below'unlty(as compared to a dense
to be 1/3 the total volume of the large spheres. This is clos§0nodisperse sphere packing _
to the total volume ratio that would be predicted based on 10 @void excessive computational costs, 100 configura-
Eq. (2). Defining the number of spheres in our system in thistions were generated faf, /Vs= 100 while only 10 configu-
fashion does create a computational hurdle, however. In paf@lions were generated for each larger volume ratio. The re-
ticular, at large volume ratios there are many times mor@ults_of these S|mulat|on_s are plqtted in Flg. 5. Also shown in
small spheres than large. However, we still must includdhe figure are the packing fractions of binary systems pre-
enough large spheres to generate a dense packing so the tdfgteéd or observed using several other approaches. Both
number of spheres in the system can become quite large. Welarke and Wiley® and Heet al*® have developed Monte
have chosen to set the minimum number of large spheres &@arlo methods for packing spheres based on minimizing
30 and the minimum number of total spheres at 1000. In th&verlaps in a system in which the sphere centers are initially
most extreme volume ratios considered here, this requires Wicorrelated. Yerazuni al* generated experimental pack-
system of 10 000 spheres. ings of binary mixtures for a variety of different sphere sizes.
Figure 4a) shows an example of a resulting packing In that work an empirical “distortion parameter” is used to
with a volume ratio ofV, /Vs=215. It is difficult to appre- model the deviation of the packing fraction from the limit of
ciate any order in this system from a visual inspection of thean infinite volume ratio. Also shown in Fig. 5 are the packing
packing. More quantitative evidence is given by the radialfractions of some dense superlattiééslhe number ratios
distribution function shown in Fig. ). Before discussing required to form such superlattices are not generally the
the features of this plot, it is necessary to elaborate on theame as the value ak defined by Eq(6), but the maximum
exact nature of the radial distribution function considered. Inpacking fractions possible for such structures still serve as a
particular, we have only considered the presence of thaseful comparison. Finally, the density of several packings
smaller spheres in this calculation. One could also evaluatgenerated using the recursive method outlined in the previ-
the radial distribution function in which only the large ous section are shown as well. Again the number ratios in
spheres are considered or one considering both types tifiese systems differs from those of the concurrent packings.
spheres, but the small proportion of large spheres makes such As expected, the concurrent packing methods produce
a calculation more prone to error. As can be seen from thpackings appreciably more dense than those resulting from
figure, beyond 4 small sphere diameters, the radial distributhe recursive method. It is interesting to note the striking

XS:
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"o ‘ however, we are not aware of any strict bound that prevents
078 oo the packing fraction of an amorphous bidisperse system from
® This study exceeding this limit. Whether such a high packing fraction is
A Yerazunis et al. < . . . .
B Clarke and Wiley A physically realizable is an open question.
0.74 || ¥ Heetal. ———— A x
X Recursive x
¢ Hunt et al. V. CONCLUSIONS
=g
0.70 . We have outlined the extension of the Lubachevsky—
x Stillinger algorithm for the concurrent generation of dense
x polydisperse sphere systems. By allowing each sphere to
0.66 1 grow at a rate proportional to its initial diameter, we maintain
- the same distribution of sphere volumes as in a given initial
condition. Because the initial condition is a very dilute con-
0-62100 10 102 0 figuration, a wid_e range of polydispersity can be easily
VN, handled using this algorithm.

Using the extended L-S algorithm, we have considered
FIG. 5. Packing fraction of bidisperse sphere systems using several aghe packing of a binary sphere mixture over a wide range of

proache_s as afunctl_on_of the volume ratlo_between large and_small spher phere volume ratios. This method is effective for signifi-
The solid symbols indicate random packings generated using concurren

methods(simulation or experimentalThe packing fraction predicted by Eq. cantly gre‘?‘ter VOI_Ume ratios than haye been previously dem-
(5) are indicated by %” symbols. The open diamonds are ordered super- onstrated in the literature. As such, it allows both small and

lattice packings. The dashed lines indicate the assumed density of an amdarge volume ratios to be considered within a single frame-
phous monodisperse packing (= 0.64) and the density of the pure crystal work Using the interpenetrable sphere model. we can accu-
fce lattice (¢¢..=0.74). The solid line is drawn as a guide for the eye. ) . . . .
rately approximate the maximum packing fraction that a re-
cursive packing algorithm could obtain. We show that the

. . . . . L—S algorithm is able to pack bidisperse spheres signifi-
agreement in the packing fractions obtained using the eX(:antly more efficiently than a recursive method over the
tended L-S algorithm with those from the Monte Carlo

. . i ange of sphere volume ratios considered here. At large vol-
methods for small volume ratios, and with those obtaine g P g

: . ; . me ratios, the improvement in packing fraction using a con-
experimentally at high volume ratios. While such agreement,, rant method vs a recursive method begins to decline, per-
has proven to be misleading in the case of monodisper ’

L ) . 5l"?aps because both are approaching the same limit.
sphere'systerﬁs'lt stil 'forms a useful' starting ppmt for the Interestingly, the packing fractions presented here are
theoretical 'C(')n3|dera.1t|on of dense plnary packings. consistent with those obtained by other packing algorithms.

At sufficiently high volume ratios \{| /Vs>40), the

) . This consistency represents an attractive starting point for
amorphous packings produced using the extended L-S alg y rep gp

Qrther theoretical investigations of binary sphere packings.
rithm have a higher packing fraction than the phase separat cal Investgat nary sp packing

system of pure crystals. This is particularly relevant in view rexample, it is reasonable to ask if it is possible to create
X ) . slightly higher packing fractions by introducing some degree
of the hypothesis put forth by Sand&shat a superlattice ghty higner p g y g 9

: Y : X . of order to the system. Another challenging direction for fu-
will form only if its maximum packing fraction exceeds that

"~ ture research is the investigation of order in binary systems.
of the phase-separated system. The same type of space-ﬂlllr&%r example, one could ask if a state analogous to the maxi-

agreement then suggests that the amorphous state should rgglly random jammed state defined by Torquettal” could

glosr(iansttﬁglg atshsr; falaprgzs\?oisuergzr?;ﬁg Z%Zti%t?fpgzL?nE?r;::%é identified for a binary system. Finally, we note that in a
) ) o . future study we will apply the concurrent algorithm to inves-
tions. This observation is supported by the experimental ev'figate packing in the analogous two-dimensional problem,
dence of Imhof and Dhorit, who found a stable glassy i.e., the packing of hard circular disks with a polydispersity

phalie u?deiltheietcondlti?]ﬁme Flg.hl Thglcomparlfon of _t'n size. Here it will be interesting to determine to what de-
packing fraction between the amorphous binary Systems wi 9—?6 the tendency for disk packings to crystallize persists as

the superlattices also raises interesting questions. Foremos e degree of polydispersity increases. Another fascinating

the question of what superlattice structure has the maximurp:;Sue worth exploring is the extent to which order in binary
packing fraction for large sphere volume ratios. The result%isk packings can be controlléd
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