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broadening of the electron-density distribution aGects
the small residual overlap so strongly that a maximum
can appear before melting sets a limit on the thermal
amplitudes. From then on the electron density in the
free volume declines and the lifetime rises.

It remains to discuss briefly v.~ and v.q. In Sec. 3
we were led to identify the component 8 with the
annihilation of positrons which did not form Ps, be-
cause of the magnitude of v.~ and the small variations
of 7-~ and i~ with temperature. Even the slight trends
with temperature discernable in Figs. 2 amd 4, if
significant, would be consistent with this interpretation
for reasons similar to those advanced for the changes in
r~, if consideration is given to the diGerences in the
affinities between a molecule and a positron on one hand
and a positronium atom on the other. The small values

of v-g are comparable to the lifetime of Ps and reflect
the high pickoff rates in the ordered domains of the
lattice'; indeed the values of 7~ as plotted in Fig. 8
extrapolate/to just such short lifetimes as e*(T)
=1+sr*(T) approaches the tight-packing (t.p.) value
I+et.e.*.~
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The well-known fluctuation-compressibility theorem for fluids is generalized to crystalline solids. It is
pointed out that in anisotropic media, fluctuating local strains induce long-range pair correlations. The re-
sulting anomalous contributions to the theorem's pair-correlation-function integral are related to certain
components of an elastic tensor for the crystal. Detailed knowledge of particle-singlet and pair equilibrium
distributions alone thus provides constraints on, but does not wholly determine, the solid s elastic constants.

I. INTRODUCTION

1

�~~WE

of the central results in the statistical-mechani-
cal theory of classical fluids is the density-fluctua-

tion theorem' relating the isothermal compressibility ~

to an integral of the difference between the pair dis-
tribution function, p"& (rrs), and the product of singlet
distribution functions, p&" (ri) p "& (rs) = p'.

p'ItTtt= p+ drist p&'& (ris) —p'j,
(1)

lt= (1/p) (ctp/c)P) r, p= N/V

The local density-Quctuation integrand refers to an
infinite isotropic and homogeneous system, which
normally ensures integrability. One of the persistent
interests in relation (1) concerns critical phenomena;
for the liquid-vapor transition the anomalous behavior
of ~ at the corresponding critical point is thus related to
a long-range nonintegrable tail of the integrated, and
hence to critical opalescence. '

The isothermal compressibility I(: measures the elastic
response of a Quid to an isotropic stress. Indeed, this
quantity is essentially the single elastic constant that
fluids possess. It is the aim of this article to examine the
modification of Eq. (1) required by crystalline sub-
stances where there may be up to 18 independent elastic
constants.

An interesting and evidently characteristic feature
of solids that emerges from the analysis below' is that
the density fluctuation integrand corresponding to
p&@(r»)—p' possesses long-range character, decaying to
zero as the inverse distance cubed. This behavior (un-
like the exponentially damped behavior expected for
fluids under normal circumstances) has nothing to do
w'ith critical phenomena, but arises from local stress
Quctuations. The long-range crystalline-phase "tail"
requires careful handling, and indeed holds the key to
proper modification of Eq. (1) in the presence of
direction-dependent elastic properties.

II. DEDUCTION
' L. S. Ornstein and F. Zernike, Proc. Aitad. Sci. (Amsterdam) Degennes has remarked that E~ (1) repre e t f17, 793 (1914); J. Yvon, Filssctgateols em Demsete, Actualites

Scientitrque et Industrielles, No. 542 (Hermann et Cie., Paris, fluids "he iong-~vaveiength limit of a more general
&937).' M. E. Fisher, J.Math. Phys. 5, 944 (1964). s p. G. deGennes, Nuovo Cimento 9, Suppl. 1, 240 (193S).
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susceptibility relation for behavior of the system toward
a weak externally applied sinusoidal potential. Under
present circumstances, it will prove convenient to adopt
the same point of view, passing ultimately to infinite

wavelength to recover the desired generalization of

Eq (1)
E molecules, 4 contained in a box V with periodic

boundary conditions, will be presumed at a temperature
2' such that a crystalline phase obtains. 4 (r& r&) will

denote the total potential energy of the system of
molecules at r~- r~, and it consists of three parts:
(1) the intermolecular interaction 4~, whose precise
character is unimportant for present considerations'";

(2) an externa, l potential 4'2 preserving any desired

crystal orientation'; (3) a second external potential e43,

whose coupling constant e may be varied at will for
the purpose of observing the system's response. We then

take

where k is a vector of the reciprocal lattice generated by

V. Thus

The e-dependent free energy Ii for the system is
provided by the canonical partition function:

exp[—PF (e)j
= (II,~'"Ã!) ' exp[—P4 (1 lV, e)]

&(dr, dr~, (4)

where P= (kT) ', and Xr is the mean thermal deBroglie
wavelength. The behavior of F(e) for small e, specifically
the second e derivative F"(0) will be computed in two
ways, by direct differentiation of (4), and by means of
macroscopic elasticity theory. In order for the latter to
be applicable, ~k~ must necessarily be small.

The e-particle molecular distribution functions are
defined by:

Then applying an e derivative to Eq. (4),
f f exp[ P4j—dr~ dry

(aF(e)/Be)s, v sin(k ——r,)p~'&(r„~)dr, . (6)

~hen e= 0, p~~& (r&, e= 0) exhibits only the fundamental lattice periodicity, which will have no Fourier components
in common with the slowly varying external potential; consequently F (0) vanishes. A second e derivative yields:

($2F (f)/Be')p ~—— sin(k rq)[Bp~ ' (r~,e)/Bc)dr~ ———p sin'(k r~)p~'~ (r~,~)dr~

sin(k. r~) sin(k r,)[p&"(r~,r2, e) —p&" (r~,e)p&" (r, ,e)fdr~dr2. (7)

In the ~=0 limit in this last relation, the r~ integrals
over V (at fixed r») may be performed to yield the
following':

(g'F(0)/g~')& ~ (8V/——2) p+ cos(k r~2)

X(p"'(r, r ) p'"(r )~'"(r—))-«, (g)

c=&c"'( ))-=&/V
4 For simplicity, we suppress internal degrees of freedom.

In particular, there is no requirement of pairwise additivity,
or harmonicity.

6 Since E an'd V are arbitrarily large, and since at most only the
hve orientational and translational degrees of freedom for the
crystal as a whole (each with average energy kT) need to be
frozen, the interaction energy density of the crystal with C2 may be
made arbitrarily small. 4 z presumably would have periodic minima
at the equilibrium crystal sites, though like C» its precise form is
immaterial.

~ Here and in the following, the e dependence of the p(") will be
suppressed, since always &=0.

Here, the operation denoted by ( )„ is an average
over positions r~ in a unit cell a& (r~, fixed).

The alternative route in calculating F"(0), by means
of linear elasticity theory, requires an expression for the
stress tensor o. There will be an isotropic contribution
cr"& due to the hydrostatic pressure in the system, plus
an extra contribution resulting from the external force
field, so w'e write:

e(r) = +&0~ (r)+ ee "&(r),
o~o) = —p] .

It suffices in the present calculation to regard the force

per unit volume on the crystal due to C» in the coarse-

grained sense of the unit cell average ( )„.Then since

the divergence of e(') is related to this body force in the
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standard manner, 8

&r&'&(r)= —p sin(k r)ee, (10)

where e=k/
~
k~ is the unit vector in the direction of k.

From the displacement vector u(r) one constructs the
strain tensor, with components

u;; = ,'(f)-N, /&)sc, +f)tt;/f)x, ) . (11)

Then the stress and strain tensors are related to one
another by means of the elastic modulus tensor of rank
four, X

(12)&Oij»ijlmf+Lm p

here, the repeated-index summation convention applies.
The free-energy density f&e& of elastic deformation,

resulting from the sinusoidal C», is a quadratic form in
the strain components' ":

f&e& (r~e) = s) tjlmQtjttlm. (13)

In order to re-express f & "& in terms of stress-tensor com-
ponents, we introduce a tensor A. conjugate to X by
means of the relation:

Then we obtain the following total deformation free
energy:

f&"&(r,e)dr= ——',e' A;, l„a" &'&(r)o l„&'& (r)&Er. (15)

Since the components of A. are r-independent, Eq. (15)
may trivially be integrated. after insertion of expression
(10) for &r&'&. The implied second free-energy derivative
is thereupon calculated to be:

(&)'F (0)/f) e')t& v =- —-' Vp'ee: A. :ee. (16)

Now we may equate the two expressions (8) and (16),
if in the former the magnitude of k passes to zero":

p'kTee: A. :ee= p+lim
It:-+0

cos (k ' r»)

&&(p& &(rr, rs) —p& &(rr)p& &(rs))„drrs. (1'7)

In homogeneous fluids (barring critical phenomena),
the difference p&'& (12)—p "& (1)p "&(2) decays to zero fast
enough that cos(k r») may automatically be replaced
by unity in Eq. (17), so that Eq. (1) is recovered, since
also I
for Auids. In the case of crystals, though, the situation
requires more careful analysis, for the left member must

' L. D. Landau and E. M. Lifshitz, Theory of Etasticity
(Addison-Wesley Publishing Company, Inc. , Reading, Massa-
chusetts, 1959), p. 5.' Reference 8, p. 3'j.

' The deformation free energy is usually quoted with positive
sign. The free energy relevant to partition function (4) however,
differs by a Legendre transformation which induces sign change,
and which reflects the tendency of the system to deform in the
sinusoidal external potential so as to lover its free energy.

"Implicit here is passage first to infinite system size (the
h vectors become dense), thee

~
k~ ~ 0 at fixed e.

generally display dependence on the direction of c as a
result of crystal anisotropy, whereas treatment of the
right member as for Quids would invariably yield an
isotropic answer.

By virtue of the intermolecular forces operative in
crystals, the displacement of a given particle from its
nominal lattice position can induce a local dilatation, an
even function of the displacement, which should distort
the lattice sufficiently far from the given particle accord-
ing to the requirements of macroscopic elasticity. The
displaced particle then plays a local role similar to that
of a lattice point defect, and we may then draw upon the
elastic continuum theory of lattice defects" as a
heuristic guide in further analysis of identity (17).
Especially revealing in this regard is Eshelby's result
concerning the dilatation (i.e., density change) about a
defect in a cubic medium (~ r

~
)0):"

V u(r)=constX (st +y +s' ssr')/r', — (19)

when the crystal is aligned along the coordinate axes.
Thus one observes local density changes that fall to
zero radially as the inverse distance cubed, but with an
angular dependence which averages to zero over the
sphere. By implication the same will be true in other
crystal types, but with di6ering angular variations con-
sistent with the various symmetries.

For suSciently large x», then, our integrand
(p" (12)—p"'(1)p'"(2))„ for crystals should decay to
zero also as r~~ ', with vanishing angular average.
Therefore we add and subtract under the integral of
Eq. (17) the spherical average (denoted by subscript s)
of the quantity'.

=p+ (p&'&(rr, rs) —p&'&(rr) p&'&(rs))„„dr,s

+lim cos(k rrs)[( ) —( . ),,]drrs. (21)

In order to evaluate the remaining limit in the last
term of Eq. (21), the two integrand. factors will next
be expanded in spherical harmonics. First,

cos(k. r») = P (—1)"(4rt+1)Ps„(cos8)j»(krrs), (22)
n=o

'2 J. D. Eshelby, in Solid State I'hysics, edited by F. Seitz and
D. Turnbull (Academic Press Inc., New York, 1956), Vol. 3,
p. 79.

» J. D. Eshelby, Acta Met. 3, 491 (1955).

+~(p"'(»)—p"'«) p'" ('»-
—(p"'( )—p"'(1)p'"( ))...3 ( o)

Then since sphericalization removes the long-ranged
tail, leaving an integrable function of r», the ~k~~0
limit for the first term is automatic:

p2zTCC: A. :CC



240 F, H. STILLINGER, JR. j.42

lim p j»(kr12)kto(r12)dr12.
k 0

(25)

Near the origin

$2„(g)~22& (2N) igso/(422)!, (26)

so that the only parts of the functions bio which are
relevant to the k —+ 0 limit in integrals (25) are those
for large argument. In view of the earlier discussion
therefore, we shall asymptotically represent the bio thus:

kl0(r12) kl/&12 (&12~~ ) (27)

where the set of numerical constants hl of course depend
upon the relative orientation of crystal principal direc-
tions, and e. Consequently the expression (25) may be
simpli6ed somewhat:

00 00

lim 42r Q hs„dr j 2„(kr)/r .
k 0

(2g)

Equality (23) now converts the integrals appearing in
(28) to standard forms. "The crystalline phase modifi-
cation of theorem (1) then may be finally written down:

p2zTcc: A. :cc

=P+ (P&"(ri, r2) P (rl) P (r2) )(o,edr12

+p (—1)"2rst21'(22)k2 (e)/I'(st+-,'). (29)
n=l

re I. M. Ryshik and I. S. Gradstein, Tables of Series, Products
aed Integrates (Veb Deutscher Verlag der Wissenschaften, Berlin,
1963), p. 231, formula i.

where 8 is the angle between c and r~2, and j2„ is the
spherical Sessel function:

j.(*)=( /2*)"'f -+:( ) (23)

The analogous expansion of the square-bracketed
factor in (21) will have the following form:

L(p"'(rbr2) —p"'(ri) p'"(r2))
—(p"'(ri r2) —p'"(ri) p"'(rs))-. j

00 l

ht (r12)Pt (cos9) exp(ietsip), (24)
l=l en=—l

in which the hl are suitable functions only of scalar
pair separation.

Insertion of (22) and (24) into the last term of Eq.
(21) leads to the following form for this quantity:

The last set of terms provides the necessary orientation
dependence, by virtue of c dependence of the h2„.

QI. COMMENTS

A few' short comments regarding the extended
theorem (29) are in order F.irst, it must be acknowl-
edged that the argument leading to the universality of
inverse-cube asymptotes for all crystal classes, as shown
in (27), is far from complete. The relevant solutions for
dilatations in continuum models for lattice defects are
not generally available in all these classes, and indeed the
result (19) obtained in Ref. 13 represents only a low-

order perturbation result for the cubic case. However,
it is clear from the foregoing analysis that asymptotes
which fall oB more or less slowly than r» ', respectively,
would fail to give directional dependence for F"(0),
or to give any convergent result at all. 2 posteriori,
then, the postulate gains credence, but it would be
desirable to augment the currently available relevant
solutions in continuum defect theory.

On account of the special nature of the scalar con-
traction cc:A.:ce, it is generally not possible to obtain
the entire set of up to 18 independent elastic constants
from the right member of Eq. (29). Roughly, this
derives from the restricti'on, when one is committed to
strict equilibrium conditions (as we were above by
operating on the canonical partition function), to use
only of conservative external force fields. However, the
observation of the entire set of elastic constants for a
crystal will generally require use of shear stress, which
is not derivable from an external potential. The re-
mainder set of constants left undetermined by Eq. (29)
therefore could only be obtained in a rigorous statistical
mechanical theory by calculation of time-dependent
system responses, unless the system model had inherent
characteristics preventing unbounded energy absorption
from the shear field at zero driving frequency. "

Finally, we remark that Eq. (29) retains full validity
in the quantum-mechanical regime, if the p&") are
interpreted as diagonal elements of reduced density
matrices in direct space representation.
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"This would be the case for cross-linked polymers, or rigid
spheres sufFiciently highly compressed to prevent plastic Bow.


