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Duality relations for elastic constants of the classical Gaussian core model

Frank H. Stillinger
Department of Chemistry, Princeton University, Princeton, New Jersey 08544

~Received August 21 2002; published 18 December 2002!

The many-body Gaussian core model involves a potential energy function that consists of a sum of repelling
pair interactions, each of which is a simple Gaussian function of distance. This paper examines the linear
elastic response of the model for its stable lattices at absolute zero temperature, inD51, 2, and 3 dimensions.
Owing to the fact that the Gaussian function is self-similar under Fourier transformation, exact relations exist
connecting each elastic constant at number densityr to a partner at dual densityr8 in the reciprocal lattice,
whererr85p2D. By using these identities, it has been possible to show that shear elastic constants inD
52 and 3 tend strongly to zero in the asymptotic high density limit.

DOI: 10.1103/PhysRevE.66.066125 PACS number~s!: 05.90.1m, 45.30.1s, 62.20.Dc, 64.70.Kb
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I. INTRODUCTION

The classical Gaussian core model~GCM! consists of a
set ofN identical structureless particles subject to the follo
ing interaction potential:

F~r1 ,...,rN!5(
i , j

exp~2r i j
2 !. ~1.1!

Here we have chosen to use the height and range of the
Gaussians as natural energy and length units, andr i j repre-
sents the scalar distance between particlesi andj. Part of the
scientific motivation for considering this model is that it pr
vides a simple representation for the effective interaction
erating between polymer coils or flexible dendrimers s
pended in suitable solvents@1–4#. However, the GCM also
exhibits some unusual mathematical properties@5–8# that
generate additional interest, which consequently warrants
amination of the model in a broad analytical context, inclu
ing variable space dimensionD.

The ground-state~zero temperature!structures for the
GCM are relatively simple, in which all particles are equiv
lent. For the linear case,D51, it is the elementary periodic
array. In the planar version,D52, the ground-state structur
is the six-coordinate triangular lattice at all densities. T
distinct structures appear inD53; at low density the face
centered cubic crystal predominates, while at high den
the body-centered cubic form takes over@4,5,7,8#. These
classical ground states have lattice energies that satisfy d
ity relations which link pairs of low and high densities. Sp
cifically, let f~r! denote the lattice energy per Gaussian p
ticle in any one of these cases, wherer is the number density
Then it has been demonstrated that@7,8#

r21/2@112f~r!#5~r8!21/2@112f~r8!#, ~1.2!

wherer8 is a density dual tor satisfying

rr85p2D. ~1.3!

In particular, Eq.~1.2! connects the lattice energies of th
face-centered and body-centered cubic structures forD53,
and establishes that these energies are equal at the sel
densityp23/2.
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The objective of the present paper is to explore extensi
of the above duality relation to include uniformly straine
versions of the ground-state crystals. The focus remains
the zero temperature limit for the GCM, and strains will
limited to infinitesimal values. Consequently the results co
cern linear elastic response. Section II provides the neces
background and definitions for the generalization to be
ploited. Section III concentrates on theD52 case, the elas
tically distorted triangular lattice. Section IV analyzes t
D53 case, for which elastic constants of the low-dens
face-centered cubic crystal are linked to the elastic const
of the high-density body-centered cubic crystal. Finally, S
V contains some remarks about connections to other asp
of the GCM, including its phonon spectra.

II. PRELIMINARIES

The most basic elastic response is that produced by
tropic ~hydrostatic!stress. It can be described in the prese
context simply by the inverse of the zero-temperature co
pressibilityk~r!. A connection between low and high densi
behaviors of this quantity, and of the zero-temperature p
surep, for the GCM’s can readily be inferred from the e
ementary duality relation~1.2! above. These quantities ar
connected to the lattice energyf~r! by the relations

p~r!5r2@df~r!/dr#,

1/k~r!5r@dp~r!/dr#. ~2.1!

By applying density derivatives to Eq.~1.2!, while account-
ing for the dual-density definition Eq.~1.3!, and finally rear-
ranging the results, one finds

p~r8!5p23D/2$~2r2!21@112f~r!#2r23p~r!%
~2.2!

and

@k~r8!#215p23D/2$r22@112f~r!#24r23p~r!

1@r3k~r!#21%. ~2.3!

These relations offer the benefit of ready evaluation forp and
k21 at high density at which many neighbor particles inte
©2002 The American Physical Society25-1



h

ld
so

he
nt
-
t

st
to

gl
r

s

r
it

t o
rm
on

o
n

c.

s
o

re
nd

ins
ons

is

r
be
hes
ng
ed
a-

we

ned

pal

-

near
sub-

FRANK H. STILLINGER PHYSICAL REVIEW E 66, 066125~2002!
act, in terms of the low density properties that enjoy t
simplification of weak near-neighbor interactions only.

Before application of a homogeneous linear strain fie
the zero-temperature GCM lattice will present a state of i
tropic stress, characterized by its pressurep. The strain sub-
sequently causes the initial lattice energyF0 to rise to the
higher valueF @9#:

F2F05$2p@uii 1~1/2!~uii uj j 2uii
2 !#

1~1/2!l i jkl ui j ukl%V, ~2.4!

with neglect of terms with cubic and higher orders in t
strain components. HereV is the unstrained system conte
~length, area, or volume!, the ui j are elements of the sym
metric strain tensor in a Cartesian coordinate system, and
l i jkl are elements of the corresponding fourth-order ela
tensor @9#. The Einstein summation convention applies
terms with repeated subscripts.

For D51 the strain and elastic tensors have only sin
elements,uxx andlxxxx. Furthermore, it is easily shown fo
this simple case that

lxxxx~r!51/k~r! ~D51!. ~2.5!

As a result, the earlier Eq.~2.3! permits this singleD51
elastic constant at high density to be evaluated in term
quantities at the dual low density.

On account of its symmetry~hexagonal!, the triangula
ground state crystal for the GCM in two dimensions has
elastic energy terms in Eq.~2.4! reduced to inclusion of only
two distinct elastic constants@9#:

1
2 l i jkl ui j ukl→2ljhjh~uxx1uyy!

21ljjhh

3@~uxx2uyy!
214uxy

2 #. ~2.6!

Isotropic compression or expansion involves only the firs
the two surviving elastic terms. By comparing that first te
to the directly-computed work of compression or expansi
one finds the two-dimensional analog of Eq.~2.5!:

ljhjh~r!51/@4k~r!# ~D52!. ~2.7!

Once again, this connection, and the prior Eq.~2.3!, permit
evaluation of this elastic quantity at high density in terms
the dual low-density quantities. Computation of the seco
elastic constant in Eq.~2.6! forms the subject of the next Se
III.

In the case of the cubic lattices~fcc and bcc!that provide
the ground-state structures in three dimensions, the ela
energy adopts a form with three independent elastic c
stants@9#:

1
2 l i jkl ui j ukl→ 1

2 lxxxx~uxx
2 1uyy

2 1uzz
2 !1lxxyy~uxxuyy

1uxxuzz1uyyuzz!12lxyxy~uxy
2 1uxz

2 1uyz
2 !.

~2.8!
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Isotropic strain now involves the first two of these, which a
then found to have the following relation to the pressure a
compressibility of the lattice:

1
2 lxxxx~r!1lxxyy~r!53/ @2k~r!# ~D53!. ~2.9!

Section IV below examines two types of anisotropic stra
that, in addition to this last result, offer separate expressi
for all three cubic-symmetry elastic constants.

The high-density behaviors of Eqs.~2.5!, ~2.7!, and~2.9!
depend upon that of the compressibility function. It
straightforward to show from Eqs.~1.2! and ~2.1! that

1/k~r!;pD/2r2 ~r→`!. ~2.10!

III. TRIANGULAR LATTICE, DÄ2

One elastic constant,ljjhh , remains to be examined fo
the triangular lattice. For this purpose, the system will
subjected to a uniform area-preserving strain that stretc
the lattice along one direction, while compressing it alo
the perpendicular direction. Particle positions in the strain
configuration are determined by integer multiples of two b
sis vectorsb1(«) andb2(«),

r j~«!5n1~ j !b1~«!1n2~ j !b2~«!. ~3.1!

Here « is a measure of the imposed strain. Specifically,
choose the basis vectors to be the following:

b1~«!5a~11«!ux ,

b2~«!5aF ~11«!

2
ux1

31/2

2~11«!
uyG , ~3.2!

wherea is the nearest-neighbor separation in the unstrai
lattice,

a~r!5@2/~31/2r!#1/2, ~3.3!

and whereux and uy are unit vectors along thex and y
directions, respectively. Notice that the choice~3.2! orients
the lattice, regardless of strain, so that one of its princi
directions~lines of particles!is parallel to thex axis.

The strain tensor corresponding to the basis vectors~3.2!
has the elements

uxx5«,

uyy52«1O~«2!, ~3.4!

uxy50.

Equations~2.4! and ~2.6! then assign the following expres
sion to the energy rise due to strain:

@F~«!2F0#/N5f~r,«!2f~r,0!

54ljjhh~r!«2/r1O~«3!. ~3.5!

Present interest focuses on the leading term describing li
elastic response, but it should be noted in passing that
5-2
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DUALITY RELATIONS FOR ELASTIC CONSTANTS OF . . . PHYSICAL REVIEW E 66, 066125~2002!
sequent terms with odd orders in« can arise in principle,
because nonzero strains« and2« are not equivalent.

By formally including a self-interaction term,f~r, «! may
be expressed simply as the integral of the product of
Gaussian interaction and the periodic lattice density func
r (1)(r, «):

112f~r,«!5E exp~2r 2!r~1!~r, «!dr, ~3.6!

r~1!~r, «!5 (
n1 ,n2

d@r2 n1b1~«!2n2b2~«!#. ~3.7!

Because it is periodic,r (1) can alternatively be expressed
a Fourier sum@after representing delta functions in Eq.~3.7!
temporarily as narrow normalized Gaussians#:

r~1!~r, «!5r lim
a→`

(
K ~«!

exp@ iK ~«!•r2 K2~«!/~4a!#.

~3.8!

The sum in this last expression spans the lattice that is re
rocal to that generated byb1(«) andb2(«):

K ~«!5m1K1~«!1m2K2~«!. ~3.9!

Here m1 and m2 cover positive and negative integers, a
zero, andK1(«) and K2(«) are the basis vectors for tha
reciprocal lattice, and therefore satisfy the relations@10#

K i~«!•bj~«!52pd i j . ~3.10!

One readily finds

K1~«!5S 4p

31/2a
D F S 31/2

2~11«! Dux2S 11«

2 DuyG ,
K2~«!5S 4p

31/2a
D ~11«!uy . ~3.11!

Upon substituting expression~3.8! for r (1) into the right
member of Eq.~3.6!, one finds

112f~r,«!5pr lim
a→`

(
K ~«!

exp@2~111/a!K2~«!/4#

5pr (
m1 ,m2

exp$2@m1K1~«!1m2K2~«!#2/4%.

~3.12!

Notice that this is also a lattice sum for a Gaussian inter
tion, but with an extra divisor 4 in the exponent. Forma
this is equivalent to the simple Gaussian summed ove
lattice with half the spacing, i.e., with basis vectors

K1~«!/2, K2~«!/2. ~3.13!

One easily sees from Eqs.~3.11! that this latter pair of basis
vectors generates a lattice with number density equal to
06612
e
n
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r85~p2r!21, ~3.14!

the density that is dual tor, Eq. ~1.3!. Furthermore, the res
caled reciprocal lattice generated by basis vectors~3.13! is
itself a triangular lattice subject to homogeneous strain, w

uxx52«1O~«2!,

uyy5«, ~3.15!

uxy50.

In spite of the fact that the strain direction has been rota
by p/2 compared to that initially imposed on the startin
lattice, Eq.~3.4!, the linear elastic response is similar. As
result, within the linear response regime Eq.~3.12!is equiva-
lent to

r21/2@112f~r,«!#5~r8!21/2@112f~r8,«!#,
~3.16!

a straightforward extension of the original duality relatio
~1.2!. Equation~3.5! above allows this last expression to b
recast in terms of the elastic constants at the dual densi

r23/2ljjhh~r!5~r8!23/2ljjhh~r8!. ~3.17!

Equation ~3.17! of course reduces to a triviality at th
self-dual densityp21. However, it produces a nontrivial in
sight when one of the densities, sayr, is very low, and its
dual r8 is very high. In that circumstance, the shear elas
constantljjhh(r) will be determined solely be the wea
Gaussian tail of widely separated nearest neighbors in
sparse triangular lattice, and consequently will vanish ex
nentially asr→0. A straightforward calculation shows tha
in this low-density limit

ljjhh~r!;S 1

r
231/2DexpF2

2

31/2rG ~r→0!. ~3.18!

By subsequently applying the duality relation~3.17!, one
finds that in the high-density asymptotic regime

ljjhh~r8!;~pr8!3~p2r8231/2!expF2
2p2r8

31/2 G
~r8→`!, ~3.19!

implying a remarkable mechanical weakness of the trian
lar lattice under high compression. On account of the f
that ljjhh vanishes in both limits, it is evident that it mus
pass through at least a single maximum at intermediate d
sity.

IV. CUBIC LATTICES, DÄ3

To begin the analysis in the three-dimensional context,
a uniformly strained face-centered cubic lattice be genera
by the following combination of basis-vector integer mu
tiples:

r j~«!5n1~ j !b1~«!1n2~ j !b2~«!1n3~ j !b3~«!, ~4.1!
5-3
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FRANK H. STILLINGER PHYSICAL REVIEW E 66, 066125~2002!
where, as before,« measures the strain. The correspond
energy per particlef~r, «! can then be expressed in the sam
manner as was used for the two-dimensional case, Eqs.~3.6!
and ~3.7!:

112f~r,«!5E exp~2r 2!r~1!~r, «!dr, ~4.2!

r~1!~r, «!5 (
n1 ,n2 ,n3

d@r2 n1b1~«!2n2b2~«!2n3b3~«!#.

~4.3!

Also, as before@Eq. ~3.8!#, the periodic singlet density dis
tribution r (1)(r,«) can be written as a Fourier series invol
ing terms from the appropriate reciprocal lattice,

r~1!~r, «!5r lim
a→`

(
K ~«!

exp@ iK ~«!•r2 K2~«!/~4a!#,

~4.4!

K ~«!5m1K1~«!1m2K2~«!1m3K3~«!, ~4.5!

where theK i(«) are determined by the basic Eq.~3.10!.
After substituting Eq.~4.4! into Eq. ~4.2!, and carrying out
ther integration, the result is the three-dimensional analog
the prior Eq.~3.12! for the strained triangular lattice:

112f~r,«!5p3/2r (
m1 ,m2 ,m3

exp$2@m1K1~«!1m2K2~«!

1m3K3~«!#2/4%. ~4.6!

The right member of this last equality amounts to a sum
the simple Gaussian pair interaction over all relative po
tions in a lattice whose basis vectors areK i(«)/2, and whose
number density is just the dual density

r85~p3r!21. ~4.7!

Consequently we can write

r21/2@112f~r,«!#5~r8!21/2@112f~rec!~r8,«!#,
~4.8!

the three-dimensional version of the former Eq.~3.16!, now
generally involving energies per particle for distinct stru
tures, the direct and reciprocal~rec! lattices.

In order to exploit this last identity for elastic propertie
we shall first examine the constant-volume deformation t
dilates the face-centered cubic lattice in thex direction, while
contracting it by a compensating amount in they direction;
the z direction will remain unstrained. If the number dens
of the lattice isr, the corresponding forms assigned to t
r-space basis vectors will be

b1~«!5~2r!21/3@~11«!ux1~11«!21uy#,

b2~«!5~2r!21/3@~11«!ux1uz#, ~4.9!

b3~«!5~2r!21/3@~11«!21uy1uz#.
06612
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The reciprocal lattice basis vectors then follow from E
~3.10!:

K1~«!5p~2r!1/3@~11«!21ux1~11«!uy2uz#,

K2~«!5p~2r!1/3@~11«!21ux2~11«!uy1uz#,

K3~«!5p~2r!1/3@2~11«!21ux1~11«!uy1uz#.
~4.10!

This latter set generates a body-centered cubic lattice sub
to a volume-preserving uniform strain that contracts alo
the along thex direction by factor (11«)21, and expands
along they direction by factor 11«. The same factors o
course apply to the lattice with basesK i(«)/2 that are rel-
evant to Eq.~4.8!, and aside from a direction rotation ofp/2,
this is the same uniform strain applied to the starting fa
centered cubic lattice, Eqs.~4.9!. In view of these facts, both
members of Eq.~4.8! can be interpreted in terms of the a
propriate combination of linear elastic constants, for smal«:

r23/2@lxxxx
~ f ! ~r!2lxxyy

~ f ! r!]

5~r8!23/2@lxxxx
~b! ~r8!2lxxyy

~b! ~r8!#. ~4.11!

Here the superscriptsf and b refer respectively to the face
centered cubic and body-centered cubic lattices. By apply
the earlier relation~2.9! both atr and atr8, individual du-
ality relations~with identical forms!for each of the two elas-
tic constants in Eq.~4.11!can be obtained:

r23/2@lxxxx
~ f ! ~r!21/k~ f !~r!#

5~r8!23/2@lxxxx
~b! ~r8!21/k~b!~r8!#, ~4.12!

r23/2@lxxyy
~ f ! ~r!21/k~ f !~r!#

5~r8!23/2@lxxyy
~b! ~r8!21/k~b!~r8!#. ~4.13!

One cubic-symmetry elastic constant remains to be inv
tigated, namelylxyxy. For that purpose, consider the fac
centered cubic lattice at densityr subject to a pure shea
deformation. The following set of basis functions satisfi
that objective, where the only nonzero element of the str
tensor isuxy5«/2:

b1~«!5~2r!21/3@~11«!ux1uy#,

b2~«!5~2r!21/3@ux1uz#, ~4.14!

b3~«!5~2r!21/3@«ux1uy1uz#.

These lead to reciprocal-lattice basis vectors:

K1~«!5p~2r!1/3@ux1~12«!uy2uz#,

K2~«!5p~2r!1/3@ux2~11«!uy1uz#, ~4.15!

K3~«!5p~2r!1/3@2ux1~11«!uy1uz#,
5-4
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DUALITY RELATIONS FOR ELASTIC CONSTANTS OF . . . PHYSICAL REVIEW E 66, 066125~2002!
corresponding to a body-centered cubic lattice subject to
pure shearuxy52«/2. Then as a deduction from the gene
duality relation~4.8!, and the definition~2.8! of the elastic
constant, one finally has

r23/2lxyxy
~ f ! ~r!5~r8!23/2lxyxy

~b! ~r8!, ~4.16!

a result directly analogous to that for the triangular latt
shear constant, Eq.~3.17!.

At low density, lxyxy
( f ) depends only on nearest-neighb

interactions. Owing to this simplification, it is an easy mat
to show that

lxyxy
~ f ! ~r!;~Ar21/32Br1/3!exp~221/3r22/3! ~r→0!,

A525/3, ~4.17!

B527/3.

The elastic-constant duality relation~4.16! then allows as-
signment of the high-density asymptote:

lxyxy
~b! ~r8!;@A8~r8!10/32B8~r8!8/3#

3exp@221/3p2~r8!2/3# ~r8→`!,

A8525/3p11/2,

B8527/3p7/2. ~4.18!

An exactly analogous calculation can be carried out for
elastic constant differencelxxxx

( f ) 2lxxyy
( f ) in the asymptotic

low-density limit:

lxxxx
~ f ! ~r!2lxxyy

~ f ! ~r!;2~Ar21/32Br1/3!exp~221/3r22/3!

~r→0!, ~4.19!

i.e., twice the corresponding result in Eq.~4.17!. Duality
relation ~4.11! then leads in turn to the high-density asym
tote:

lxxxx
~b! ~r8!2lxxyy

~b! ~r8!;2@A8~r8!10/32B8~r8!8/3#

3exp@221/3p2~r8!2/3#

~r8→`!. ~4.20!

These results~4.18! and ~4.20! indicate that the body-
centered cubic array for the Gaussian core model manif
extraordinary weakness toward shear strain in the h
density regime, analogous to that revealed earlier for
two-dimensional triangular lattice.

V. DISCUSSION

The principal objective of the present paper has been
examine a generalization of a previously-derived duality
lation for the classical Gaussian core model. Specifically,
generalization considers uniformly strained versions of
zero-temperature crystals for this model in one, two, a
three dimensions, and thus concerns elastic properties. In
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regime of linear elastic response, the extended duality r
tions provide exact connections, for the linear arrayD
51) and for the triangular lattice (D52), between the val-
ues of elastic constants at dual-density pairs defined by
~1.3! above. ForD53, the most stable crystal structures
low and at high density respectively, are face-centered cu
and body-centered cubic, and it is identities between co
sponding linear elastic constants in these reciprocal latt
that emerge from the analysis. In each of these cases
elastic constant dualities offer a straightforward way
evaluate the high-density quantities~nominally involving
particle interactions with many neighbors! in terms of their
low-density partners~dominated by first-neighbor interac
tions!. A direct implication of the dualities is that elast
constants for pure shear in theD52 triangular lattice and the
D53 body-centered cubic lattice both tend strongly towa
zero with increasing density.

Although the focus of the present study has been the
ear elastic regime, this is not an intrinsic limitation. In pri
ciple it is possible to recast the development presented ab
so as to relate nonlinear homogeneous deformation ene
at dual density pairs. In this connection, one can observe
in three dimensions a continuous uniaxial deformation p
at constant density exists that smoothly transforms the fa
centered-cubic array into the body-centered-cubic form. T
approach followed above relates this deformation to
same continuous deformation, traversed in the opposite
rection, at the dual density. This process then links nonlin
elastic energies for those lattice pairs. At the midpoint of
connecting path, there exists a single lattice structure wh
elastic properties at dual low and high densities conseque
become related.

A key attribute of the Gaussian pair interaction for t
derivation of duality relations is that of self-similarity unde
Fourier transformation. The single Gaussian is the simp
example of the wider function class that possesses this
tribute. Members of that class can generally be represente
the form ~assuming proper integral convergence!

n~r !5E
0

`

w~a!exp~2ar 2!da, ~5.1!

provided that the weight functionw(a) satisfies the condi-
tion

a21/2w~a21![Aw~Ba!, ~5.2!

whereA andB are positive constants. Some members of t
class will display relatively simple crystal forms at absolu
zero, and will qualify for study by means of an appropriate
generalized duality analysis. This is a direction for extens
of the present work that should be profitable to follow in t
near future.
5-5



on
n
s
ng

ss-
the

ng

FRANK H. STILLINGER PHYSICAL REVIEW E 66, 066125~2002!
Elastic constants determine the long-wavelength porti
of phonon spectra. The unusual dropoff of the two- a
three-dimensional shear constants with increasing den
discussed above implies a remarkable slowdown of lo
06612
s
d
ity
-

wavelength transverse phonons. A full description of Gau
ian core model phonon spectra is beyond the scope of
present study, but will be examined in detail in a forthcomi
publication@11#.
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