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A statistical mechanical model for inverse melting
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Inverse melting is the situation in which a liquid freezes when it is heated isobarically. Both helium
isotopes exhibit intervals of inverse melting at low temperature, and published data suggests that
isotactic poly~4-methylpentene-1! also displays this unusual phase behavior. Here we propose a
statistical mechanical model for inverse melting. It is a decorated modification of the Gaussian core
model, in which particles possess a spectrum of thermally activated internal states. Excitation leads
to a change in a particle’s Gaussian interaction parameters, and this can result in a spatially periodic
crystal possessing a higher entropy than the fluid with which it coexists. Numerical solution of the
model, using integral equations and the hypernetted chain closure for the fluid phase, and the
Einstein model for the solid phases, identifies two types of inverse melting. One mimics the
behavior of the helium isotopes, for which the higher-entropy crystal is denser than the liquid. The
other corresponds to inverse melting in poly~4-methylpentene-1!, where the high-entropy crystal is
less dense than the liquid with which it coexists. ©2003 American Institute of Physics.
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I. INTRODUCTION

First-order melting/freezing transitions between spatia
periodic crystals and isotropic liquid phases of pure s
stances have scientific and technological implications wh
significance is hard to overestimate. Crystal structures
their melting temperatures reveal detailed characteristic
atomic and molecular interactions.1 The transition itself
forms the basis of the zone-refining method for purificatio2

The ability to circumvent crystal nucleation and growth du
ing liquid supercooling is a key to forming many amorpho
materials.3 And of course the capacity to produce nearly p
fect semiconducting single crystals enables much of mod
electronic technology.4

The most common melting scenario under constant p
sure~isobaric! conditions entails positive increments for bo
molar volume and molar entropy,

Dv5v ~ liq!2v ~cr!.0,
~1.1!

Ds5s~ liq!2s~cr!.0.

Somewhat less common are those cases in whichDs remains
positive, butDv,0, i.e., the liquid is more dense than th
crystal from which it is formed. The most familiar examp
of this latter category, at ambient pressure, is water; elem
exhibiting the same behavior are silicon, gallium, antimo
and bismuth.5

The present paper is devoted to a third type of melt
scenario, for which the entropy changeDs is negative, and
Dv can have either sign. This counterintuitive situatio
which involves equilibrium freezing of the liquid as a resu

a!Author to whom correspondence should be addressed. Electronic
pdebene@princeton.edu
458© 2003 American Institute of Physics
y
-
e
d

of

-

-
rn

s-

ts
,

g

,

of isobaric heating, has been called ‘‘inverse melting.’’6,7 The
crystal phase that coexists with the liquid at an inver
melting point has higher molar entropy than that liquid, t
reverse of the usual situation. Both helium isotopes3He and
4He at low temperature exhibit intervals of invers
melting.8,9 In addition, reports have been published indic
ing that the polymeric substance isotactic poly~4-
methylpentene-1!, ‘‘P4MP1,’’ also exhibits inverse melting.10

To the best of our knowledge, no general microsco
theory or model has yet been proposed to describe inv
melting in the domain of classical statistical mechanics. B
yond the intrinsic desire to understand the reasons unde
ing this fascinating phenomenon, the development of
evant theory and/or well-defined models might have a
by-product suggestions for synthesis of new materials ex
iting inverse melting. Here we propose and investigate
classical statistical model that displays a range of inve
melting phenomena. This model is an internally decora
version of the so-called Gaussian core model~GCM!.11–14

In order to provide a clear basis for discussing our
verse melting model, and to make this presentation as ne
self-contained as practicable, Sec. II reviews several fun
mental and relevant thermodynamic identities. This is f
lowed in Sec. III by a brief definition and description of th
original undecorated GCM. Section IV introduces the e
tended Gaussian core model~EGCM!, motivated by simple
arguments about the necessity of coupling intramolecular
grees of freedom to intermolecular interactions in order
create an inverse melting scenario. Section V presents
approximate, but we believe reliable, method for evaluat
free energies of the EGCM, required to locate melting tra
sition curves. Numerical examples showing a diversity
inverse melting results appear in Sec. VI. Our conclusio
il:
2
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and discussion of desirable directions for future study of
verse melting phenomena, form the basis of the final S
VII.

II. THERMODYNAMIC RELATIONS

A first-order melting/freezing transition in th
temperature-pressure plane is located by the transition c
Tm(p), representing the absolute melting/freezing tempe
ture as a function of the pressure. This transition can equ
well be represented by the inverse functionpm(T), the
melting/freezing pressure at any given absolute tempera
The most basic thermodynamic identity satisfied by the tr
sition locus is the Clausius–Clapeyron equation, describ
its slope,15

dPm~T!/dT5Ds/Dv, ~2.1!

whereDs andDv were defined above in Eq.~1.1!.
Two inverse melting categories can be distinguished,

pending on the sign of the molar volume changeDv. These
are illustrated schematically in Figs. 1~a! and 1~b!. The case
1~a!, with inverse melting interval AB, involves opposit
signs for the numerator and the denominator in the Clausi
Clapeyron right-hand member, so the slope of the melt
curve is negative between A and B. The case 1~b!, with in-
verse melting interval CD, involves negative signs for bo
the numerator and the denominator in the Clausiu
Clapeyron right-hand member, so the slope of the melt
curve is positive between C and D.

The zero-slope points A, B, C, and D in Figs. 1~a! and
1~b! are positions along the melting curves at whichDs van-
ishes, as it continuously changes from positive to negat
or the reverse. BecauseDs50 at these extrema, it has bee
suggested that such points should be called ‘‘Kauzm

FIG. 1. The two inverse melting scenarios. The solid line is the melt
curve, and the crystal phase is stable inside the hatched region.~a! Dv
.0; ~b! Dv,0. At the extrema A, B, C, and D,Ds50. The inverse melting
intervals are AB, and CD, respectively.
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points,’’ on account of their thermodynamic kinship to sim
lar vanishing-entropy points that play a role in the theory
glass transitions.3

The first-order differential characterization of the tran
tion curve provided by the Clausius–Clapeyron equation
be extended to the second derivative, i.e., the curvature.
result is especially simple at the extremal points of vanish
slope ~A,B,C,D!. At any one of these special points on
finds7

d2Pm~T!

dT2
5

cp
~ liq!2cp

~cr!

T~v ~ liq!2v ~cr!!
, ~2.2!

where the numerator of the right member involves the diff
ence of constant-pressure molar heat capacities for the
phases at that extremal coexistence point. In conjunc
with Fig. 1, this latter identity establishes the following rel
tive magnitudes of the heat capacities at the four extre
points:

cp
~cr!.cp

~ liq!.0 ~at A,C!,
~2.3!

cp
~ liq!.cp

~cr!.0 ~at B,D!.

The extremal~Kauzmann! points A, B, C, D on a phase
transition curve, at which the molar entropy changeDs van-
ishes, perforce are points at which the molar enthalpy cha
Dh also vanishes,

Dh5h~ liq!2h~cr![TDs. ~2.4!

By considering the variations in thermodynamic propert
for both liquid and crystal phases at positions in t
T,P-plane displaced from the extremal points, it is possi
to derive expressions for the slopes of curves along wh
respectively,Ds andDh continue to vanish,7

S dP

dTD
Dh50

5
cp

~ liq!2cp
~cr!

v ~ liq!~12Ta~ liq!!2v ~cr!~12Ta~cr!!
; ~2.5!

S dP

dTD
Ds50

5
cp

~ liq!2cp
~cr!

T@a~ liq!v ~ liq!2a~cr!v ~cr!#
. ~2.6!

Here, thea’s stand for isobaric thermal expansion coef
cients of the two phases. The curves for which these exp
sions give the slopes are coincident only at the extre
points of Pm(T). As a generalization of the aforementione
Kauzmann point, aDs50 curve described by Eq.~2.6! can
be called a ‘‘Kauzmann curve.’’ Although Eq.~2.6! is for-
mally identical to the first Ehrenfest relation for a line
second-order phase transitions,16 its meaning is fundamen
tally different in the present context.

It is useful to derive the criteria that determine the si
of the slope of Kauzmann curves at points A, B, C, and
~Fig. 1!. Taking into account inequality~2.3! and Eq.~2.6!,
the possible cases are given in Table I.

III. REVIEW OF STANDARD GCM

The standard GCM is a classical many-body model c
sisting ofN particles whose interaction potential, when tho
particles have positionsr1¯rN , has the following pairwise
additive form:11

g
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F~r1¯rN!5e(
i , j

exp@2~r i j /s!2# ~e,s.0!. ~3.1!

Although the usual procedure in analyzing the statistical m
chanics of this model is to choose energy and length sc
so that bothe ands are equal to unity,11–14we retain them as
explicit parameters to lead naturally into the extension de
oped in the following Sec. IV.

The N particles of the GCM nominally are spherical
symmetric and structureless. However, it has been es
lished that the effective interactions that operate betw
complex molecules and their aggregates in suitable solv
can be close to repelling Gaussian functions of interpart
separation, consistent with the form shown in Eq.~3.1!. This
correspondence includes solutions of linear polymers,13,17

highly branched ‘‘star’’ polymers,18 and colloidal particles.19

A combination of analytical11,13,20 and simulation12,21

studies have reached consensus on the phase behavior
standard GCM. Three distinct phases appear. At low redu
temperaturekBT/e ~wherekB is Boltzmann’s constant!, and
relatively low reduced number densityrs3, the model ex-
hibits a face-centered cubic~fcc! crystal phase. Increasin
rs3 at low reduced temperature causes a first-order ph
change to a body-centered cubic~bcc! crystal. At sufficiently
high temperature, for any density, the model exists in
isotropic fluid phase.

Figure 2 presents the GCM phase diagram in
density–temperature and temperature–pressure planes
most noteworthy feature exhibited by Fig. 2 is the meltin
temperature maximum for the bcc crystal phase. At t
maximum, the molar volumes of the coexisting crystal a
fluid phases are equal. This represents the position of
change forDv, which is positive at lower density and pre
sure, and negative at higher density and pressure. Howe
Ds for the melting process, whether fcc or bcc crystals
involved, is always positive, i.e., no inverse melting appe
for the standard GCM.

TABLE I. Criteria for the sign of the slope of the Kauzmann curve at t
melting curve extrema.

a (liq) a (cr) dPK /dT.0a dPK /dT,0a

B~1!, D~2!b

.0 .0 a (cr)/a (liq),16d a (cr)/a (liq).16d

.0 ,0 always never
,0 .0 never always
,0 ,0 ua (cr)u/ua (liq) u.16d ua (cr)u/ua (liq) u,16d

A~1!, C~2!b

.0 .0 a (cr)/a (liq).16d a (cr)/a (liq),16d

.0 ,0 never always
,0 .0 always never
,0 ,0 ua (cr)u/ua (liq) u,16d ua (cr)u/ua (liq) u.16d

aPK is the pressure along the Kauzmann curve. Equation~2.6! gives
dPK /dT.

bCoexisting liquid and crystal volumes are related byv (liq)5v (cr) (16d),
where d.0. The 1 sign applies at A and B (Dv.0), and the2 sign
applies at C and D (Dv,0).
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IV. EXTENDED GCM

In order to devise a classical statistical mechani
model that exhibits inverse melting, a mechanism must
present to cause the fluid phase at coexistence to pos
lower entropy than the crystal. Such a scenario can be
duced by invoking additional particle degrees of freedo
beyond the center of mass positionsr1¯rN . We now pro-
pose to extend the standard GCM by endowing each par
with a spectrum of internal states whose presence influen
the system’s potential energy functionF. This can be imple-
mented in such a way that the resulting extended Gaus
core model~EGCM! has the capacity to display inverse me
ing of either type illustrated earlier in Fig. 1.

For the task at hand it suffices to postulate a very sim
discrete spectrum of internal states. In particular, we supp
that each particle in isolation possesses a nondegen
ground state~at zero energy!, and a group ofE@1 degener-
ate and indistinguishable excited states. This latter group
above the ground state by an excitation energy to be den
by D. For accounting purposes, it will be useful to descri
the internal excitation state of each particle 1< i<N by a
discrete variablem i ; this variable will equal 0 if particlei is

FIG. 2. Calculated phase behavior for the conventional Gaussian core m
~GCM!. The Ornstein–Zernike equation with hypernetted chain closure
used for the fluid phase, and the Einstein model was adopted for the
phases.~a! Temperature–density projection. The density difference betw
coexisting phases is too small to be visible on the scale of the figure~b!
Pressure–temperature projection.
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in its internal ground state, and will equal 1 if it is in any
theE internal excited states. When any one of theN particles
is isolated, the probabilityx1 that it is internally excited has
the following form:

x15^m i&5@E21 exp~bD!11#21, ~4.1!

whereb51/kBT is the inverse temperature. The correspon
ing entropy per particle due to the internal degrees of fr
dom is

S~ int!/NkB52~12x1!ln~12x1!2x1 ln~x1 /E!. ~4.2!

This entropy varies between 0 at absolute zero tempera
andkB ln(E11) at infinite temperature. It is easy to see fro
Eq. ~4.1! thatx1 is a monotonically decreasing function ofb.
This independent-particle excitation probability reaches
value 1/2~i.e., equal chance for ground state, as for exci
states! when

b1/25D21 ln E. ~4.3!

Increasing bothD andE so as to keep this last ratio fixed ha
the effect of narrowing the excitation transition. This sha
ening can be measured by the rate of change ofx1 at the
halfway point,

S dx1

db D
b1/2

52
D

4
. ~4.4!

In order to produce an inverse-melting scenario, the
ternal degrees of freedom need to interact with the cent
positions of the particles in such a way that a spatially p
odic crystal phase can have greater molar entropy than
liquid with which it thermodynamically coexists. Our ap
proach has been to postulate that the Gaussian intera
parameterse, s depend on the excitation variablesm i , while
otherwise retaining the form, Eq.~3.1!, of the many-body
interaction potential. Thus we write

F~r1¯rN ,m1¯mN!

5(
i , j

e~m i ,m j !exp$2@r i j /s~m i ,m j !#
2%. ~4.5!

This kind of presumption is at least somewhat realistic,
view of experimental observations of size changes of po
mer coils that induce fcc to bcc ordering changes.22

A basic quantity of interest, especially for the study
equilibrium phase changes, is the canonical partition fu
tion Q(N,V,T). It gives the Helmholtz free energyF as a
function of number density and temperature,

Q5exp~2bF ! ~4.6!

from which all other thermodynamic properties can be o
tained in turn. A straightforward analysis of the EGCM
postulated leads to the following expression:

Q5@G~b!#N (
n150

N FEn1 exp~2bDn1!

n1! ~N2n1!! GY~b,n1!, ~4.7!

where we have collected all equal contributions represen
the same total number 0<n1<N of internally excited par-
ticles,
-
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n15(
i 51

N

m i . ~4.8!

The factorsG~b!, one for each particle, arise from integr
tions over conjugate momenta; they are necessary to re
Q dimensionless, but play no role in determining phase eq
libria and can subsequently be disregarded. Configuratio
integrals for theN-body system with a fixed numbern1 of
internal excitations have been denoted byY(b,n1) in expres-
sion ~4.7! above. The detailed form of these latter quantit
is the following:

Y~b,n1!5E dr1¯E drN expH 2be00

3 (
i 51

N2n121

(
j 5 i 11

N2n1

exp@2~r i j /s00!
2#

2be01 (
i 51

N2n1

(
j 5N2n111

N

exp@2~r i j /s01!
2#

2be11 (
i 5N2n111

N21

(
j 5 i 11

N

exp@2~r i j /s11!
2#J .

~4.9!

For notational simplicity we have used 0,1 subscripts on
e, s parameters to indicate the excitation state of the part
pair involved. If all the values ofe’s and s’s were, respec-
tively, equal to one another,Y(b,n1) would be independen
of n1 and would correspond to the Helmholtz free ener
excess of the unaltered GCM atb. In order to account for
variations ine and s we introduce a mean pair of value
eav(n1) andsav(n1). Y(b,n1) can then be decomposed in
two contributions,

Y~b,n1!5VN exp$2N@b f GCM~beav,rsav
3 ~n1!!

1b f corr~becorr,rscorr
3 ~n1!!#%. ~4.10!

Here f GCM is the excess Helmholtz free energy per particle
the uniform GCM at theeav andsav, andf corr is a correction
term to the free energy that accounts for deviations ins and
e from their mean values. For any given value ofn1 it may
be possible to chooseeav andsav so that the correction van
ishes. Considering only linear corrections for simplicity, t
configurational free energy for the parameter-varied GC
must have the following form:

N fGCM~be,rs3!1(
i , j

@A~be,rs3!ds i j 1B~be,rs3!de i j #.

~4.11!

The coefficientsA and B can be identified, respectively, b
changing alls’s together, or alle’s together,

A~be,rs3!5
6rs2

N21

]~ f GCM!

]~rs3!
,

~4.12!
B~be,rs3!5

2b

N21

]~ f GCM!

]~be!
.

Applying these formal linear correction results to the excit
polymer case, the configurational free energy will be de
mined by
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lnS VN

Y~b,n1! D5NbH f GCM@beav,rsav
3 ~n1!#13rsav

2 ~n1!
] f

]~rs3!
F S 12

n1

N D 2

~s002sav~n1!!1S 2n1

N D S 12
n1

N D ~s01

2sav~n1!!1S n1

N D 2

~s112sav~n1!!G1b
] f

]~be! F S 12
n1

N D 2

~e002eav~n1!!1
2n1

N S 12
n1

N D ~e012eav~n1!!

1S n1

N D 2

~e112eav~n1!!G J . ~4.13!
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Therefore the linear corrections vanish if one chooses

sav~n1!5S 12
n1

N D 2

s001
2n1

N S 12
n1

N Ds011S n1

N D 2

s11,

~4.14!

eav~n1!5S 12
n1

N D 2

e001
2n1

N S 12
n1

N D e011S n1

N D 2

e11.

By making this choice, the canonical partition function sim
plifies to the following:

Q5@G~b!#N (
n150

N FEn1 exp~2bDn1!

n1! ~N2n1!! G
3exp~2Nb f GCM@beav~n1!,rsav

3 ~n1!# !. ~4.15!

In the thermodynamic limit, the sum on the right-hand s
of Eq. ~4.15! can be replaced by its maximum term. How
ever, in order to evaluate Eq.~4.15! an expression forf GCM,
the excess Helmholtz free energy of the unaltered GCM
needed for both the fluid and solid phases.

The extended GCM withE51 corresponds to a binar
GCM, but with temperature-dependent composition. Imp
tant aspects of the binary GCM have been investigated
cently, including fluid–fluid separation23 and wetting.24 Over
the range of parameters studied in this work, no fluid–fl
transition is predicted to occur. It is possible that a p
nounced nonadditivity of particle diameters (s12@s11,s22)
may destabilize the fluid phase and cause separation.
will be investigated in future work.

V. FREE ENERGY OF THE GCM

This section outlines the procedure for calculating
Helmholtz free energies of the respective phases in
GCM. For the fluid phase, integral equations are adop
For the solid phases the Einstein model is implemented.

A. Fluid phase

The quantity of interest is the radial distribution fun
tion, g(r ). The starting point for the calculation ofg(r ) is
the Ornstein–Zernike~OZ! equation,

h~r 12!5c~r 12!1rE c~r 13!h~r 23!dr3 , ~5.1!

where h(r )5g(r )21, and c(r ) is the direct correlation
function. The OZ equation is, in effect, the definition of th
direct correlation function.25 As this equation relates two un
-

e

is

r-
e-

d
-

his

e
e

d.

known functions,g(r ) and c(r ), one more relation or clo-
sure is needed to determinec(r ) andh(r ). The hypernetted-
chain ~HNC! equation, which we adopt in this work
provides an approximate relationship betweenh(r ) and
c(r ). It is given by

c~r !52bf~r !1h~r !2 ln@11h~r !#, ~5.2!

wheref(r ) is the pair potential.25 A recent theoretical and
computational investigation of the GCM reported that t
HNC closure is reliable in predicting structure in the flu
phase over a large range of densities and temperatures.13 All
of the thermodynamic quantities can be calculated once
radial distribution function has been determined as a func
of T andr. The virial pressure equation provides a relatio
ship between the radial distribution function and the exc
pressure,

Pex5P2rkBT52
2pr2

3 E
0

`

r 3f8~r !g~r !dr, ~5.3!

where25 f8(r )5df(r )/dr. The excess Helmholtz free en
ergy can be determined by integrating the thermodyna
relationPex52]Fex/]V from r50 up to the given density
under the initial conditionFex(r50,T)50. The Helmholtz
free energy is given by the sum of the ideal and excess te

F liquid~r,T!

NkBT
5 lnS rL3

e D1
Fex~r,T!

NkBT
, ~5.4!

whereL is the de Broglie wavelength for the structurele
GCM particles.

B. Solid phase

In order to calculate the free energies of the unalte
GCM a theory is needed for the candidate crystalline sta
of the model. Because the GCM is a soft interaction p
potential, a harmonic approximation in the solid is justifi
and the simple Einstein model is adopted. The Einst
model approximates the crystal as 3N independent harmonic
oscillators.26 All the molecules are assumed to vibrate at o
frequency, the Einstein frequency (vE), about their equilib-
rium positions. The Einstein frequency is a measure of
restoring force on a single particle due to the cage of nei
boring particles. The Einstein frequency is proportional t
trace of Hessian matrix. The Hessian matrix is calcula
numerically by summing the second derivative of the p
potential over all neighbors with respect to a single cen
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particle. The Helmholtz free energy of the Einstein solid
the high-temperature classical limit is given by

Fsolid5U013NkBT lnS \vE

kBT D , ~5.5!

whereU0 is the potential energy and\ is Planck’s constan
divided by 2p.

With expressions for the free energies of the solid a
fluid phases of the GCM, Eq.~5.4! and Eq.~5.5!, respec-
tively, it is now possible to calculate phase equilibrium f
the EGCM by Eqs.~4.14! and~4.15!. In the thermodynamic
limit only the maximum term of Eq.~4.15! is significant; it
determines the fraction of excited particles,n1 /N, as a func-
tion of r andb. In general, two internal consistency cond
tions arise: one forsav and one foreav, Eq. ~4.14!. If all of
the particles in the solid and fluid phases are excit
n1,S /N>1 and n1,F /N>1, respectively, over the range o
temperatures and densities of interest, Eq.~4.14! shows that
sav5s11 and eav5e11. Therefore the phase behavior pr
dicted by the EGCM is identical to that determined by t
GCM with e5e11, s5s11. Alternately, if n1,F /N>n1,S /N
>0 over the density and temperature range of interest,
EGCM and the GCM withe5e00, s5s00 will predict
equivalent phase behavior.

VI. NUMERICAL EXAMPLES

This section presents phase diagrams for the EGCM
which n1 varies with temperature and density in the range
interest. The EGCM has eight parameters which can be
ied independently (E,D,e00,e01,e11,s00,s01,s11). To sim-
plify calculations, the energy parameters were set equa
one another (e005e015e115e). The interparticle diameter
were varied within physically intuitive constraints, e.g
(s00,s01,s11 or s00.s01.s11). Three phases are consid
ered: fluid, bcc solid, and fcc solid. For clarity we have om
ted the solid–solid equilibrium lines in the phase diagra
shown in this section. For every case considered we use
more stable crystal form at a particular temperature and p
sure. Usually this is the bcc crystal; the fcc crystal is t
stable phase at low pressures, as in the GCM~see Fig. 2!.

Figure 3 shows the solid–fluid equilibrium predicted
the EGCM withs01/s0050.8, s11/s0050.7, D/e525, and
E5exp(250). The salient feature of Fig. 3 is the large reg
in which the fluid crystallizes upon isobaric heating~segment
of the melting curve joining points a and b!. This result is
quite significant, since to the best of our knowledge no g
eral classical microscopic theory or model has captured
molecular mechanisms sufficient to produce inverse melt
The anomalous region occurs along the upper pres
branch of the melting curve, where the volume of melting
negative. The region of inverse melting is bounded by
extrema in the melting pressure–temperature curve.
fractions of excited particles in the fluid and solid phas
xF5n1,F /N, xS5n1,S /N, along the melting curve are show
in Fig. 4. The difference between the fraction of excited p
ticles in solid and fluid phases is also shown. The verti
line Fig. 4~a! corresponds to the upper melting temperat
Tu associated with the corresponding pressurePu @point 3 in
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Fig. 4~b!#. Points to the left of the vertical line correspond
the fraction of excited particles along the low-pressu
branch of the melting curve (P,Pu), while points to the
right of the vertical line correspond to the fraction of pa
ticles excited along the high-pressure branch (P.Pu). At
low temperatures and pressures, the fraction of excited
ticles is vanishingly small,xF>xS>0. At the upper melting/
freezing temperature, point 3, the fraction of particles exci
is nonzero and is greater in the fluid than in the solid pha
Upon following the coexistence curve to higher pressur
the overwhelming majority of the particles in both phases
excited,xF>xS>1. At the maximum freezing/melting pres
sure, point 2, the fraction of particles excited has begun
decrease. Points 1 and 2 bound the region of inverse mel
The fraction of excited particles in this region decreases
the temperature is lowered. It is important to note that in t
region, the fraction of excited particles in the solid phase
always greater than the corresponding fraction in the fl
phase. This is consistent with the thermodynamic restrict

FIG. 3. Calculated phase behavior for the extended Gaussian core m
~EGCM! showing inverse melting interval ab on the high-pressure branc
the solid–liquid equilibrium curve. The model parameters ares01 /s00

50.8, s11 /s0050.7, D/e525, andE5exp(250). Coexistence curves~dark
line! and Kauzmann equal-entropy curves~dashed lines! are shown.~a!
Temperature–density projection. The density difference between coexi
phases is too small to be visible on the scale of the figure.~b! Pressure–
temperature projection. Solid–solid equilibrium lines are omitted for clar
Calculations are shown for the more stable crystal phase at any given
perature and pressure.
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that inverse melting occurs only when the entropy of
solid is greater than that of the fluid.

Under conditions wherexF>xS>0 or xS>xF>1, the
phase behavior predicted by the EGCM is the same as th
the GCM, withsav5s00 andeav5e00, or with sav5s11 and
eav5e11, respectively. Recognizing that pressure scales
energy over volume it follows that decreasing the charac
istic length scale,s, results in increasing pressure. It th
becomes possible to understand why the EGCM withs00

.s11 and values ofxF and xS shown in Fig. 4~a! predicts
inverse melting. A closer look atxF andxS along the high-
pressure branch of the melting curve reveals thatxF>xS

>1 for 0.0098>Tm* >0.0070 and thatxF>xS>0 for Tm*
<0.0018 (T* 5kBT/e). Therefore if the ratio ofs00 to s11

is large enough, the pressure at point 2@P2s00
3 /e

>PGCM* (s00/s11)
3# will be greater than at poin

1@P1s00
3 /e'PGCM* #, which is the case as seen in Fig. 4~b!

(P* 5Ps00
3 /e). The range of pressures over which t

EGCM model predicts inverse melting diminishes as the

FIG. 4. ~a! The fraction of excited particles in the fluid phase,xF ~solid line!
and the difference between the fraction of excited particles in the solid
fluid phases~dashed line! along the melting curve. The vertical line corre
sponds to the upper melting temperature,Tu ; values of the melting tempera
ture decrease to the right and left of this line~i.e., the melting curve is
‘‘unfolded’’ along the x-axis!. Points to the left of the vertical line corre
spond to the lower pressure branch (Pm,Pu) and points to the right corre-
spond to the upper pressure branch (Pm.Pu). Points 1 and 2 bound the
region of inverse melting. Point 3 corresponds to the upper melting temp
ture Tu and its corresponding pressure,Pu . EGCM model parameters as i
Fig. 3. ~b! Pressure–temperature projection of the calculated melting cu
e

of

s
r-

-

tio of s00 to s11 is decreased. The values ofD andE affect
the temperature range in which inverse melting is predict
While E is quite large in the case shown in Fig. 3, it is
reasonable estimate for the number of internal degree
freedom in a polymer chain. For example, a polymer ch
with 250 monomer units, each exhibiting 3 degrees of fr
dom, has approximately 3250 internal degrees of freedom
Like the GCM, the EGCM shows the sequence of freez
and remelting transitions, as well as the upper freezing te
perature.

It follows from Eq. ~4.15! that the free energy per par
ticle depends on the combination (bD2 ln E). Note, how-
ever, that the entropy per particle depends explicitly on lE
and only implicitly on D ~through the dependence of th
equilibrium value ofx1 on D!. Hence the occurrence of in
verse melting in our model is determined primarily by t
degeneracyE. For example, fors01/s0050.98, s11/s00

50.93,D/e54, a minimum value of lnE('30) is required to
cause inverse melting across the entire range of tempera
~i.e., b! explored.

Figure 3 also shows the computed Kauzmann curves
the EGCM. These loci identify the supercooled liquid sta
that have the same entropy, pressure, and temperature a
crystal; and the overpressurized crystal states that have
same entropy, pressure and temperature as the liquid. In
der to generate these Kauzmann curves for the EGCM,
Helmholtz free energies were numerically differentiated w
respect to temperature at constant density. Note that
separate Kauzmann curves are shown in Fig. 3; one is cy
and the other is not. The cyclic Kauzmann curve pas
through both extrema~a,b! in the melting pressure
temperature curve. This intersection is consistent with
Calusius–Clapeyron Eq.~2.1! which states that for a nonzer
volume of meltingDv an extremum in the melting pressur
temperature curve occurs in conjunction with a vanish
entropy of melting,Ds. The cyclic Kauzmann curve en
closes the region in which the entropy of the thermodyna
cally stable solid is greater than that of the supercooled flu
and the region in which the entropy of the overpressuriz
crystal is greater than that of the thermodynamically sta
fluid. Note that the entire region of inverse melting lie
within the cyclic Kauzmann curve.

A second Kauzmann curve exists at low temperatu
and mirrors the solid–fluid equilibrium curve of the GCM
The latter Kauzmann curve encloses the region in which
thermodynamically stable crystal has a higher entropy t
the supercooled fluid. Although we believe tentatively th
the prediction of this noncyclic Kauzmann curve is realis
we also recognize that the HNC and Einstein approximati
may be qualitatively unreliable in theT→0 limit. In order to
remain consistent with the third law of thermodynamics, t
entropy differenceDs(T) that becomes negative upon pas
ing the Kauzmann curve must in principle rise to zero
above in theT→0 limit.

Figure 5~a! shows the temperature dependence of
entropy difference between the supercooled fluid and
stable crystal at a reduced pressure of 0.411. This func
has multiple zeros indicated by points I, II, and III. Figu
5~b! shows points I, II, and III in the pressure–temperatu
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projection of the calculated phase diagram. By definit
these points must lie on Kauzmann curves. Starting at
melting temperature,T/Tm51, initial cooling of the fluid
results in the consumption of the entropy surplus. At poin
the entropy of the solid is equal to that of the fluid. Betwe
points I and II the entropy difference is negative. This cor
sponds to the region enclosed by the cyclic Kauzmann cu
A maximum in the entropy difference occurs between poi
II and III. At point III the entropy difference again vanishe
Beyond point III the entropy of the solid is greater than th
of the fluid. However, in order to remain consistent with t
third law of thermodynamics the entropy difference mu
eventually rise to zero or above in theT→0 limit, as dis-
cussed above.

The GCM was chosen as the basis for our study in p
because it exhibits re-entrant melting, or a condition of v
ishing melting volumeDv. This results in the possibility tha
the EGCM can predict inverse melting along the upper pr

FIG. 5. ~a! Isobaric temperature dependence of the entropy difference
tween the supercooled fluid and the stable crystal phase atP* 5Ps00

3 /e
50.411 for the EGCM with parameters as in Fig. 3. The function has m
tiple zeros shown by points I, II, and III.Dsm is the melting entropy at the
given pressure, andTm* 5kBTm /e is the melting temperature. The isobar
P* 50.411 intersects the coexistence curve at the melting temperaturTm*
50.0097. ~b! Pressure–temperature projection of the calculated mel
curve. Coexistence curves~solid lines!, Kauzmann equal-entropy curve
~dashed lines! and points I, II, and III, and the isobar atP* 50.411 are
shown.
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sure branch, associated with a maximum on the melt
pressure–temperature curve, or along the lower pres
branch, associated with a minimum on the melting pressu
temperature curve. We have shown in Fig. 3 that the EG
is capable of the former case when internal excitation o
particle results in a decrease ins (s11,s00). We will now
describe the case in whichs grows upon excitation (s11

.s00). Figure 6 shows solid–fluid equilibrium curves of th
EGCM with s00/s1150.7, s01/s1150.81, D/e515, andE
5exp(200). Once more the EGCM is capable of reproduc
inverse melting. This time the anomalous region occ
along the lower-pressure branch, where the melting volu
Dv is positive. As in the former example, the region of i
verse melting is bounded by the extrema in the melt
pressure–temperature curve. Figure 7 shows the fractio
excited fluid-phase particlesxF5n1,F /N along the freezing
curve, as well as the difference between the excited fracti
in the solid and fluid phases. The vertical line in Fig. 7~a!
corresponds to the upper melting temperatureTu associated
with the corresponding pressurePu . Points to the left of the

e-

l-

g

FIG. 6. Calculated phase behavior for the EGCM showing inverse mel
on the low-pressure branch of the solid–liquid equilibrium curve. The mo
parameters ares00 /s1150.70,s01 /s1150.81,D/e515, andE5exp(200).
Coexistence curves~dark solid! and Kauzmann equal-entropy curve
~dashed lines! are shown.~a! Temperature–density projection. The dens
difference between the coexisting phases is too small to be visible on
scale of the figure.~b! Pressure–temperature projection. Solid–solid eq
librium lines are omitted for clarity. Calculations are shown for the mo
stable crystal phase at any given temperature and pressure.
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vertical line correspond to the fraction of particles excit
along the low-pressure branch (P,Pu) while points to the
right of the vertical line correspond to the fraction of pa
ticles excited along the high-pressure branch (P.Pu). At
low temperatures along theP,Pu branch, virtually none of
the particles in either phase are excited,xF>xS>0. Points 1
and 2 bound the region of inverse melting. In this region,
fraction of particles that are excited increases as tempera
rises, and the fraction of excited particles in the solid phas
greater than in the fluid phase,xS.xF . At the upper melting/
freezing temperature, point 3, the fraction of excited partic
has decreased considerably, and the fraction of excited
ticles in the solid phase lags behind that of the fluid pha
xS,xF . Following the coexistence curve to higher pressu
reveals that essentially none of the particles are excited in
fluid or the solid phase,xF>xS>0.

In addition to the solid–fluid equilibrium curve, tw
Kauzmann curves are shown in Fig. 6. The first is cyclic a
passes through the two extrema in the melting pressu

FIG. 7. ~a! The fraction of excited particles in the fluid phase,xF ~solid line!
and the difference between the fraction of excited particles in the solid
the fluid phases~dashed line! along the melting curve. The vertical lin
corresponds to the upper melting temperature,Tu ; the values of melting
temperature decrease to the right and left of this line~i.e., the melting curve
is ‘‘unfolded’’ along thex-axis!. Points to the left of the vertical line corre
spond to the lower pressure branch (Pm,Pu) and points to the right corre-
spond to the upper pressure branch (Pm.Pu). Point 3 corresponds to the
upper melting temperatureTu , at its corresponding pressure,Pu . Points 1
and 2 bound the region of inverse melting. EGCM parameters as in Fi
~b! Pressure–temperature projection of the calculated melting curve.
e
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temperature curve. It encloses the regions in which the t
modynamically stable solid has a higher entropy than
supercooled fluid, and the expanded crystal has a higher
tropy than the thermodynamically stable fluid. The seco
Kauzmann curve occurs at low temperatures and is ope
is substantially identical to the low temperature Kauzma
curve shown in Fig. 3.

VII. CONCLUSIONS AND DISCUSSION

Inverse melting is an unusual type of phase behavior
which a liquid freezes when it is heated isobarically. Acco
ingly, the crystal has a higher entropy than the liquid w
which it coexists. A material exhibiting inverse melting ca
in principle, be transformed into a glass by cooling the cr
tal at moderate rates. Thus, this phenomenon should b
interest in materials processing applications, such as the
mation of amorphous alloys.27 Both isotopes of helium ex-
hibit inverse melting,8,9 and published data suggests that t
behavior may also occur in isotactic P4MP1.10 In proteins,
the often sharp transition between the biologically acti
organized, native state, and the biologically inactive de
tured forms provides a suggestive analogy to melt
phenomena.7 Interestingly, the denaturation locus of som
proteins exhibits maxima in the (P,T) plane, of the type D in
Fig. 1~b!.28,29The possible existence of minima of the type
in Fig. 1~a! has also been discussed.30 These examples sug
gest analogies and applications that warrant a dee
microscopically-based understanding of inverse melting.

From a purely theoretical viewpoint too, inverse meltin
possesses considerable interest. Extrema in the me
curve, such as points A, B, C, and D in Fig. 1, are therm
dynamic states where the entropy and enthalpy of the co
isting crystal and liquid phases are equal. The existence
such stable, experimentally accessible states, illustrates
logical disconnect between the vanishing of a liquid’s co
figurational entropy and a condition of equal entropy b
tween the liquid and crystal phases.6 The former case has
been suggested to correspond to structural arrest at an
glass transition,31 and underlies, for example, the Adam
Gibbs theory of cooperative relaxation in supercoo
liquids.32 The latter condition, which we consider in th
work, was originally thought of as a paradoxical situation
supercooled glassforming liquids,33,34 which could, upon
mild extrapolation, result in a potential conflict with th
Third Law. This equal-entropy condition is now understo
to pose no Third Law paradox, and carries no implication
relaxation behavior.6

Motivated by these examples, potential applicatio
suggestive analogies, and thermodynamic implications,
have proposed in this work a statistical mechanical mode
inverse melting. Our starting point has been the Gauss
core model. This potential provides a reasonable represe
tion of the effective, solvent-mediated interactions betwe
polymer chains13,17,18and between colloidal particles.19 Fur-
thermore, this model exhibits expansion upon freezi
which can be thought of as a precursor of inverse melt
@see Fig. 1~b!#. The model studied in this work is an inte
nally decorated version of the Gaussian core model. Parti
possess a spectrum of degenerate, thermally activated i
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nal states. Excitation leads to a change in a particle’s c
acteristic size, which in turn can result in a spatially perio
crystal having a higher entropy than the liquid with which
coexists. These internal degrees of freedom, in other wo
can give rise to inverse melting.

When the above ideas are translated into statistical
chanical language, and reasonable simplifications are
voked to calculate the free energies of the solid and fl
phases, both types of inverse melting shown in Fig. 1
obtained. Specifically, when the excited particles are su
ciently smaller than in their ground state, the behavior sho
in Fig. 1~b!, characteristic of P4MP1 and suggestive of p
teins, is obtained. Conversely, when the excited particles
sufficiently larger than in their ground state, the behav
shown in Fig. 1~a!, characteristic of both helium isotopes,
obtained. We believe that this is the first example of a cl
sical statistical mechanical model capable of reproducing
verse melting.

Several directions for further study are suggested by
work. Alternative statistical mechanical approaches could
clude lattice models as well as a field-theoretic, Landa
Ginzburg formulation.35 It is also possible to extend th
present model to incorporate interchain entropic effects
replacingb in Eq. ~4.9! by ~b2b* !, whereb* is a constant
~with units of inverse energy!, proportional to an entropic
interchain contribution. Simulation studies aimed at veri
ing our theoretical calculations, and explicit treatment
segment–solvent interactions, such as would be neede
investigate the analogy with proteins, are also possible di
tions for extension of this work. Several of these lines
inquiry are being considered.
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