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A statistical mechanical model for inverse melting
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Inverse melting is the situation in which a liquid freezes when it is heated isobarically. Both helium
isotopes exhibit intervals of inverse melting at low temperature, and published data suggests that
isotactic poly(4-methylpentenejlalso displays this unusual phase behavior. Here we propose a
statistical mechanical model for inverse melting. It is a decorated modification of the Gaussian core
model, in which particles possess a spectrum of thermally activated internal states. Excitation leads
to a change in a particle’s Gaussian interaction parameters, and this can result in a spatially periodic
crystal possessing a higher entropy than the fluid with which it coexists. Numerical solution of the
model, using integral equations and the hypernetted chain closure for the fluid phase, and the
Einstein model for the solid phases, identifies two types of inverse melting. One mimics the
behavior of the helium isotopes, for which the higher-entropy crystal is denser than the liquid. The
other corresponds to inverse melting in ddiymethylpentenejl where the high-entropy crystal is

less dense than the liquid with which it coexists. 2003 American Institute of Physics.

[DOI: 10.1063/1.1593018

I. INTRODUCTION of isobaric heating, has been called “inverse meltifid.The

. . . . . crystal phase that coexists with the liquid at an inverse-
First-order melting/freezing transitions between spa’uallymelting point has higher molar entropy than that liquid, the
periodic crystals and isotropic liquid phases of pure sub- '

R T reverse of the usual situation. Both helium isotopide and
stances have scientific and technological implications whos S .
S . . e at low temperature exhibit intervals of inverse
significance is hard to overestimate. Crystal structures an . 89 o . Lo
. ) ; I elting™* In addition, reports have been published indicat-
their melting temperatures reveal detailed characteristics a ; . .
. ) . - . that the polymeric substance isotactic poly-
atomic and molecular interactiohsThe transition itself methylpentene 1 “PAMP1.” also exhibits inverse meltin
forms the basis of the zone-refining method for purificafion. yip ' :

The ability to circumvent crystal nucleation and growth dur—th Rl bedstlor: our I:nk;)wledge, no %etne:jal m|_(t;)ro§cop|c
ing liquid supercooling is a key to forming many amorphous eory or model has yet been proposed to describe inverse
materials’ And of course the capacity to produce nearly per_meltmg in the domain of classical statistical mechanics. Be-
fect semiconducting single crystals enables much of moder_MOnd t'he |ntr!nS|(? desire to understand the reasons underly-
electronic technology. ing this fascinating phenomenon, the development of rel-

The most common melting scenario under constant pre€vant theory and/or well-defined models might have as a
sure(isobarig conditions entails positive increments for both PY-product suggestions for synthesis of new materials exhib-

' classical statistical model that displays a range of inverse
Ap=p"19—y (>0, melting phenomena. This model is an internally decorated
. (1.))  version of the so-called Gaussian core ma@CM).*1~14

As=sl)—g(e>, : : . ) .
In order to provide a clear basis for discussing our in-
Somewhat less common are those cases in whickemains  vVerse melting model, and to make this presentation as nearly
positive, butAv <0, i.e., the liquid is more dense than the Self-contained as practicable, Sec. Il reviews several funda-
crystal from which it is formed. The most familiar example mental and relevant thermodynamic identities. This is fol-
of this latter category, at ambient pressure, is water; elementewed in Sec. lll by a brief definition and description of the
exhibiting the same behavior are silicon, gallium, antimony,original undecorated GCM. Section IV introduces the ex-
and bismuttr. tended Gaussian core mod&GCM), motivated by simple
The present paper is devoted to a third type of meltingarguments about the necessity of coupling intramolecular de-
scenario, for which the entropy change is negative, and grees of freedom to intermolecular interactions in order to
Av can have either sign. This counterintuitive situation,create an inverse melting scenario. Section V presents our
which involves equilibrium freezing of the liquid as a result approximate, but we believe reliable, method for evaluating
free energies of the EGCM, required to locate melting tran-

dAuthor to whom correspondence should be addressed. Electronic maiﬁItlon curves. Numerical examples showing a dNerS'ty of
pdebene@princeton.edu inverse melting results appear in Sec. VI. Our conclusions,
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points,” on account of their thermodynamic kinship to simi-
lar vanishing-entropy points that play a role in the theory of
glass transition3.
CRYSTAL The first-order differential characterization of the transi-
tion curve provided by the Clausius—Clapeyron equation can
be extended to the second derivative, i.e., the curvature. The
result is especially simple at the extremal points of vanishing
LIQUID slopse71 (A,B,C,D). At any one of these special points one
T find

d*P(T) _ cp¥—cp”
dT2 T(U(qu)_v(cr)) !

where the numerator of the right member involves the differ-
ence of constant-pressure molar heat capacities for the two

LIQUID

(2.2

CRYSTAL phases at that extremal coexistence point. In conjunction
with Fig. 1, this latter identity establishes the following rela-
T tive magnitudes of the heat capacities at the four extremal
. . . N __points:
FIG. 1. The two inverse melting scenarios. The solid line is the melting .
curve, and the crystal phase is stable inside the hatched re@otv c@>clW>0 (at A0,
>0; (b) Av<0. At the extrema A, B, C, and D\s=0. The inverse melting P P 23
intervals are AB, and CD, respectively. clio)~ o(en— g (at B,D) (2.3
p p ey

The extremalKauzmann points A, B, C, D on a phase
transition curve, at which the molar entropy changevan-

and discussion of desirable directions for future StUdy of in-ishes, perforce are points at which the molar entha|py Change
verse melting phenomena, form the basis of the final Sech also vanishes,
VIL.

Ah=h"0)—h(N=TAs, (2.4)
By considering the variations in thermodynamic properties
Il. THERMODYNAMIC RELATIONS for both liquid and crystal phases at positions in the

T,P-plane displaced from the extremal points, it is possible

A first-order melting/freezing transition in the to derive expressions for the slopes of curves along which,
temperature-pressure plane is located by the transition curuespectivelyAs andAh continue to vanish,

Tm(p), representing the absolute melting/freezing tempera-

: . o dp clia) _ ~(en
ture as a function of the pressure. This transition can equally (_) S P p (2.5
well be represented by the inverse functipp(T), the dT/) o v(1-Tal@) -y (1-Tal)’
melting/freezing pressure at any given absolute temperature. ,
The most basic thermodynamic identity satisfied by the tran- dpP B CS'Q)— C(pcr)
sition locus is the Clausius—Clapeyron equation, describing | dT R :O_T[a(liq)v(liq)_a,(cr)v(cr)]' (2.6
its slope!® °

Here, thea’s stand for isobaric thermal expansion coeffi-
dPn(T)/dT=As/Av, (2.1 cients of the two phases. The curves for which these expres-
sions give the slopes are coincident only at the extremal

whereAs andAv were defined above in Eql.1). . o .
Two inverse melting categories can be distinguished, depomts of P,(T). As a generalization of the aforementioned

pending on the sign of the molar vogime char)age. These E:ucza:nggnap&gtﬁnzgg gllj:\\/lg d,ilstﬁrcl)z Z?] téyqu(g)z'g ?oar?
are illustrated schematically in Figs(al and Xb). The case . . ! ' o .

1(a), with inverse melting interval AB, involves opposite gneaclgnﬁi?égfl L%st,zetrgféitlizgrgggerite;ﬂﬁ“o?s fgjrnzalrlggn?f
signs for the numerator and the denominator in the Clausius(j—alIIy different ir? the present context 9
Clapeyron right-hand member, so the slope of the meltin . . L . .
curve is negative between A and B. The caée) with in- f r:t is Iusefulftﬁ derive the criteria that_dett;r\m'lanecthe sollgg
verse melting interval CD, involves negative signs for both® _t € slope ol Kauzmann CUrves a’g points A, B, €, an
the numerator and the denominator in the Clausius—(F'g' D. _Takmg Into accqunt |_nequaI|tV2.3) and Eq.(2.6),
Clapeyron right-hand member, so the slope of the meItinéhe possible cases are given in Table I.

curve is positive between C and D.

The zero-slope points A, B, C, and D in Figgajland
1(b) are positions along the melting curves at whick van- The standard GCM is a classical many-body model con-
ishes, as it continuously changes from positive to negativesisting ofN particles whose interaction potential, when those
or the reverse. Becauges=0 at these extrema, it has been particles have positions;---ry, has the following pairwise
suggested that such points should be called “Kauzmanadditive form?*

lll. REVIEW OF STANDARD GCM
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TABLE I. Criteria for the sign of the slope of the Kauzmann curve at the 0.0105 T . T
melting curve extrema. (a)
QUM (en dP,/dT>0? dP, /dT<0?
B(+), D(-)° 0.0075 | -
>0 >0 a1V <1+ 5 D> 1+ 5
>0 <0 always never ﬁ’
<0 >0 never always m
<0 <0 |a®)/|a]>1x5 | @)/ a9 <1+ 6 ~
A(+), C(—)° 0.0045 “
>0 >0 a0 >1+ 5 @D <1+ 5
>0 <0 never always L
<0 >0 always never fcc
< < (cr) (liq) + (cn) (liq) +
0 0 |a|a"V|<1xs [/ a"D|>1x 65 0'001%0

P, is the pressure along the Kauzmann curve. Equaft@®é) gives

dPy /dT. oG
PCoexisting liquid and crystal volumes are related W{f =v () (1+6),
where 6>0. The + sign applies at A and BXv>0), and the— sign . .
applies at C and DAv<0). (b) ]

1.0

Ps’le

D(ry-ry)=e>, exd—(r;/o)?] (e,6>0). (3.
= 0.5

Although the usual procedure in analyzing the statistical me- fee
chanics of this model is to choose energy and length scales 0.0 — —
0.0015 0.0045 0.0075 0.0105

so that bothe and o are equal to unity:**we retain them as
explicit parameters to lead naturally into the extension devel- kBT/g
oped in the following Sec. IV.

The N particles of the GCM nominally are spherically FIG.2. Calculated phase behavior for the conventional Gaussian core model
symmetric and structureless. However, it has been estalSGCM)' The Orr_]stein—Zernike equa_tion with hypernetted chain closure was
. . . . used for the fluid phase, and the Einstein model was adopted for the solid
lished that the effective interactions that operate betweeBhases(a) Temperature—density projection. The density difference between
complex molecules and their aggregates in suitable solventsexisting phases is too small to be visible on the scale of the figore.
can be close to repelling Gaussian functions of interparticléressure—temperature projection.
separation, consistent with the form shown in E2j1). This
correspondence includes solutions of linear polym&ts,
highly branched “star” polymer$® and colloidal particled?

A combination of analytical'*?° and simulatioff?* In order to devise a classical statistical mechanical
studies have reached consensus on the phase behavior of thedel that exhibits inverse melting, a mechanism must be
standard GCM. Three distinct phases appear. At low reducegresent to cause the fluid phase at coexistence to possess
temperaturekg T/ € (wherekg is Boltzmann’s constaptand  lower entropy than the crystal. Such a scenario can be pro-
relatively low reduced number densipw>, the model ex- duced by invoking additional particle degrees of freedom
hibits a face-centered cubidcc) crystal phase. Increasing beyond the center of mass positions--ry. We now pro-
po® at low reduced temperature causes a first-order phageose to extend the standard GCM by endowing each particle
change to a body-centered culfico) crystal. At sufficiently — with a spectrum of internal states whose presence influences
high temperature, for any density, the model exists in arthe system’s potential energy functidn This can be imple-
isotropic fluid phase. mented in such a way that the resulting extended Gaussian

Figure 2 presents the GCM phase diagram in thecore mode[EGCM) has the capacity to display inverse melt-
density—temperature and temperature—pressure planes. Timg of either type illustrated earlier in Fig. 1.
most noteworthy feature exhibited by Fig. 2 is the melting- For the task at hand it suffices to postulate a very simple
temperature maximum for the bcc crystal phase. At thidiscrete spectrum of internal states. In particular, we suppose
maximum, the molar volumes of the coexisting crystal andthat each particle in isolation possesses a nondegenerate
fluid phases are equal. This represents the position of sigground statdat zero energy and a group oE>1 degener-
change forAv, which is positive at lower density and pres- ate and indistinguishable excited states. This latter group lies
sure, and negative at higher density and pressure. Howevebove the ground state by an excitation energy to be denoted
As for the melting process, whether fcc or becce crystals aréby A. For accounting purposes, it will be useful to describe
involved, is always positive, i.e., no inverse melting appearshe internal excitation state of each particleil<N by a
for the standard GCM. discrete variabley; ; this variable will equal O if particle is

IV. EXTENDED GCM
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in its internal ground state, and will equal 1 if it is in any of N
the E internal excited states. When any one of khparticles nlz_z M - (4.8
is isolated, the probabilitx, that it is internally excited has =1
the following form: The factorsl'(B), one for each particle, arise from integra-
B 1 1 tions over conjugate momenta; they are necessary to render
x1=(pi)=[E""expBA)+1] 77, (4. Q dimensionless, but play no role in determining phase equi-
whereB=1/kgT is the inverse temperature. The CorrespondJibria and can subsequently be disregarded. Configurational

ing entropy per particle due to the internal degrees of freeintegrals for theN-body system with a fixed number, of
dom is internal excitations have been denoted¥{y8,n,) in expres-
SN — (1 o sion (4.7) above. The detailed form of these latter quantities
B= (1 X1)|n(1 Xl) X1 |n(X1/E). (4.2) is the fO”OWiI’ng
This entropy varies between 0 at absolute zero temperature,
andkg In(E+1) at infinite temperature. It is easy to see from Y(B,n1)=f drl"'j dry exp{ — Béwo
Eq. (4.1) thatx, is a monotonically decreasing function gf

This independent-particle excitation probability reaches the N-n3—1 N-ng
value 1/2(i.e., equal chance for ground state, as for excited X 2 . E exd —(rj; l00)?]
state$ when =1 j=irl
Bup=A"TINE 4.3 o <
12 ' ' —,3601_2 _ > exfd —(ri;/oo)?]
Increasing both andE so as to keep this last ratio fixed has =1 J=N=nHd
the effect of narrowing the excitation transition. This sharp- N-1 N
ening can be measured by the rate of change;,oét the —Ben >, > exf —(rij/o1)?] -
halfway point, I=N=ng+1 =i+l
dx A 4.9
(@) =T 7 (4.4 For notational simplicity we have used 0,1 subscripts on the
B €, o parameters to indicate the excitation state of the particle

In order to produce an inverse-melting scenario, the in.oair involved. If all the values of's and o’s were, respec-

ternal degrees of freedom need to interact with the centroiavely’ equal to one anothe¥(,n;) would be independent
positions of the particles in such a way that a spatially peri-Of ny and would correspond to the Helmholtz free energy
odic crystal phase can have greater molar entropy than tHXCess of the unaltered GCM &t In order to account for
liquid with which it thermodynamically coexists. Our ap- variations ine and o we introduce a mean pair of Va'!JeS
proach has been to postulate that the Gaussian interactigisd1) @ndoa{ni). Y(B,n,) can then be decomposed into
parameters, o depend on the excitation variablgs, while WO contributions,

otherwise retaining the form, Ed3.1), of the many-body Y(B,n)=VN exp{—N[BfGCM(Bea\,,pog\,(nl))

interaction potential. Thus we write

+chorr(ﬂfcorr’/)o'gorl(nl))]}' (4.10

Drae sy pin) Heref scy is the excess Helmholtz free energy per particle of
5 the uniform GCM at the,, ando,,, andf.,, is a correction
:Ej (i, i) exp{—[rij/o(pi,pi) 1% (4.5 term to the free energy that accounts for deviations and

e from their mean values. For any given valuemfit may
This kind of presumption is at least somewhat realistic, inbe possible to choosg,, and o ,, so that the correction van-
view of experimental observations of size changes of polyishes. Considering only linear corrections for simplicity, the
mer coils that induce fcc to bee ordering changes. configurational free energy for the parameter-varied GCM

A basic quantity of interest, especially for the study of must have the following form:

equilibrium phase changes, is the canonical partition func-
tion Q(N,V,T). It gives the Helmholtz free enerdy as a  Nfgew(Be,pa)+ 2, [A(Be,pa®) Soij+B(Be,pa’) Se;].
function of number density and temperature, =]

(4.11
Q=exp(—BF) (4.6 The coefficientsA and B can be identified, respectively, by
from which all other thermodynamic properties can be ob-changing allo’s together, or alle’s together,
tained in turn. A straightforward analysis of the EGCM as 6pa? d(feem)
postulated leads to the following expression: A(Be,po®)= INE= 3
\ d(po)
EMexp— BAN,) 28 d(feem) (4.12

Q=TI X

n{=

Y(B.n), (47 3=
BBero)=N=1 aige) -

where we have collected all equal contributions representingpplying these formal linear correction results to the excited

the same total number<On;<N of internally excited par- polymer case, the configurational free energy will be deter-

ticles, mined by

n1|(N_nl)l
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2n n,
1R

1
ny 2 2n, !
(1— W) (€00~ €av(N1)) + W( 1- W) (€01~ €alN1))

n,\?
(1_ W) (00— TadNy)) +

Y(B!nl)

W\
In( ):NIB{ faoml Bea,poa(N)]+3pos(ny) d(po?)

2
nl {9
_O'a\/(nl))+(ﬁ (o1~ oadny)) B35
n,\?
IN (€11~ €aN1)) | (- (4.13
T
Therefore the linear corrections vanish if one chooses known functions,g(r) andc(r), one more relation or clo-
n,\2 on n o\ 2 sure is needed to determinér) andh(r). The hypernetted-
Ua\/(nl):(l_ _l) oot _l( 1= oot | ] o chain (HNC) equation, which we adopt in this work,
§ N N N provides an approximate relationship betwek(r) and
(4.14 c(r). ltis given by
ny\? 2n, ny ny |2 c(r)=—pBg¢(r)+h(r)—In[1+h(r)], (5.2
63"(n1):<1_ W) o W(l_ NN e where ¢(r) is the pair potentiat® A recent theoretical and

computational investigation of the GCM reported that the
HNC closure is reliable in predicting structure in the fluid
phase over a large range of densities and temperattitds.

of the thermodynamic quantities can be calculated once the
radial distribution function has been determined as a function

By making this choice, the canonical partition function sim-
plifies to the following:

EM exp(— BAN;)

N
Q=[r(®I" X

nit(N—ny)! . : : )
of T andp. The virial pressure equation provides a relation-
x exp(—NBfgem Beal 1), poa(n)]). (4.15  ship between the radial distribution function and the excess

In the thermodynamic limit, the sum on the right-hand sige?"essure:
of Eq. (4.15 can be replaced by its maximum term. How- 2mp? [ 3
ever, in order to evaluate E(4.15 an expression fof gy, Pex=P—pkgT=— 3 fo r°¢’(ryg(rydr, 53
the excess Helmholtz free energy of the unaltered GCM, is
needed for both the fluid and solid phases. wheré® ¢'(r)=d¢(r)/dr. The excess Helmholtz free en-

The extended GCM witlE=1 corresponds to a binary ergy can be determined by integrating the thermodynamic
GCM, but with temperature-dependent composition. Impor{elation Pg,= — dF¢,/dV from p=0 up to the given density,
tant aspects of the binary GCM have been investigated re4nder the initial conditiorF¢,(p=0,T)=0. The Helmholtz
cently, including fluid—fluid separatidhand wetting®* Over  free energy is given by the sum of the ideal and excess terms,
the range .of parameters studied in f[his work, no fluid—fluid Flauid , T) pA3> Folp.T)
transition is predicted to occur. It is possible that a pro- =In + ,
nounced nonadditivity of particle diameterg 6> 011,020 NkgT e NkgT

may destabilize the fluid phase and cause separation. Thighere A is the de Broglie wavelength for the structureless
will be investigated in future work. GCM particles.

(5.9

V. FREE ENERGY OF THE GCM

. . . . B. Solid phase
This section outlines the procedure for calculating the ap

Helmholtz free energies of the respective phases in the In order to calculate the free energies of the unaltered
GCM. For the fluid phase, integral equations are adoptedsCM a theory is needed for the candidate crystalline states
For the solid phases the Einstein model is implemented. of the model. Because the GCM is a soft interaction pair
potential, a harmonic approximation in the solid is justified
and the simple Einstein model is adopted. The Einstein
The quantity of interest is the radial distribution func- model approximates the crystal asl ndependent harmonic
tion, g(r). The starting point for the calculation gf(r) is  oscillators?® All the molecules are assumed to vibrate at one

A. Fluid phase

the Ornstein—Zernik¢OZ) equation, frequency, the Einstein frequencywg), about their equilib-
rium positions. The Einstein frequency is a measure of the
h(r12)=C(f12)+Pf c(rih(r,g)drg, (5.1 restoring force on a single particle due to the cage of neigh-

boring particles. The Einstein frequency is proportional the
where h(r)=g(r)—1, and c(r) is the direct correlation trace of Hessian matrix. The Hessian matrix is calculated
function. The OZ equation is, in effect, the definition of the numerically by summing the second derivative of the pair
direct correlation functioR® As this equation relates two un- potential over all neighbors with respect to a single central
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particle. The Helmholtz free energy of the Einstein solid in 0.0105
the high-temperature classical limit is given by

Fsold=yy+3NkgT In foe
-0 B kgT
whereU, is the potential energy antl is Planck’s constant XY
divided by 2. o
With expressions for the free energies of the solid and
fluid phases of the GCM, Eq5.4) and Eq.(5.5), respec- 0.0045
tively, it is now possible to calculate phase equilibrium for
the EGCM by Egs(4.14) and(4.15. In the thermodynamic
limit only the maximum term of Eq(4.15 is significant; it
determines the fraction of excited particles/N, as a func-
tion of p and B. In general, two internal consistency condi- 3

: (5.9

tions arise: one forr,, and one fore,,, Eq.(4.14). If all of PO

the particles in the solid and fluid phases are excited, v T v Y v Y
nys/N=1 andn,r/N=1, respectively, over the range of (b) ~

temperatures and densities of interest, @ql4 shows that 15k / \ i
o= 011 and €5~ €11. Therefore the phase behavior pre- ' / \b

dicted by the EGCM is identical to that determined by the /
GCM with e=¢€;,, o=07y;. Alternately, ifny g /N=n; s/N

=0 over the density and temperature range of interest, the
EGCM and the GCM withe=¢€qy, o=0qy Will predict
equivalent phase behavior.

/e
—
(=]

[=3

Po’

0.5

VI. NUMERICAL EXAMPLES Solid

)
This section presents phase diagrams for the EGCM in %',%o'i? 0.0045 0.0075 0.0105
which n, varies with temperature and density in the range of k Tre
interest. The EGCM has eight parameters which can be var- B
ied independentlyE,A, eq0, €01,€11,000:001,011)- 1O SIM-  FIG. 3. Calculated phase behavior for the extended Gaussian core model
plify calculations, the energy parameters were set equal t&=GCM) showing inverse melting interval ab on the high-pressure branch of

_ — . ; ; ; the solid—liquid equilibrium curve. The model parameters agg/og
gne another (OO €01~ €11 6)' The mterpartlcle diameters =0.8, 011/ 0¢0=0.7, Ale=25, andE=exp(250). Coexistence curvédark

were varied within physically intuitive constraints, €.0.1 line) and Kauzmann equal-entropy curvégashed lingsare shown.(a)
(090<001<0110r o> 091> 011). Three phases are consid- Temperature—density projection. The density difference between coexisting

ered: fluid, bee solid, and fcc solid. For clarity we have omit- Phases is too small to be visible on the scale of the figlePressure—
‘el e : : ; emperature projection. Solid—solid equilibrium lines are omitted for clarity.
ted the solid—solid equ'“b“um lines in the phase dlagramstCalculations are shown for the more stable crystal phase at any given tem-

shown in this section. For every case considered we use thRrature and pressure.
more stable crystal form at a particular temperature and pres-
sure. Usually this is the bcc crystal; the fcc crystal is the
stable phase at low pressures, as in the GG&k Fig. 2 Fig. 4(b)]. Points to the left of the vertical line correspond to
Figure 3 shows the solid—fluid equilibrium predicted by the fraction of excited particles along the low-pressure
the EGCM withog1/09p=0.8, 011/090=0.7, Ale=25, and  branch of the melting curveR<P,), while points to the
E=exp(250). The salient feature of Fig. 3 is the large regiorright of the vertical line correspond to the fraction of par-
in which the fluid crystallizes upon isobaric heatisggment ticles excited along the high-pressure branéh>P,). At
of the melting curve joining points a and.brhis result is  low temperatures and pressures, the fraction of excited par-
quite significant, since to the best of our knowledge no genticles is vanishingly smalbxg=xs=0. At the upper melting/
eral classical microscopic theory or model has captured th&eezing temperature, point 3, the fraction of particles excited
molecular mechanisms sufficient to produce inverse meltingis nonzero and is greater in the fluid than in the solid phase.
The anomalous region occurs along the upper pressurdpon following the coexistence curve to higher pressures,
branch of the melting curve, where the volume of melting isthe overwhelming majority of the particles in both phases are
negative. The region of inverse melting is bounded by theexcited,xp=xg=1. At the maximum freezing/melting pres-
extrema in the melting pressure—temperature curve. Theure, point 2, the fraction of particles excited has begun to
fractions of excited particles in the fluid and solid phasesdecrease. Points 1 and 2 bound the region of inverse melting.
xe=n1e/N, Xs=n; s/N, along the melting curve are shown The fraction of excited particles in this region decreases as
in Fig. 4. The difference between the fraction of excited parthe temperature is lowered. It is important to note that in this
ticles in solid and fluid phases is also shown. The verticategion, the fraction of excited particles in the solid phase is
line Fig. 4a) corresponds to the upper melting temperaturealways greater than the corresponding fraction in the fluid
T, associated with the corresponding presdeyépoint 3in  phase. This is consistent with the thermodynamic restriction
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tio of o to 044 is decreased. The values &fandE affect

the temperature range in which inverse melting is predicted.
While E is quite large in the case shown in Fig. 3, it is a
reasonable estimate for the number of internal degrees of
freedom in a polymer chain. For example, a polymer chain
with 250 monomer units, each exhibiting 3 degrees of free-
dom, has approximately?® internal degrees of freedom.
Like the GCM, the EGCM shows the sequence of freezing
and remelting transitions, as well as the upper freezing tem-
perature.

It follows from Eq. (4.15 that the free energy per par-

0.0075 0.010 0.0075 0.005 0.0025 ticle depends on the combinatioB4 —In E). Note, how-
k. T /e ever, that the entropy per particle depends explicitly oB In
and only implicitly on A (through the dependence of the
1.5 (= : r r : equilibrium value ofx; on A). Hence the occurrence of in-
2 (b) verse melting in our model is determined primarily by the
] degeneracyE. For example, forog/og=0.98, o11/00g
J =0.93,A/e=4, a minimum value of Ifie(=30) is required to
(T.P) cause inverse melting across the entire range of temperatures
ur u (i.e., B) explored.

Figure 3 also shows the computed Kauzmann curves for
the EGCM. These loci identify the supercooled liquid states
3 that have the same entropy, pressure, and temperature as the
crystal; and the overpressurized crystal states that have the
same entropy, pressure and temperature as the liquid. In or-
der to generate these Kauzmann curves for the EGCM, the
Helmholtz free energies were numerically differentiated with

kBT/S respect to temperature at constant density. Note that two
] ) ] ) ) o separate Kauzmann curves are shown in Fig. 3; one is cyclic
FIG. 4. (a) The fraction of excited patrticles in the fluid phagg,(solid line)

and the difference between the fraction of excited particles in the solid and'rdnd the other is not. The cyclic Kauzmann curve passes

fluid phases(dashed ling along the melting curve. The vertical line corre- through both extrema(a,b in the melting pressure-
sponds to the upper melting temperatdrg; values of the melting tempera-  temperature curve. This intersection is consistent with the
ture decrease to the right and left of this lifiee., the melting curve is Calusius—Clapeyron E2.1) which states that for a nonzero
“unfolded” along the x-axis). Points to the left of t'he vertical 'Ilne corre- volume of meltingAv an extremum in the melting pressure-
spond to the lower pressure brandh(< P,) and points to the right corre- . . . . L
spond to the upper pressure brandh,&P,). Points 1 and 2 bound the t€Mperature curve occurs in conjunction with a vanishing
region of inverse melting. Point 3 corresponds to the upper melting temperaentropy of melting,As. The cyclic Kauzmann curve en-
tu_reTu and its corresponding DI'ESSU'ELj ..EGCM model parameter_s as in closes the region in which the entropy of the thermodynami_
Fig. 3. (b) Pressure—temperature projection of the calculated melting curvecally stable solid is greater than that of the supercooled fluid,
and the region in which the entropy of the overpressurized
crystal is greater than that of the thermodynamically stable
that inverse melting occurs only when the entropy of thefluid. Note that the entire region of inverse melting lies
solid is greater than that of the fluid. within the cyclic Kauzmann curve.

Under conditions wherexg=xg=0 or Xs=xg=1, the A second Kauzmann curve exists at low temperature,
phase behavior predicted by the EGCM is the same as that @ind mirrors the solid—fluid equilibrium curve of the GCM.
the GCM, witho,,= ogg ande,,= €gg, Or with o,,=0;and  The latter Kauzmann curve encloses the region in which the
€.~ €11, respectively. Recognizing that pressure scales athermodynamically stable crystal has a higher entropy than
energy over volume it follows that decreasing the characterthe supercooled fluid. Although we believe tentatively that
istic length scalep, results in increasing pressure. It thus the prediction of this noncyclic Kauzmann curve is realistic
becomes possible to understand why the EGCM witl  we also recognize that the HNC and Einstein approximations
>0y, and values oikg and xg shown in Fig. 4a) predicts  may be qualitatively unreliable in tHB— 0 limit. In order to
inverse melting. A closer look at- andxs along the high-  remain consistent with the third law of thermodynamics, the
pressure branch of the melting curve reveals thatxs  entropy differenceAds(T) that becomes negative upon pass-
=1 for 0.0098=T;>=0.0070 and thatp=xg=0 for T}, ing the Kauzmann curve must in principle rise to zero or
<0.0018 [T* =kgT/€). Therefore if the ratio ofrgg to o1;  above in theT—0 limit.
is large enough, the pressure at poinf Pgagde Figure 5a) shows the temperature dependence of the
=P¥(0oo/o1)®] will be greater than at point entropy difference between the supercooled fluid and the
1[Pyogd e~Pcwl, which is the case as seen in Figby  stable crystal at a reduced pressure of 0.411. This function
(P*=Poj,/€). The range of pressures over which thehas multiple zeros indicated by points I, II, and Ill. Figure
EGCM model predicts inverse melting diminishes as the rab(b) shows points I, I, and Il in the pressure—temperature
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FIG. 6. Calculated phase behavior for the EGCM showing inverse melting
FIG. 5. (a) Isobaric temperature dependence of the entropy difference been the low-pressure branch of the solid—liquid equilibrium curve. The model
tween the supercooled fluid and the stable crystal phade* atPo3/e parameters areoy/01,=0.70, 0,/ 01,=0.81, A/le=15, andE=exp(200).
=0.411 for the EGCM with parameters as in Fig. 3. The function has mul-Coexistence curvegdark solig and Kauzmann equal-entropy curves
tiple zeros shown by points |, Il, and IIAs,, is the melting entropy at the (dashed lingsare shown(a) Temperature—density projection. The density
given pressure, andly,=kgT,,/€ is the melting temperature. The isobar of difference between the coexisting phases is too small to be visible on the
P*=0.411 intersects the coexistence curve at the melting temperEfure scale of the figure(b) Pressure—temperature projection. Solid—solid equi-
=0.0097. (b) Pressure—temperature projection of the calculated meltinglibrium lines are omitted for clarity. Calculations are shown for the more
curve. Coexistence curvesolid lines, Kauzmann equal-entropy curves stable crystal phase at any given temperature and pressure.
(dashed lingsand points I, Il, and Ill, and the isobar &*=0.411 are
shown.

sure branch, associated with a maximum on the melting

pressure—temperature curve, or along the lower pressure
projection of the calculated phase diagram. By definitionbranch, associated with a minimum on the melting pressure—
these points must lie on Kauzmann curves. Starting at theemperature curve. We have shown in Fig. 3 that the EGCM
melting temperatureT/T,=1, initial cooling of the fluid is capable of the former case when internal excitation of a
results in the consumption of the entropy surplus. At point Iparticle results in a decrease in(o1<ogo). We will now
the entropy of the solid is equal to that of the fluid. Betweendescribe the case in whichr grows upon excitation
points | and Il the entropy difference is negative. This corre-> o). Figure 6 shows solid—fluid equilibrium curves of the
sponds to the region enclosed by the cyclic Kauzmann curvéeeGCM with o/ 01,=0.7, 091/011=0.81, Ale=15, andE
A maximum in the entropy difference occurs between points=exp(200). Once more the EGCM is capable of reproducing
[l and IIl. At point Il the entropy difference again vanishes. inverse melting. This time the anomalous region occurs
Beyond point Il the entropy of the solid is greater than thatalong the lower-pressure branch, where the melting volume
of the fluid. However, in order to remain consistent with theAv is positive. As in the former example, the region of in-
third law of thermodynamics the entropy difference mustverse melting is bounded by the extrema in the melting
eventually rise to zero or above in tAie—0 limit, as dis- pressure—temperature curve. Figure 7 shows the fraction of
cussed above. excited fluid-phase particles-=n, /N along the freezing

The GCM was chosen as the basis for our study in parturve, as well as the difference between the excited fractions

because it exhibits re-entrant melting, or a condition of vanin the solid and fluid phases. The vertical line in Figa)7
ishing melting volume\v. This results in the possibility that corresponds to the upper melting temperaftlijeassociated
the EGCM can predict inverse melting along the upper preswith the corresponding pressulg,. Points to the left of the
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temperature curve. It encloses the regions in which the ther-
modynamically stable solid has a higher entropy than the

41.0 supercooled fluid, and the expanded crystal has a higher en-
tropy than the thermodynamically stable fluid. The second

Kauzmann curve occurs at low temperatures and is open. It
is substantially identical to the low temperature Kauzmann

curve shown in Fig. 3.

1.0

(xg-X:) x 50

0.0 0.0 VII. CONCLUSIONS AND DISCUSSION

Inverse melting is an unusual type of phase behavior, in
which a liquid freezes when it is heated isobarically. Accord-
'0'05008 0.009 0.010 000'3'5 ingly, the crystal has a higher entropy than the liquid with
T /e which it coexists. A material exhibiting inverse melting can,
" in principle, be transformed into a glass by cooling the crys-
tal at moderate rates. Thus, this phenomenon should be of
interest in materials processing applications, such as the for-
mation of amorphous alloy<. Both isotopes of helium ex-
hibit inverse melting:® and published data suggests that the
behavior may also occur in isotactic P4AMP1In proteins,
the often sharp transition between the biologically active,
organized, native state, and the biologically inactive dena-
tured forms provides a suggestive analogy to melting
phenomend. Interestingly, the denaturation locus of some
proteins exhibits maxima in thé>(T) plane, of the type D in
Fig. 1(b).?8?°The possible existence of minima of the type B
in Fig. 1(a) has also been discuss&dThese examples sug-
0.004 0.006 0.008 0.010 gest analogies and applications that warrant a deeper,
k Tle microscopically-based understanding of inverse melting.
B From a purely theoretical viewpoint too, inverse melting
FIG. 7. (a) The fraction of excited particles in the fluid phase,(solid line ~ POSSesses considerable interest. Extrema in the melting
and the difference between the fraction of excited particles in the solid an¢urve, such as points A, B, C, and D in Fig. 1, are thermo-
the fluid phasegdashed ling algng the melting curve. The vertical_line dynamic states where the entropy and enthalpy of the coex-
corresponds to the upper melting temperatdig; the values of melting ;qtiny crystal and liquid phases are equal. The existence of
temperature decrease to the right and left of this (ire, the melting curve . . .
is “unfolded” along thex-axis). Points to the left of the vertical line corre- SUCh stable, experimentally accessible states, illustrates the
spond to the lower pressure brand?(<P,) and points to the right corre- logical disconnect between the vanishing of a liquid’s con-
spond to the upper pressure brané¢h,tP,). Point 3 corresponds to the figurational entropy and a condition of equal entropy be-
upper melting temperaturg, , at its corresponding pressuf, . Points 1 nyeen the liquid and crystal phase3he former case has
and 2 bound the region of inverse melting. EGCM parameters as in Fig. 6, .
(b) Pressure—temperature projection of the calculated melting curve. been suggested to correspond to structural arrest at an ideal
glass transitiod: and underlies, for example, the Adam—
Gibbs theory of cooperative relaxation in supercooled
vertical line correspond to the fraction of particles excitedliquids3? The latter condition, which we consider in this
along the low-pressure brancP{P,) while points to the work, was originally thought of as a paradoxical situation in
right of the vertical line correspond to the fraction of par- supercooled glassforming liquid$3* which could, upon
ticles excited along the high-pressure branéh>P,). At mild extrapolation, result in a potential conflict with the
low temperatures along tHe<<P, branch, virtually none of Third Law. This equal-entropy condition is now understood
the particles in either phase are exciteg=xs=0. Points 1  to pose no Third Law paradox, and carries no implication for
and 2 bound the region of inverse melting. In this region, theelaxation behavict.
fraction of particles that are excited increases as temperature Motivated by these examples, potential applications,
rises, and the fraction of excited particles in the solid phase isuggestive analogies, and thermodynamic implications, we
greater than in the fluid phases> xg . At the upper melting/ have proposed in this work a statistical mechanical model of
freezing temperature, point 3, the fraction of excited particlesnverse melting. Our starting point has been the Gaussian
has decreased considerably, and the fraction of excited pacore model. This potential provides a reasonable representa-
ticles in the solid phase lags behind that of the fluid phasetion of the effective, solvent-mediated interactions between
xs<Xg . Following the coexistence curve to higher pressuregpolymer chain§*'’8and between colloidal particléd Fur-
reveals that essentially none of the particles are excited in thinermore, this model exhibits expansion upon freezing,
fluid or the solid phasesg=xs=0. which can be thought of as a precursor of inverse melting
In addition to the solid—fluid equilibrium curve, two [see Fig. 1b)]. The model studied in this work is an inter-
Kauzmann curves are shown in Fig. 6. The first is cyclic anchally decorated version of the Gaussian core model. Particles
passes through the two extrema in the melting pressurepossess a spectrum of degenerate, thermally activated inter-
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