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Abstract

Walter Kauzmann’s classic 1948 review of liquid supercooling and glass formation drew attention to the temperatures
at which (by extrapolation) enthalpies and entropies of liquid and crystal phases would appear to become equal. In
the temperature–pressure(T, p) plane, the collection of such ‘Kauzmann temperatures’ generate characteristic curves.
The present study examines the connection of those Kauzmann loci to equilibrium inverse melting phenomena, i.e.
cases where isobaric heating causes freezing of the liquid. Such cases are associated with local minima or maxima in
the melting curvep (T), and we point out the possible relevance of melting curve maxima to the thermodynamicsm

of protein folding. Both equal-enthalpy and equal-entropy Kauzmann curves must pass through melting curve extrema.
Three thermodynamic identities have been obtained to describe the vicinity of these points; they involve, respectively,
the slopes of the two Kauzmann curves, and the second temperature derivative of the melting pressure. The second
of these three equations is formally identical to the first Ehrenfest relation for second-order phase transitions, but
carries no phase-transition implication. For purposes of specific numerical illustration, the inverse-melting behavior
displayed by He at low temperature has been analyzed in detail.3

� 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

It is always a pleasure to recognize and to honor
the lasting scientific contributions of an esteemed
colleague and friend. In the present instance, it is
our good fortune to do just that for Professor
Walter Kauzmann. The focus of this paper arises
from the need to understand the properties of
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609-258-0211.

E-mail address: pdebene@princeton.edu
(P.G. Debenedetti).

supercooled liquids, and the glasses that they form
as a result of supercooling. The historical source
of the underlying ideas with which we deal below
is a famous review article published by Walter
Kauzmann in 1948w1x, which for good reason
continues to receive frequent literature citations
even today. A vast amount of research in this
scientifically challenging field has occurred fol-
lowing appearance of that review, with a corre-
spondingly vast array of published papers. For
readers not intimately involved with supercooled
liquids and glasses, it may be helpful to point out
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that several recent comprehensive reviews also
exist, documenting the experimental and theoreti-
cal advances that have been made subsequent to
1948 w2–6x.

Professor Kauzmann stressed the significance of
the experimental fact that, for most liquids, upon
supercooling the constant-pressure heat capacity

exceeds that of the thermodynamicallylŽ .C TŽ .p

stable crystal phase , with the discrepancycŽ .C TŽ .p

widening with increasing extent of supercooling.
Consequently, reduction in absolute temperatureT
causes the metastable liquid to lose both entropy
and enthalpy faster than does the stable crystal.
Although a glass transition or crystal nucleation
event typically would intervene to frustrate contin-
uation of this trend to very low temperature,
smooth and ‘reasonable’ extrapolation of the heat
capacities indicates that the entropy of the super-
cooled liquid would equal that of the crystal at a
positive ‘Kauzmann temperature’T . FurtherK

reduction in temperature toward absolute zero,
following the same extrapolation, would then pro-
duce a non-crystalline state with entropy substan-
tially below that of the stable crystal phase, in
clear violation of the third law of thermodynamics
w7x. This conundrum has traditionally been called
the ‘Kauzmann paradox’w8x. An analogous enthal-
py crossing would occur(at least for ‘fragile’ glass
formers w3,4x) at another temperature,T (whereH

0-T -T ), implying that the corresponding prob-H K

lematical non-crystalline state atTs0 would also
be substantially lower in enthalpy than the crystal.

The notion that a supercooled liquid might run
out of available molecular configurations at, or
near, a Kauzmann temperatureT , should haveK

implications beyond thermodynamics, and so has
long influenced the interpretation of flow and
relaxation behavior. As an example, this has tended
to provide legitimacy to the presence of a
divergence temperature T )0 in the0

Vogel–Tammann–Fulcher(‘VTF’ ) expression for
the temperature dependence of shear viscosity
w9–11x. It also underlies the conceptual basis of
the Adam–Gibbs theory of relaxation phenomena
w12x.

For obvious reasons, the majority of the exper-
imental studies of supercooled liquids and glasses

involves ambient pressure. However, a comprehen-
sive view of the properties of those metastable
states includes the effects of varying pressure,
extending even into the negative pressure(isotro-
pic tension) regime w13,14x. In the analysis pro-
vided below, we shall be interested in examining
behavior in the temperature–pressure(T,p) plane.
As examples, the two temperatures just mentioned
define curvesT (p) andT (p) in that plane. TheseK H

functions can be grouped with, but remain distin-
guished from, the familiar thermodynamic melting
temperatureT (p), and the experimental conven-m

tion-dependent glass-transition temperatureT (p).g

Our primary objective in this paper is to elabo-
rate upon an earlier suggestionw8x, specifically
that comprehensive understanding of the many-
body phenomena underlying the Kauzmann para-
dox should include analysis of ‘inverse melting’.
This unusual and counter-intuitive phenomenon
involves liquids at thermodynamic equilibrium that
crystallize upon isobaric addition of heat, the
reverse of the usual situation. The relevance to
supercooling and glass formation is that these cases
permit straightforward identification of a Kauz-
mannT (p) curve, at least one point of which liesK

on the equilibrium melting curveT (p). Thism

avoids the usually encountered uncertainty associ-
ated with heat capacity extrapolation below a glass
transition temperature, one consequence of which
has been argument in the literaturew15–17x over
whether or not a thermodynamic ‘ideal glass tran-
sition’ in principle should exist close toT (p).K

Section 2 identifies some known real-substance
examples of the inverse melting phenomenon.
Interestingly, this listing cites an example drawn
from protein physical chemistry, another subject
toward which Walter Kauzmann has contributed
fundamental insightsw18x. Section 3 analyzes ther-
modynamic relations for the two phases exhibiting
the inverse-melting property, and deduces families
of curves in theT,p plane that describe constant
entropy differences(generalized Ehrenfest rela-
tions), as well as curves of constant enthalpy
differences, between the two phases of interest.
Section 4 is devoted to the specific case of the
lighter helium isotope He and its inverse melting3

behavior. Final remarks have been collected into a
concluding Section 5, where we speculate on the
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Fig. 1. Schematic melting curve in theT,p plane, to illustrate
various melting circumstances, including the inverse-melting
phenomenon.

possibilities of synthesizing and studying new
materials for laboratory study, and of devising new
models for theoretical analysis, that might display
the inverse melting phenomenon.

2. Inverse-melting systems

An appropriate starting point for discussion of
the inverse melting phenomenon is the Clau-
sius–Clapeyron equation that describes the slope
of the melting curve in theT,p planew19x:

l c l cŽ . Ž . Ž . Ž .dp T ydTs S yS y V yV (2.1)Ž . Ž . Ž .m

Here,p (T) is the temperature-dependent meltingm

pressure, the function that is the inverse ofT (p).m

Molar entropies and volumes are denoted byS v( )

andV , with superscriptsvsl,c indicating liquidv( )

and crystal phases, respectively.
By way of illustrating the relevance of thermo-

dynamic identitywEq. (2.1)x to the inverse melting
scenario, Fig. 1 offers a schematic melting curve
ABCDEF. This will help to classify the known
examples of this phenomenon. It will be assumed
that the liquid-crystal phase transition remains first

order along this entire curve, so at least one of
S yS andV yV is non-zero at every pointl c l c( ) ( ) ( ) ( )

of the curve. It will further be assumed that only
a single crystal phase is involved, at least in the
region of theT,p plane depicted in Fig. 1.

The familiar ‘normal’ melting scenario involves
an increase in molar volume upon melting of the
crystal, which occurs as the system absorbs the
latent heat of transition. Consequently, in the right
member of the Clausius–Clapeyron Eq.(2.1), both
the numeratorS yS as well as the denominatorl c( ) ( )

V yV are positive, and so the slope ofp (T)l c( ) ( )
m

is positive. This circumstance corresponds in Fig.
1 to the portion of the full curve that lies between
pointsB andC.

Less common, though still familiar, is the case
in which the molar volume decreases upon melting
the crystal, while again heat is absorbed in the
melting process. This combination changes the
sign of the melting curve slope, and corresponds
to the portions of the curve shown in Fig. 1 that
lie between pointsC and D, and betweenE and
F. Examples of real substances exhibiting this
behavior (at modest pressures) are the elements
silicon, gallium, antimony, and bismuthw20x, and
of course the familiar molecular substance water
w21x. The pointC in Fig. 1 locates the position at
which the molar volumes of coexisting crystal and
liquid are identical, which Eq.(2.1) requires to be
a point of infinite slope of the melting curve
p (T).m

The intervals between pointsA and B, and
between pointsD and E, are ranges of inverse
melting. Starting in the liquid phase just to the left
of either of these intervals, isobaric heating causes
crossing of the phase transition curve, i.e. causes
the system to freeze into the crystalline phase.
That such a counter-intuitive inverse melting might
occur in the real world was apparently first sug-
gested by Tammann a century agow22x. Inverse
melting is characterized by the entropy inequality:

l cŽ . Ž .S yS -0 (2.2)

The intervalAB exhibits negative slope, while the
interval DE exhibits positive slope, becauseV yl( )

V is positive for the former, but negative for thec( )

latter.
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The three pointsB, D and E are distinguished
by vanishing of the melting curve slope:

dp T ydTs0 B,D,E (2.3)Ž . Ž .m

These points thus are all associated with vanishing
entropy change:

l cŽ . Ž .S yS s0 B,D,E (2.4)Ž .

because the difference in molar volumes can never
be infinite. Consequently, these are ‘Kauzmann
points’ occurring as natural loci in the equilibrium
phase diagram. Their existence does not hinge
upon the legitimacy of long heat capacity extrap-
olations that are obliged to cross glass transitions.
Section 3 utilizes this identification to trace out
‘Kauzmann curves’T (p) as they pass throughK

these kinds of distinguished points. Notice also
that B, D and E must lie on vanishing–enthalpy
curvesT (p). This follows from the fact that atH

any point along the melting curve, the chemical
potentials of the coexisting phases are equal, and
hence the respective enthalpy and entropy differ-
ences satisfyDHsTDS.

With this schematic analysis as background, we
can now classify examples of inverse melting that
have been reported in the published literature. The
best-documented examples of inverse melting are
the two helium isotopes Hew23x and Hew24,25x3 4

at low temperature. Both isotopes display melting
curves that qualitatively resemble the neighbor-
hood of pointB in Fig. 1, but they differ signifi-
cantly from one another in quantitative detail. The
He example has its zero-slope minimum at3

approximately 0.315 K and 29.3 bar, with normal
(i.e. non-superfluid) liquid in coexistence with
body-centered cubic crystal. By contrast, the He4

minimum is very shallow, occurs at approximately
0.8 K and 26.2 bar, and has superfluid liquid in
coexistence with hexagonal-close-packed crystal.
The He case will be examined in numerical detail3

in Section 4.
A very different inverse-melting material has

recently come to attention. This is the polymeric
substance poly(4-methylpentene-1), denoted more
simply as ‘P4MP1’ w26–29x. Published reports
indicate that its melting curve in theT,p plane

possesses a maximum of the type depicted in Fig.
1 by pointD and its neighborhood. The crystalline
phase in coexistence with the liquid has been
reported to be tetragonal. This melting maximum
occurs at approximately 425 K and 6.5 kbar. The
P4MP1 and helium isotope examples have been
mentioned in a previous publication as relevant to
the Kauzmann paradox issuew8x.

Although smaller by many orders of magnitude
than macroscopic phases, individual protein mol-
ecules in solution possess, nevertheless, a large
number of internal conformational degrees of free-
dom. The rather sharp transition between the struc-
turally organized and biologically relevant native
form, and the large group of biologically inactive
denatured forms, provides a strong analogy to the
conventional melting transition. It is therefore sat-
isfying to notice that at least one protein, ribonu-
clease A, displays a ‘melting’ curve in theT,p
plane with a maximum of typeD in Fig. 1. This
maximum is located approximately at 283 K and
4.0 kbar, with the native form lying below the
maximum, and the denatured form above the
maximum w30x. Starting at a slightly lower tem-
perature and pressure, an initially denatured mol-
ecule can be induced to renature at constant
pressure by raising the temperature. By semantic
analogy to the phrase ‘inverse melting’, this pro-
cess might well be called ‘inverse denaturation’.

Liquid crystals also supply a useful analogy to
inverse melting. Basing his remarks on data report-
ed by Cladis et al.w31x, Johari has pointed out
that the first-order phase boundary between the
smectic-A and nematic phases of 4-cyano-49-octyl-
oxybiphenyl also exhibits a maximum in theT,p
plane (type D in Fig. 1) w32x. This maximum
occurs at approximately 350 K and 2100 bar. In
fact, the observed phase boundary is analogous to
a larger portion of the schematic curve in Fig. 1
that includes a point of equal molar volumes for
the two coexisting phases(type C in Fig. 1).
Starting at the appropriate nematic state(possess-
ing just molecular orientational order), isobaric
heating can cause the material to reorder into the
smectic-A phase(possessing both orientational and
partial translational order).

The reader should be warned that the scientific
literature also uses the phrase ‘inverse melting’ in
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a circumstance that is not directly relevant to the
present study. In particular, kinetically-controlled
irreversible transformations of supersaturated alloy
crystals to amorphous solids under heat treatment
have been described this wayw33x.

3. Generalized Ehrenfest relations

In order to present a proper thermodynamic
characterization of inverse melting phenomena, it
will be useful and convenient to use leading terms
of Taylor expansions for properties of interest. For
the moment, letX represent any zero-slope point
of the melting curve(such asB, D and E in Fig.
1). We shall suppose that thermodynamic functions
are well defined for both phases in the vicinity of
X. The temperature and pressure at this point will
be denoted byT and p , respectively. Near pointX X

X, the molar volumes of the two phases formally
have the following series expansions(vsc,l):

v v v vŽ . Ž . Ž . Ž .V T,p sV X qA dTqB dpq....Ž . Ž .

dTsTyT , dpspyp (3.1)X X

where subsequent terms involve quadratic and
higher-order combinations of the deviationsdT
anddp. The linear coefficientsA , B are relatedv v( ) ( )

to the isobaric thermal expansionsa and iso-v( )

thermal compressibilitiesk evaluated at positionv( )
T

X:

v v vŽ . Ž . Ž .A sa X V XŽ . Ž .

v v vŽ . Ž . Ž .B syk X V X (3.2)Ž . Ž .T

Similar expansions express the behavior of the
molar phase enthalpies in the neighborhood of
point X. Starting with the thermodynamic identities

B E≠H
C F sCp
D G≠T p

B E≠H
C F sV 1yaT (3.3)Ž .
D G≠p T

the expansions for the separate phases will appear
as follows:

v v v vŽ . Ž . Ž . Ž .H T, p s H X q C X dTqV XŽ . Ž . Ž . Ž .p

w zvŽ .x |1 y T a X dpq... (3.4)Ž .Xy ~

Recalling that the zero-slope pointX has the
property that molar enthalpies are exactly equal
there, we deduce a linear expression for the differ-
ence in molar enthalpies of the liquid and crystal
phases that is locally valid in the vicinity of point
X:

w zl c l cŽ . Ž . Ž . Ž .x |H T, p yH T, p ( C X yC X dTŽ . Ž . Ž . Ž .p py ~

w zl l cŽ . Ž . Ž .x |q V X 1 y T a X yV XŽ . Ž . Ž .Xµ y ~

w zcŽ .x |1 y T a X dpŽ .X ∂y ~

(3.5)

For any fixed value of the enthalpy difference
between the phases,dp is a linear function ofdT:

S Wl cŽ . Ž .C yCT Tp p
U Xdpshy dT,w zl l c cT TŽ . Ž . Ž . Ž .x |V 1 y Ta yV 1yTaŽ . Ž .y ~V YX

l cŽ . Ž .H yH
hs (3.6)

w z w zl l c cŽ . Ž . Ž . Ž .
x | x |V 1yTa yV 1yTaµ ∂y ~ y ~ X

where the shorthand notation{ «} specifies eval-X

uation at pointX. An equivalent description is that
this expression generates a parallel family of
curves parameterized byh. The hs0 member of
the family of curves is the one passing precisely
through pointX; this is equivalent to the function
T (p) mentioned Section 1. Eq.(3.6) thus leadsH

to the following expression for the slope of the
equal-enthalpy Kauzmann curve atX:

l cŽ . Ž .B E C yCdp p pC F s (3.7)
l l c cŽ . Ž . Ž . Ž .D GdT V 1yTa yV 1yTaŽ . Ž .DHs0

Consider specifically the caseXsB in Fig. 1.
We know that at this point of the melting curve
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the liquid has a larger molar volume than the
crystal. In addition, the fact that the slope of the
melting curve changes from negative through zero
to positive upon passing throughB allows us to
conclude from the Clausius–Clapeyron Eq.(2.1)
that at dps0, S yS and thusH yH arel c l c( ) ( ) ( ) ( )

increasing with temperature at least in linear order
in dT. From Eq.(3.5) we therefore conclude that:

l cŽ . Ž .C B yC B )0 (3.8)Ž . Ž .p p

Formally, similar analyses apply toXsD and
to XsE. For both of these cases, the molar volume
of the liquid is less than that of the crystal, but
the sign changes of the slope of the melting curve
occur in opposite directions for these latter two
cases. ForD, the slope decreases from positive,
through zero, to negative as temperature increases.
By contrast, the slope of the melting curve as it
passes throughE changes from negative to zero to
positive with increasing temperature. These fea-
tures imply that:

l cŽ . Ž .C D yC D )0 (3.9)Ž . Ž .p p

and that

l cŽ . Ž .C E yC E -0 (3.10)Ž . Ž .p p

Similar considerations can be brought to bear
on the entropy functions for the two phases.
Starting with the general thermodynamic relations:

B E≠S CpC F s (3.11)
D G≠T Tp

and

B E B E≠S ≠V
C F C Fsy syVa (3.12)
D G D G≠p ≠TT p

we obtain the analog of the earlier Eq.(3.5)

wl c lŽ . Ž . Ž .xS T,p yS T,p ( C XŽ . Ž . Ž .py

zcŽ . |yC X dTyTŽ .p X~

l lŽ . Ž .y a X V Xµ Ž . Ž .
c cŽ . Ž .ya X V X dp (3.13)∂Ž . Ž .

If the molar entropy difference is held fixed at
some constant value, then this last relation implies
that dp will have to be the following linear
function of dT:

S Wl cŽ . Ž .C yCT Tp p
U Xdp dT,s sysq dT,Ž . T Tw zl l c cŽ . Ž . Ž . Ž .

x |T a V ya VV Yy ~ X

l cŽ . Ž .S yS
ss (3.14)

l l c cŽ . Ž . Ž . Ž .a V ya VŽ .X

As in the case of constant enthalpy difference, this
expression represents a family of parallel curves,
indexed now bys. On account of the differing
denominators in Eqs.(3.14) and (3.6), the curves
of fixed enthalpy difference and of fixed entropy
difference will generally display distinct slopes.

The ss0 curve from the familywEq. (3.14)x
passes through pointX, and corresponds to vanish-
ing entropy difference. For this special ‘Kauzmann
curve’ the differential form of Eq.(3.14) then may
be written:

l cŽ . Ž .B E C yCdp p pC F s (3.15)w zl l c cŽ . Ž . Ž . Ž .
x |D GdT T a V ya VDSs0 y ~

In principle, this same relation could be integrated
to trace out an entire curve of vanishing entropy
difference in theT,p plane.

It should not escape attention that Eq.(3.15) is
formally identical to the first Ehrenfest relation for
a line of second-order phase transitionsw34x. By
definition, that is a circumstance which also
involves equality of molar entropies for the two
phases. However, the present application is differ-
ent in a fundamental way, because the curve
generated by Eq.(3.15) is not a thermodynamic
coexistence curve, and in particular, crossing it
does not imply that an ideal glass transition has
occurred.



217F.H. Stillinger, P.G. Debenedetti / Biophysical Chemistry 105 (2003) 211–220

Fig. 2. Experimentally determined melting curve for He, in the neighborhood of its pressure minimum. Adapted from Dobbsw23x.3

We close this Section 3 with a relationship
obeyed by the melting curve itself, as it passes
through one of the zero-slope points. When carried
to second order in temperature and pressure chang-
es, the Taylor expansion of chemical potential is:

m dT,dp sm X yS X dTqV X dpŽ . Ž . Ž . Ž .
B EC XŽ .p 2C Fy dT qV X a X dTdpŽ . Ž . Ž .
D G2TX

B EV X k XŽ . Ž .T 2C Fy dp q... (3.16)Ž .
D G2

Along the melting curve, the chemical potentials
of the two phases must be equal. Furthermore, in
the immediate vicinity of the zero-slope points
such asB, D and E, the pressuredp along the
melting curve is proportional to(dT) . By utilizing2

these properties in connection with the Taylor
expansionwEq. (3.16)x, one obtains the following
expression for the second temperature derivative
of the melting curve at zero-slope points:

2 l cŽ . Ž .C yCd p p pms (3.17)2 l cŽ . Ž .dT T V yVŽ .

This indicates that pointsB and E, exhibiting
upward curvature in Fig. 1, must have a common
sign for the heat capacity difference, and the
volume difference, between the phases. By con-
trast, pointD must entail opposite signs for these
quantities.

Distinct positive or negative signs in principle
can occur for the various combinations of ther-
modynamic quantities that appear as factors in the
basic enthalpy and entropy Eqs.(3.7) and (3.15).
Those signs jointly determine the signs of the
slopes of the enthalpy and entropy Kauzmann
curves as they pass through the zero-slope points
of the melting curve. The slopes of those curves
in principle can be either positive or negative, and
need not be the same for the vanishing-enthalpy
and vanishing-entropy loci at any given zero-slope
point of the melting curve.

4. Melting curve for He3

We now examine in quantitative detail the
inverse melting phenomenon for He. As men-3

tioned earlier, a melting-curve minimum of typeB
in Fig. 1 is involved. This example has had a
notable technical application, specifically in the
‘Pomeranchuk refrigerator’ that attains millikelvin
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Table 1
Experimentally measured values of thermodynamic properties
for the coexisting liquid and crystal phases of He, at the zero-3

slope melting minimuma

Property Measured
value

T (K) 0.315
p (bar) 29.31
d p ydT (bar K )2 2 y2

m 70
V (cm mol )c 3 y1( ) 24.80
V (cm mol )l 3 y1( ) 26.04
a (K )c y1( ) 0.00070
a (K )l y1( ) y0.00696

All entries have been extracted from data presented in thea

extensive review by Dobbsw23x.

temperatures in the laboratoryw35x. Fig. 2 shows
that part of the melting curve for this substance
that is relevant to our inverse melting discussion,
specifically the vicinity of the zero-slope pressure
minimum. Measured values of various thermody-
namic properties at that minimum have been col-
lected in Table 1.

In contrast to the other inverse-melting examples
mentioned in Section 2 above, the helium isotopes
are distinctly quantum mechanical in their behav-
ior. This is particularly so with the fermionic
lighter isotope He, for which the deep melting3

curve minimum owes its existence to the involve-
ment of nuclear spin degrees of freedom. These
nuclear spins are relatively free to reorient inde-
pendently in the crystal at the temperature range
of concern here, thereby increasing entropy. By
contrast, particle exchange in the He liquid strong-3

ly couples nuclear spins in that phase, so the
entropy remains low in comparison to the crystal.
The bosonic heavier isotope He has no nuclear4

spin, and its very shallow melting curve minimum
relies on the relative phonon densities of states for
the crystal and liquid phasesw8x.

By inserting values from Table 1 into thepm

curvature condition Eq.(3.17), one can evaluate
the heat capacity difference at the melting-point
minimum:

y1 y1l cŽ . Ž .C yC (2.73 J mol K (4.1)p p

which is consistent with the inequality of Eq.

(3.8). This leads in turn, to numerical evaluation
of the slope of the equal-entropy Kauzmann curve,
Eq. (3.15), as it passes through the melting point
minimum:

B Edp y1C F (y437 bar K (4.2)
D GdT DSs0

In a similar fashion, the slope of the equal-enthalpy
curve at the same point can be evaluated from Eq.
(3.7):

B Edp y1C F (y21.0 bar K (4.3)
D GdT DHs0

5. Discussion

The point E included in the schematic Fig. 1
involves liquid at higher pressure than the crystal,
and positive curvature to the melting curve at this
zero-slope point. Currently, no known real-world
example exists for this combination of attributes,
but nothing in principle seems to exclude it.
Although not included in Fig. 1 in the interest of
simplicity, a phase-reversed version of pointD can
also be imagined, displaying liquid at lower pres-
sure than crystal, and(as with D itself) negative
second derivative for the melting curve at that
zero-slope point. Again, no known real-world
example with this characteristic currently exists.

All cases of inverse melting appear to involve,
and probably require, a significant number of
microscopic degrees of freedom that are coupled
to the particle center-of-mass degrees of freedom.
It is localization of the latter that determine freez-
ing of a liquid into a spatially periodic solid.
Nuclear spins play this role of coupled degrees of
freedom in He. Backbone and side-group confor-3

mational degrees of freedom evidently play an
analogous part for the polymeric substance
P4MP1. The ribonuclease A and liquid–crystal
cases cited in Section 2 above also possess many
internal molecular degrees of freedom that are
coupled respectively to native-state conformation,
and to orientational and positional order to produce
inverse melting analogs. One might say that a
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preponderance of internal degrees of freedom,
when properly coupled to molecular position, have
the capacity to drive inverse melting phenomena.

These last considerations offer hope for the
construction of theoretical many-body models that
upon analytical andyor simulational examination
will exhibit inverse melting. Within the regime of
classical statistical mechanics, one such opportu-
nity may emerge from a suitably crafted polymer
model. It was pointed out by Flory and Krigbaum
many years agow36x that polymers suspended in
suitable solvents experience repulsive effective
pair interactions that are essentially Gaussian func-
tions of the centroid-to-centroid distance. This
observation can be abstracted into the well-studied
Gaussian core modelw37–39x, which is known to
have a point of typeC, Fig. 1, at which the melting
volume changes sign. At present, a study is under-
way to insert ‘polymer’ internal degrees of free-
dom into the Gaussian core model that implicitly
change its centroid-to-centroid effective interac-
tions as temperature changes. In fact, it has been
established that under proper circumstances, an
inverse melting phenomenon can arisew40x.

Finally, we return to remark about the Kauz-
mann curves, specifically those for entropy equal-
ity of liquid and crystal phases. The results
deduced in this paper add a new facet to the
interpretation of the glass transition, and to the
related ‘Kauzmann paradox’. We have shown that
at least for those few systems which exhibit inverse
melting, a Kauzmann curve of equal entropies is
not itself a line of phase transitions in theT,p
plane. It is conceivable that some inverse melting
systems might also have glass transitions, and that
continuation of the equal-entropy curve from the
locale upon which we have focused to that glass
transition locale might encounter the conventional
Kauzmann temperature. We therefore raise the
question whether the Kauzmann temperature for
supercooled liquids necessarily implies the exis-
tence of an ideal glass transition(never directly
observed, of course). It appears to be an equally
plausible proposition that Kauzmann curves for
supercooled liquids are simply an interesting ther-
modynamic locus, without demanding an interpre-
tation as an ideal glass transition.
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