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Aspects of correlation function realizability
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~Received 6 June 2003; accepted 16 July 2003!

The pair-correlation functiong2(r ) describes short-range order in many-particle systems. It must
obey two necessary conditions:~i! non-negativity for all distancesr, and ~ii! non-negativity of its
associated structure factorS(k) for all k. For the elementary unit step-functiong2 form, previous
work @F. H. Stillinger, S. Torquato, J. M. Eroles, and T. M. Truskett, J. Phys. Chem. B105, 6592
~2001!# indicates that~i! and ~ii! could be formally satisfied, but only up to a terminal density at
which the covering fraction of particle exclusion diameters equaled 22d in d dimensions. To test
whether the unit stepg2 is actually achievable in many-particle systems up to the apparent terminal
density, a stochastic optimization procedure has been used to shift particles in large test systems
toward this targetg2 . Numerical calculations ford51 and 2 confirm that the step functiong2 is
indeed realizable up to the terminal density, but with substantial deviation from the configurational
preferences of equilibrium hard-rod and hard-disk models. We show that lineal statistical measures
are particularly sensitive to this difference. Our results also illustrate the characteristics of ‘‘closest
approach’’ to the step functiong2 above the terminal density. ©2003 American Institute of
Physics. @DOI: 10.1063/1.1606678#
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I. INTRODUCTION

Conventional applications of the principles of statistic
mechanics~the ‘‘forward’’ problems!, start with particle in-
teraction potentials, and proceed to deduce local struc
and macroscopic properties.1,2 Other applications~that may
be classified as ‘‘inverse’’ problems!, begin with low-order
correlation functions that characterize local particle ord
and attempt to back out full-system configurations3–6 and/or
interaction potentials.7–9 The work reported below consti
tutes an example of the inverse problem. In particular,
consider the realizability of a simple pair-correlation fun
tion form in terms of actual many-particle-system configu
tions. This inverse problem is approached against a ba
ground of prior theory.8–10

A reconstruction algorithm based on stochastic optimi
tion techniques has been developed to generate realiza
~configurations!of particle systems or heterogeneous mate
als that possess a targeted set of lower-order correla
functions.3,4 Of course, a finite set of lower-order correlatio
functions will not uniquely specify a disordered system
the thermodynamic limit, but the extent to which the actu
realization can be reconstructed reveals the level of infor
tion embodied within the correlation functions. Reconstru
tions can also shed light on the mathematical properties
realizable correlation functions must possess. However,
same procedure has been used to ‘‘construct’’ configurat
for a target correlation function in order to determine if su
a correlation function is realizable.4,5 In this mode, the pro-
cedure is referred to as aconstructionalgorithm.

The purpose of this paper is to utilize the construct
technique to explore the realizability of a pair-correlati
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functiong2(r ), namely, the unit step functionU(r 2D), i.e.,

g2~r !5U~r 2D !5H 0, 0<r ,D,

1, r>D,
~1!

for a statistically homogeneous and isotropic system of id
tical hard d-dimensional spheres of diameterD at number
density r. This choice of the pair-correlation function wa
introduced by Stillinger, Torquato, Eroles, and Truskett8 to
study so-called ‘‘iso-g2’’ processes. In an ‘‘iso-g2’’ process,
the pair potential is changed so that theg2 is invariant as
density is changed. Our interest is in determining whet
the step-function pair-correlation function, defined by E
~1!, is realizable by hard-particle configurations for the a
parent allowable covering fraction range 0<f<fc , where
fc522d,8 f is the covering fraction, andd is the space
dimension. This means a terminal covering fraction offc

50.5 in one dimension (d51), fc50.25 in two dimensions
(d52), andfc51/8 in three dimensions (d53). ~In three
dimensions, Markov and Willis11 used a different approac
to show thatfc51/8 is a singular limit of the step function
g2.) By using the aforementioned construction method
generate configurations corresponding to a unit step func
g2 , this paper provides strong numerical evidence that
step function is indeed achievable in this range and only
this range. The precise determination of the pair poten
that achieves this step function will be the subject of a fut
paper.

Aside from these density limits specific to the step fun
tion, there are general nonnegativity conditions thatg2 must
obey for it be realizable by a many-particle system. Sin
g2(r ) is proportional to the probability of finding particle
separated by the distancer, it cannot be negative, i.e.,

g2~r !>0. ~2!
5
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The structure factorS(k) is related to the Fourier transform
of the total correlation functionh(r )5g2(r )21 via the
relation2

S~k!511rE e2 ik"rh~r !dr, ~3!

wherek is the wave vector andk[uku. The second funda
mental constraint is the nonnegativity ofS(k), i.e.,

S~k!>0, ~4!

which must be obeyed for all real values ofk.6 The non-
negativity of the structure factor physically arises from t
fact that S(k) is proportional to the intensity of scattere
radiation from the macroscopic sample. Both of these n
negativity conditions are not restricted to states at ther
equilibrium, but are more general. It is known that the
conditions are necessary,10 and this work shows that they ar
sufficient in the case of the step function.

It is useful to note that for an equilibrium hard-sphe
system characterized by the pair potential

u~r !5H 1`, 0<r<D,

0, r .D,

the step-function pair-correlation function defined by Eq.~1!
is exact in the infinitely dilute limit (r→0). However, for
small positive values ofr, a peak develops atr 5D for the
equilibrium g2 , which becomes more pronounced as t
density is increased. The physical origin of this peak is
‘‘shielding’’ effect; when a second particle is between o
and two diameters from a central particle located at the
gin, the second one suffers fewer collisions~on average!on
the side facing the central one than on the opposite s
resulting in an effective attraction toward the central one.
typical liquid densities, the equilibriumg2 also reveals short
range order, i.e., it displays finite-amplitude oscillatio
about unity that decay to zero with increasingr on a length
scale roughly comparable toD. Therefore it will be mean-
ingful and interesting to compare our results for the st
function pair-correlation function at positive feasible valu
of r to corresponding equilibrium results. It was shown
Ref. 8 that an effective potential that could generate
former must have a finite repulsion beyond the hard co
i.e., r .D. This repulsion that acts beyondr 5D serves to
completely suppress the peak atr 5D and the accompanying
short-range order that would otherwise characterize the p
hard-sphere model.

We note in passing that it has been shown that the
tem generated by the step function is ahyperuniformsystem
at the terminal density.12 Hyperuniformity is concerned with
a certain type of behavior of local-density fluctuations. Co
sider density fluctuations within a regular domain, or ‘‘wi
dow,’’ V centered at pointx0 . For a very large class of par
ticle systems, the number variance within the windo
^NV

2 &2^NV&2, grows asymptotically as the window volum
A hyperuniform system is one in which the number varian
grows only as the surface area of the window in three dim
sions, or as its perimeter in two dimensions. In other wor
infinite-wavelength density fluctuations vanish.
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In Sec. II, we describe the construction procedure u
to generate configurations of the step functiong2 , and some
caveats for this procedure when applied to a finite system
Sec. III, we discuss the results found in the one- and tw
dimensional cases. Here we also discuss the measureme
other statistical descriptors of the generated configuratio
Concluding remarks and discussion of future work is d
scribed in Sec. IV.

II. CONSTRUCTION ALGORITHM

We seek to determine whether the step functiong2(r )
defined by Eq.~1! is realizable by configurations of sphere
at number densityr with hard cores of diameterD for par-
ticle covering fractions in the range 0<f<fc , wherefc

522d. The covering fraction of particle exclusion diamete
f is defined by6

f5ry1~D/2!, ~5!

wherey1(r ) is thed-dimensional volume of a single sphe
of radiusr given by

y1~r !5
pd/2

G~11d/2!
r d, ~6!

andG(x) is the gamma function. In the specific cases of o
and two dimensions, our focus in this paper, relation~5!
gives

f5rD ~d51!, ~7!

f5
rpD2

4
~d52!. ~8!

In one dimension and two dimensions, we will refer to the
hard particles as hardrods and disks, respectively. In all of
our simulations, the particles are contained within
d-dimensional cube with sides of lengthL, so that r
5N/Ld, and periodic boundary conditions are employed.

Following Rintoul and Torquato3 and Yeong and
Torquato,4 we use the method of simulated annealing13,14 to
construct configurations of particles from a set of target c
relation functions. Our interest here is in a target pa
correlation functiong2(r ), which in the case of statistically
homogeneous and isotropic systems is referred to as the
dial distribution function~RDF!. None of our results will be
ensemble averaged. Instead we will place the stringent
mand that a single configuration for a particular dens
matches the step-function RDF.

Starting from some initial configuration~e.g., a regular
array or a random configuration!, the construction technique
finds the realization in which the calculated RDF be
matches the target RDF defined by the step function~1!. This
is accomplished by introducing a fictitious energy

E5(
r i

@g2~r i !2g2
0~r i !#

2, ~9!

whereg2
0(r i) is the target step-function RDF, defined by E

~1!, g2(r i) is the RDF at any time step in the simulation, a
the sum is over all distances up to a specified limit, which
call the sampling distance. The energy is calculated for t
initial configurationrN of the N particles, then a new con
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figuration is generated by the following rules. A particle
moved by displacing it along each axis by amounts rando
and uniformly distributed in the interval@2d,d#, whered is
the maximum step size. The energy is computed for this n
configuration as above, and the move is accepted or reje
with probability P(DE) according to a Metropolis accep
tance rule:

P~DE!5H 1, DE<0,

exp~2DE/T!, DE.0,
~10!

whereT is a fictitious temperature.6 The acceptance of uphil
moves with a Boltzmann factor probability allows the co
figuration to escape from local minima. Each particle
moved sequentially in the same manner until the system
equilibrated at a particular value of the temperature. The
soning behind the method of simulated annealing is that
system is heated to a high temperatureT, then slowly cooled
to absolute zero, it will equilibrate in its ground state. In th
ground state, the energy can be viewed as the least-squ
error between the generated configuration’sg2

0(r ) and the
target functiong2(r ).6 It therefore becomes crucial to choo
the fastest possible cooling schedule that will allow the s
tem to reach its global minimum without getting stuck
local minima. We found that a maximum step size ofd
50.5D worked effectively in this study.

At any particular step of the construction procedure,
RDF is computed from a histogram of the average numbe
particle centersn(r ) contained in a concentric shell of finit
thickness~bin width! Dr at radial distancer from a reference
particle center.6 The radial distancer is taken to be halfway
between the inner radius (r 2Dr /2) and the outer radius (r
1Dr /2) of each shell. Letnk(r ) be the number of pairs o
particles in bink corresponding to a radial distancer. Then

n~r !5
nk~r !

N
~11!

and the RDF is calculated from the formula

g2~r !5
n~r !

ryshell~r !
, ~12!

whereyshell is the volume of thed-dimensional shell given by

yshell~r !5y1~r !F ~r 1Dr /2!d2~r 2Dr /2!d

r d G ,
andy1(r ) is given by Eq.~6!. For one and two dimensions
we specifically have

g2~r !5
nk~r !

2N2Dr
~d51!, ~13!

g2~r !5
nk~r !

2pN2rDr
~d52!. ~14!

Because of the finite system size, the resolution of
pair-correlation function becomes a problem. We calcul
g2(r ) via relations~13! and ~14!. By necessity,nk(r ) must
be an even integer~the distance between each pair of pa
ticles is counted twice, once for each of the particles
volved!. Consequently,g2(r ) can only achieve certain val
ly
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ues, dependent on the value of the denominator. Ford51,
the denominator of Eq.~13! has a fixed value, independent o
r, and only dependent on the bin width, the system size,
the covering fraction. Substituting in relation~7!, and setting
D51 ~so thatr is in terms of diameter!,

DrfN5 integer, ~15!

for g2(r ) to have an integer value. Since we are trying
match the step function, the program will be unable to do
unlessg2(r ) can equal unity.

For d52, ensuring thatg2(r ) can equal unity, given the
system parameters, is considerably more difficult since
denominator of relation~14! depends onr, and is therefore
different for each bin. Forg2(r ) to be an integer, the bin
width must be adjusted for each bin. If the bin width is ke
constant, the program will do its best to match the step fu
tion, resulting in a function that jumps above unity, th
gradually decreases asr increases, then jumps above uni
again, in order to attain a minimum distance from the tar
function ~see the first figure described in Sec. III B!. Taking
the data generated from a run of constant bin size, we
use ther andg2(r ) values for each bin to adjustDr andr ~r
is dependent onDr since it must be in the middle of the bin!
so thatg2(r )51. Using these adjusted values forDr and r,
another simulation is performed, this one generating the
sired flat pair-correlation function. Within these constrain
for d51 andd52, the bin widths must still be chosen s
that the finalg2(r ) is an accurate reflection of the syste
structure. It the widths of the bins are too small, the fluctu
tions overwhelm the RDF, if the bins are too wide, there
not enough information to accurately reproduce the tar
function.3

The construction procedure was used to examine the
function up to the terminal density off50.5 for d51 and
f50.25 for d52. At low densities, starting from a regula
array ~a square lattice ford52 and evenly spaced rods fo
d51) was found to get the system stuck in local minim
and to take much longer to equilibrate at a particular te
peratureT. Starting from an equilibrium hard rod or har
disk configuration alleviated this problem. Consequently,
all densities, we started the annealing program from equi
rium configurations for all results reported below.

Despite previous results to the contrary for a differe
correlation function,5 a ‘‘great deluge’’ algorithm, where only
downhill moves are accepted~corresponding to a fictitious
temperatureT50), was ineffective. In all cases, it led t
immediate trapping in a local minimum close to the initi
configuration. The most effective cooling schedule w
found to be an incrementally decreasing function of tempe
ture. At high initial temperatures, few Monte Carlo~MC!
cycles are needed, as the purpose of heating to these
peratures is simply to shake the system out of its initial c
figuration. At each temperature, the energy of the sys
rapidly takes on a Gaussian-like distribution~see Fig. 1!. The
system reaches this equilibrium energy distribution afte
finite number of MC cycles. As the temperature is lowere
the mean energy is also lowered, and the distribution n
rows. The key to a successful cooling schedule appears t
approaching T50 in temperature steps that are sm
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enough. If the increments between temperatures are
large, the system will tend to get stuck in local minima.
the end of the cooling schedule, the system is run thro
several thousand MC cycles withT50, to ensure that it is a
an absolute energy minimum.

It is noteworthy that ford51, the energy of the system
can only take certain incremental values, corresponding
the number of pairs that are the ‘‘wrong’’ distance apart~mis-
binned pairs!, i.e., pair distances that do not give a value
unity for the RDF. As the system parametersDr , N, andf
are changed, the size of these increments changes. Sinc
uphill moves are accepted with the Boltzmann probabi
exp(2DE/T), the effective temperature changes withDr , N,
and f. For example, in a one-dimensional system withDr
50.1 andf50.2 andN5200, one misbinned pair of cente
is equivalent toE50.0625. For a one-dimensional system
f50.45 with the same bin widths and the same numbe
particles, the energy of one misbinned pair isE
50.012 345 68. Because of this, the temperatureT used to
evaluate the Boltzmann probability is effectively six tim
hotter for thef50.45 system than thef50.2 system. The
temperatures in the cooling schedule need to be selecte
the system parameters are changed to preserve the sam
fective temperatures.

Two-dimensional systems do not encounter this proble
The energy ford52 is dependent onr as well as the param
eters listed above. Therefore the energy value for a m
binned pair is different for each bin. Moreover, energy h
tograms forf50.1 and 0.2 are virtually identical for th
same temperature, indicating that the two systems, altho
at different densities, experience the same effective temp
ture.

Computational time increases as the square of sys
size because to calculateg2(r ) for every MC cycle, the pro-
gram must measure the distance between each particle
the other (N21) for each of theN particles, leading to

FIG. 1. Energy histograms for one simulation done in one dimension af
50.45. Thex axis is the energy in terms of number of misbinned pairs. T
y axis is the probability at each temperature of finding the configuratio
each energy. The curves forT50.0, 0.05, 0.10, 0.20, 0.30, 0.40, 0.50 a
shown. It is clear that as the temperature is lowered, the mean ener
lowered, and the distribution becomes narrower. AtT50.0, each configura-
tion has a tendency to be trapped at a single energy, so the curve shown
average over 16 configurations. The mean of this curve is atE54, with a
probability of 0.21.
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N(N21) calculations per MC cycle. Only smaller syste
sizes were computationally feasible. Early trials involvedN
5500 and 1000, but all later simulations had smaller si
(N5200 for d51 andN5289 for d52).

The RDF for an equilibrium hard-sphere fluid syste
equals unity at larger because the spheres are uncorrelate
large distances. This being the case, we do not need to m
the simulated correlation function to the target function
large r while annealing, since we can assume them to h
the same value. It is only the short-range order of the eq
librium system that the simulated-annealing program m
suppress to make the simulated system’s RDF match the
get step function. But how far out should we try to match t
systems? Obviously, the farther out the systems are matc
the more accurate the configurational results will be,
computational time increases with the square of the sam
distance, making it prudent to limit the sampling distance
only what is absolutely necessary to closely approach
target function.

Early trials in one dimension all used a sampling d
tance of five diameters (r 55). With promising results from
these, the sampling distance was increased tor 510, leading
to great difficulties. For an equilibrium hard rod initial con
figuration, the mean particle separation is given by,C11,
where,C is the mean chord length~gap size!given by Eq.
~21!. Therefore, for densities less thanf50.4, only the near-
est neighbor is included~on average!in the sampling dis-
tance. Given the numerical protocol, the program then wo
to flatten the pair-correlation function by adjusting only t
nearest-neighbor distances. As soon as two particles d
closer together to flatten out the function, they pull aw
from the particles on either side of them, and these distan
are not counted. This leads to a configuration in which p
ticles have paired. It is therefore a simple matter of optim
ing each of the distances between the two particles in a p
with no regard to their relative positions to any other p
ticles, and the program easily matches the target step fu
tion. Increasing the sampling distance to 10 or 20 diame
suddenly makes the optimization problem much more di
cult. Moving each particle becomes a tug of war between
distances to nearest neighbors and to neighbors farther a
thus creating energy barriers for lowering the energy of
system, i.e., the energy surface becomes more rugged,
the system becomes more easily trapped in local minima
is costly for the system to move away from its initial co
figuration, so the simulated annealing program will have d
ficulty eliminating large differences between the initial RD
and the step function when the sampling distance inclu
several nearest neighbors. At low sampling distances,
pairing phenomenon leads to meaningless results. It is th
fore important to choose a sampling distance at each den
that includes several nearest neighbors, as indicated by
mean particle separation.

This problem of sampling distance was not as severe
two dimensions. The reason is that a sampling distance
includes the nearest-neighbor shell of a given particle w
include more than two of the particle’s near neighbors, wh
prevents the simple pairing phenomenon found in one
mension.

t

is

an



er
o

at
r

wa
o
y
er

te

c-

tep
s.
in

of

ey

. A

g
ases

m
aled

qui-
ce,
e
he
tem
qui-
c-
in-

inal
g

was
ear
at
h
e

y-

ld

ling
or-

u-
alu
g

n in
lus-
en

7069J. Chem. Phys., Vol. 119, No. 14, 8 October 2003 Aspects of correlation function realizability
Finally, we remark that the most effective way to low
the energy of systems in one and two dimensions turned
to be repetition of the algorithm. Even when an appropri
cooling schedule had been designed, many initial configu
tions had to be processed before the global minimum
found. Adjusting the cooling schedule can increase the pr
ability of perfectly matching the unit-step function, but it b
no means makes this the certain outcome of ev
simulation.

III. RESULTS

Our results support the conclusion that the unit s
function g2(r ) is realizable up to the terminal densityfc

FIG. 2. RDF’s in one dimension for densities off50.2 ~top!, f50.4
~middle!, andf50.45 ~bottom!. The annealing result for a single config
ration is compared to the equilibrium hard rod RDF in each case. The v
for each bin is plotted in the center of the bin for this and all followin
equivalent graphs.
ut
e
a-
s

b-

y

p

522d in both one and two dimensions. Moreover, satisfa
tion of the nonnegativity conditionsg2(r )>0 andS(k)>0 is
sufficient in one and two dimensions to ensure that the s
function g2 is realizable by hard-sphere configuration
Nothing suggests that these conclusions would not hold
higher dimensions. It is important to emphasize that all
our annealed results for the step functiong2 reported below
are for a single configuration at a particular density, i.e., th
are not ensemble averaged.

A. One dimension

For d51, simulations were run atf50.20, 0.30, 0.40,
0.45, 0.50, i.e., up to and including the terminal density
perfect result (E50) was achieved forf50.2 up to a sam-
pling distance of 10, andf50.30, 0.40, 0.45 to a samplin
distance of 5. Figure 2 shows several of these annealed c
and compares them to the corresponding equilibriumg2 .

As can be seen in Fig. 3, the particles of the equilibriu
systems have more of a tendency to cluster than the anne
systems. For simplicity, we take all distancesr to be in terms
of diameters, so that the contact distance occurs atr 51. In
order to suppress the short-range order of the system at e
librium, and eliminate the initial peak at the contact distan
the rods in the step-functiong2 system must have a repulsiv
interaction potential, forcing them to spread out more. T
difference between the equilibrium and the annealed sys
is most acute at higher densities, as this is where the e
librium hard rod RDF differs most from the unit step fun
tion. At lower densities, the difference is less acute, and
deed in the limitr→0, the equilibrium hard rod RDF is the
step function.6

We also achieved a perfect step function at the term
densityf5 1

2 for a sampling distance of 2.5. For a samplin
distance of 5 at the terminal density, the annealed result
nearly perfect; there were only a few misbinned pairs n
r 5D, resulting in a small peak at contact. We believe th
this imperfection is a finite-size effect, which would vanis
in the infinite system limit. It is important to observe that th
value of 1

2 for the terminal density applies in the thermod
namic limit.8

Contrary to the expectation that configurations wou
become more difficult to anneal to the step functiong2 as the
terminal density was approached, we found that annea
‘‘equivalent’’ systems at all densities was comparable. In

e

FIG. 3. The equilibrium configuration~top! for f50.45 is compared to the
annealed step function system for the configuration whose RDF is show
Fig. 1 ~bottom!. The equilibrium system shows larger gaps and more c
tering than the step-functiong2 system, as expected. The rods have be
stretched vertically to enhance ease of pattern visualization.
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der for systems to be equivalent at different densities,
must hold constant the number of particles, use the s
effective temperatures in the cooling schedule, while adju
ing the sampling distance to reflect the difference in me
pair separation.

Above the terminal density, the simulated annealing p
gram struggled to produce a physically unrealizable confi
ration, with some interesting results. At densities off
50.55, 0.6, the RDF generated by the program show
buildup to a low peak atr 51, then a flat curve beyond tha
markedly different from the damped oscillations of the eq
librium hard rod system. Atf50.7, 0.8, the peak atr 51 is
followed by a dip below 1~see Fig. 4!. At a density off
50.9, with very little room to maneuver, the program pr
duces a slightly perturbed regular array.

B. Two dimensions

For d52, simulations initially were run atf50.10,
0.15, and 0.20. Perfect results were achieved atf50.1 and
0.15 at a sampling distance of 5, after adjustments w
made to the binwidths~see Fig. 5!. Atf50.20 and a sam-
pling distance of 3, we also achieved a perfect result~see
Fig. 6!. Not surprisingly, Fig. 7 shows that an equilibriu
hard-disk configuration exhibits more clustering and lar
pores than a configuration for an annealed step-function
tem. We note, however,f50.20 and a sampling distance o
5, there were small deviations from the step function RD
resulting in an energy ofE50.006 837 4, calculated usin
relation~9!. As in the one-dimensional case, we believe t
this imperfection is a finite-size effect, which would vani

FIG. 4. RDF for f50.7 in one dimension. The RDF for one anneal
configuration is compared to the analytical equilibrium hard rod RDF.
though it is impossible to match the step function at this density, the si
lated annealing program outputs a function significantly different from
equilibrium hard rod RDF at this density.
e
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in the infinite system limit, and expect that step function
achievable up to the terminal densityf50.25.

At densities above the terminal density for step functi
realizability, f50.25, the program produced results simil
to those in one dimension. At a density off50.30, there was
a peak atr 51 that decreased to a flat line with no furth
oscillations. At f50.50, the initial peak is followed by a
trough ~see Fig. 8!. In contrast to one dimension, in tw
dimensions, there is a disorder-order phase transition af
50.69.18,19 The highest density achievable in two dime
sions for an ordered systemf5p/A12>0.907 is for the
close-packed triangular lattice.6 So the simulations run atf
50.50 are below the freezing density, and still within t
disordered phase. Even with these difficulties, the anne
systems show much less clustering of disks than the equ
rium hard disk system, as reflected by the relative height
the peaks at the contact distance.

C. Lineal statistical descriptors

1. Theory

There is a variety of other statistical descriptors availa
to characterize the structure of many-particle systems;
for example, the book by Torquato.6 Here we utilize lineal
descriptors, such as the lineal-path functionL(z) and related
chord-length probability density functionp(z) to further
characterize the systems. For statistically isotropic me
L(z) is the probability that a line segment of lengthz lies
wholly in a single phase, in this case, the pore space, w
randomly thrown into the sample. The pore space is
space exterior to that occupied by the particles. The line
path functionL(z) for any homogeneous and isotropic sy
tem of interacting identicald-dimensional spheres involve

-
-

e

FIG. 6. RDF forf50.2 in two dimensions. The annealed step function
one configuration is contrasted with the equilibrium hard disk RDF.
o-
-

-

n

in
er-
FIG. 5. Output RDF’s for the simulated annealing pr
gram trying to match the step function in two dimen
sion atf50.1. Left panel: Output RDF for one con
figuration with constant bin widthDr 50.1, showing
the inability of the program to match the step functio
@see the paragraph immediately below Eq.~15!#. Right
panel: The output for one configuration once the b
widths have been adjusted to allow the program to p
fectly match the step function.
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integrals overg2 and all the higher-order correlation func
tions g3(r ), g4(r ),... and isexactly given by6,15

L~z!511 (
k51

`
~21!k

k!
rnE gk~r k!

3)
j 51

k

m~x2r j ;z,R!dr j , ~16!

where the exclusion region indicator functionm is given by6

m~x;z,R!5H 1, xPVE~z,R!,

0, otherwise,
~17!

and VE is the volume excluded to a spherical inclusion
radiusR by a line of lengthz. For allz, L(z)>0. In addition,
since L(z) is a probability function, it is a monotonically
decreasing function ofz.

The lineal-path function is related to the chord-leng
probability density functionp(z).6,16 This has also been
called the chord-length distribution function. For gene
two-phase random media, ‘‘chords’’ are the line segme
between the intersections of an infinitely long line with t
two-phase interface. The quantityp(z)dz is the probability
of finding a ‘‘chord’’ of length betweenz and z1dz in the
pore space.16 Since it is a probability density function,p(z)
>0 for all z and we have the normalization

FIG. 7. Configurations of 289 particles forf50.2 in two dimensions. The
equilibrium hard disk system~left! shows more clustering and larger pore
than the annealed step function system~right!.

FIG. 8. RDF forf50.5 in two dimensions. Like thef50.7 case in one
dimension, the simulated annealing program, in trying to achieve the ph
cally unrealizable step function creates an RDF significantly flatter than
equilibrium. The annealed result RDF is the average of eight configurati
f

l
ts

E
0

`

p~z!dz51. ~18!

The chord-length density function is related to the lineal-p
function by16

p~z!5
,C

~12f!

d2L

dz2 , ~19!

where,C is the mean chord length given generally by

,C5E
0

`

zp~z!dz. ~20!

In the special case of hard-sphere systems in any ensem
the mean chord length~or, equivalently, the mean gap siz
between the particles!is exactly given by6

,C5
~12f!vd

2fvd21
D, ~21!

wherevd is the volume of a single sphere ind dimensions of
unit radius given by Eq.~6! with r 51.

One can show that ifg2 is the unit step function, then
L(z) in one dimension is given by

L~z!5H 12f2fS z

D D1
f2

2 S z

D D 2

, 0<z<D,

f ~z!, z>D,

~22!

wheref (z) is the functional form ofL(z) for z>D, which is
uniquely determined by the infinite set of correlation fun
tions g2 ,g3 ,g4 ,... . Therefore combining Eqs.~19!, ~21!,
and ~22! for the step functiong2 yields in one dimension

p~z!5H f

D
, 0<z<D,

D

f

d2f

dz2 , z<D.

~23!

Due to the nonnegativity ofp(z), the second derivative
d2f /dz2 must also be non-negative.

It is interesting to compare the lineal path function E
~22! and chord-length density functionp(z) Eq. ~23! for the
step functiong2 to the corresponding functions for an equ
librium systems of hard spheres at the covering fractionf,
which are given by6

L~z!5~12f!expF2
f

~12f!

z

DG , z>0, ~24!

p~z!5
f

~12f!D
expF2

f

~12f!

z

DG , z>0. ~25!

In contrast to the step-functiong2 counterparts, the equilib
rium L(z) and p(z) are purely exponential functions. O
course, expressions~22! and~23! must approach the equilib
rium functions~24! and ~25! in the limit f→0.

In addition to the nonnegativity ofL(z) andp(z) and the
monotonicity of L(z), which implies that f (z) is a non-

i-
e
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FIG. 9. Left panel:L(z) determined exactly from the
one-dimensional annealing results, averaged over
configurations, compared to best-fit curve forz.D,
f (z)5a exp(2bzc), a50.579 11, b50.710 28, c
51.1878. Right panel: The annealing result is repr
sented by p(z)5f21@d f2(z)/dz2# for z.D. For
z,D, experimental results show thatp(z)5f. The an-
nealing result is compared top(z) for the equilibrium
hard rod system.
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negative, concave, and monotonic function ofz, f (z) must
obey five exact conditions for the step functiong2 . The
lineal-path function and its first derivative must be contin
ous atz5D and so

f ~D !5122f1
f2

2
, ~26!

D
d f

dzU
z5D

52f~12f!. ~27!

The third condition follows from the continuity ofp(z) at
z5D @cf. Eq. ~23!#:

D2
d2f

dz2U
z5D

5f2. ~28!

The integral conditions~18! and ~20! in conjunction with
Eqs. ~21! and ~23! yields the fourth and fifth conditions o
f (z) as

f1
D

f E
D

` d2f

dz2 dz51, ~29!

f

2
1

1

f E
D

`

z
d2f

dz2 dz5
~12f!

f
. ~30!

2. Evaluation

Here we determineL(z) and p(z) for our constructed
configurations in one dimension. One can use a stocha
approach to computeL(z) by tossing line segments of lengt
z into the system for eachz, and counting the number tha
land entirely in the pore space. However, we use a proce
that leads to an exact evaluation ofL(z) for a given configu-
ration. The midpoint of any line segment of lengthz can
occupy any position in the pore space that is more thanz/2
away from any rod. The value ofL(z) is therefore exactly
the pore space ‘‘available’’ to the system ofN rods with
diametersD1z. The shells of lengthz/2 that must be added
to each rod end may overlap, however, since the rods
required to be only farther thanD apart. We calculateL(z)
as the sum of all the gaps left when the rods are of s
D1z:

L~z!5
1

D (
i 51

N

~d i2z!U~d i2z!, ~31!

whered i is the gap between thei th and the (i 11)th particle
andU(x) is the unit step function. A technique like this ha
been used in two dimensions to compute the related nea
neighbor probability distribution function.17
-

tic

re

re

e

st-

Our exact evaluation ofL(z) produces smooth curves. I
contrast, ‘‘binned’’ determinations ofp(z) from experimental
data resulted in noisy curves, even when averaged ov
number of configurations. Sincef (z) cannot be determined
exactly because we do not know the higher-order correla
functions for the step-functiong2 configurations that we
have constructed, we assume thatf (z) can be approximated
as

f ~z!5a exp~2bzc!, ~32!

which has the necessary non-negative and monotonic fo
Herea, b, andc are positive fit parameters. Of the function
forms tried, this one satisfied the five necessary conditi
most satisfactorily. The corresponding chord-length den
function p(z) is given by

p~z!5H f, 0<z<D,

abc

f
exp~2bzc!@bcz2~c21!2~c21!z~c22!#,

z>D.

~33!

To illustrate the goodness of the fit, we consider a co
ering fractionf50.4, a value near the terminal density. W
see from Fig. 9 that the fit to the simulation data is extrem
good; a50.579 11, b50.710 28, c51.1878, giving a chi
squared value ofx252.831025. This fit satisfies the five
conditions~26!–~30! to excellent approximations:

f ~D !50.2846,

d f

dzU
z5D

520.2401,

d2f

dz2U
z5D

50.1574,

E
0

`

p~z!dz51.000,

E
0

`

zp~z!dz51.447.

The exact values are given by 0.28,20.24, 0.16, 1, and 1.5
respectively, at the densityf50.4. The corresponding
chord-length density function is also plotted in Fig. 9.

The dramatically different shape ofp(z) from the equi-
librium function that can be seen in Fig. 9 corresponds to
suppression of the peak at the contact distance by the
function g2 . With fewer particles clustering, it is expecte
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that the number of gaps of small size would be fewer, a
this is reflected in the shape ofp(z). This tendency toward a
more spread-out, less clustered configuration for the
nealed step-function system can be seen in Fig. 3. There
the chord-length density function is a sensitive indicator
the difference between configurations having the st
function g2 and the ensemble of equilibrium configuratio
at the same density.

IV. CONCLUSION AND DISCUSSION

Any pair-correlation functiong2(r ) and its associated
structure factorS(k) for a many-particle system are triviall
constrained by non-negativity conditions:g2(r )>0 and
S(k)>0. Unfortunately, no general theory has been availa
to indicate whether any arbitrary candidate functiong2 that
satisfies these two inequalities is actually attainable as
descriptor of short-range order in a specific many-part
system. In other words, is the pair of necessary inequal
also sufficient, or does there exist an as-yet undiscove
additional set of constraints on candidateg2’s that must be
satisfied to represent an attainable particle system? The w
reported herein provides some modest evidence in suppo
the proposition that only the two non-negativity conditio
are required, provided that the particle number density is
too large. If this proposition is true, it would stand in dire
contrast to the properties of a related two-point correlat
function S2(r ) that arises in characterization of two-pha
random media~i.e., binary stochastic spatial processe!,
where it is known that the two analogous non-negativity c
ditions are only necessary for realizability.6

The specific cases examined involved a unit step fu
tion form for g2(r ), in one and two space dimensions.
simulated annealing stochastic numerical procedure se
to move particles about, starting from random initial po
tions, so as to minimize the mean-square error between
pair-correlation function of intermediate particle configur
tions, and the target unit step function. Results in both
and two dimensions indicate that indeed the target w
achievable up to a terminal covering fractionfc50.5 in one
dimension, andfc50.25 in two dimensions in the infinite
system limit.20 These upper density limits agree with th
general result ford-dimensional space, implied by a previo
study,8 that the terminal upper density isfc522d. The par-
ticle system becomes ‘‘hyperuniform’’ atfc ; at that density
S(0)50 and long-range density fluctuations are severely
hibited.

Configurational patterns exhibited by the many-parti
system subject to a unit step functiong2 are perceptibly dif-
ferent from those dominating the corresponding equilibri
system of hard-core particles. In particular, the distribut
of distances between near neighbors, especially upon
proach to the terminal density, is significantly different fro
that of the equilibrium case. Results show that the cho
length density functionp(z) is a particularly sensitive indi-
cator of the difference.

In spite of the geometric impossibility to achieve the u
step function forf.fc , our simulated annealing numeric
procedure nevertheless manages to produce a closes
proach to that target. Results show a pair-correlation func
d
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that displays smaller amplitude deviations from unity beyo
the exclusion diameter, compared to the equilibrium pa
correlation function at the samef. However, even these di
minished oscillatory deviations increase in magnitude af
increases beyondfc , and our numerical procedure encou
tered increasing difficulty in attaining an optimal solution.

The limited, but useful, results obtained in this stu
encourage the aggressive pursuit of a variety of extensi
Perhaps the most obvious is to examine realizability of
unit step functiong2(r ) in three dimensions. Straightforwar
extrapolation of the results reported in this paper suggest
indeed realizability is possible up to terminal covering fra
tion fc50.125, but not beyond. Furthermore, the cho
length density functionp(z) should continue to be a sens
tive indicator of differences in patterns of short-range ord
between the constrained and the equilibrium systems.

Expanding the examination of realizability beyond ju
the unit step functiong2(r ) is of course also a vital direction
for future investigation. Two cases might profitably be d
tinguished, depending upon whatk value is involved when
the conditionS(k)>0 is about to be violated, thus defining
terminal density. The cases examined in this paper have
occurring atk50, giving rise to hyperuniform systems12 at
that terminal density. The other case would havekÞ0, and
the terminal-density systems would not be hyperuniform
is conceivable that candidateg2’s in the former class might
always be realizable at and below their terminal densit
while those in the latter class may not be realizable to
same extent.

In addition to the extensions already mentioned, ar
ments can be made in favor of examining multicompon
~mixture! systems, as well as cases involving structured p
ticles ~e.g., those requiring orientational coordinates!. All of
these open problems, if attacked by numerical means,
likely to be even more demanding than the cases consid
in this paper. Consequently, it might be advantageous to c
sider alternative numerical algorithms. Some that seem to
relevant are the simulated tempering, or parallel temper
techniques that have the capacity to surmount high barr
in the configurational search space.21,22Another kind of nu-
merical advantage might stem from exploitation of the h
pernetted chain~HNC! integral equation,2 since it supplies a
pair potential that, under equilibrium conditions, should c
respond~at least approximately! to the given targetg2(r ).
By using that HNC pair potential in a Monte Carlo o
molecular-dynamics simulation, it should be possible to g
erate a set of good starting configurations for further refi
ment by the other procedures mentioned.
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