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Aspects of correlation function realizability
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The pair-correlation functiogy,(r) describes short-range order in many-particle systems. It must
obey two necessary conditiong} non-negativity for all distancels and (i) non-negativity of its
associated structure fact8(k) for all k. For the elementary unit step-functign form, previous

work [F. H. Stillinger, S. Torquato, J. M. Eroles, and T. M. Truskett, J. Phys. Chef3 6592
(2001)]indicates thati) and (ii) could be formally satisfied, but only up to a terminal density at
which the covering fraction of particle exclusion diameters equaletii@ d dimensions. To test
whether the unit step, is actually achievable in many-particle systems up to the apparent terminal
density, a stochastic optimization procedure has been used to shift particles in large test systems
toward this target),. Numerical calculations fod=1 and 2 confirm that the step functigp is

indeed realizable up to the terminal density, but with substantial deviation from the configurational
preferences of equilibrium hard-rod and hard-disk models. We show that lineal statistical measures
are particularly sensitive to this difference. Our results also illustrate the characteristics of “closest
approach” to the step functiog, above the terminal density. @003 American Institute of
Physics. [DOI: 10.1063/1.1606678

I. INTRODUCTION functiong,(r), namely, the unit step functidd(r — D), i.e.,
Conventional applications of the principles of statistical (=U(r-D)= 0, O=r<D, (1)
mechanicgthe “forward” problems), start with particle in- 92 1, r=D,

teraction potentials, and proceed to deduce local structure o ] ) ]
and macroscopic propertié2.Other applicationgthat may for a stausucqlly homogeneous and |sotrop|c system of iden-
be classified as “inverse” problemsbegin with low-order tical hard d-dimensional spheres of diameterat number

correlation functions that characterize local particle orderdensity p. This choice of the pair-correlation function was

and attempt to back out full-system configuratifiand/or ~ Introduced by Stillinger, Torquato, Eroles, and Trusket
interaction potentialé-® The work reported below consti- Study so-called “iso-g” processes. In an “iso-g’ process,
tutes an example of the inverse problem. In particular, wéN€ Pair potential is changed so that the is invariant as
consider the realizability of a simple pair-correlation func-density is changed. Our interest is in determining whether
tion form in terms of actual many-particle-system configura-tN€ Step-function pair-correlation function, defined by Eg.
tions. This inverse problem is approached against a backl) is realizable by ha_rd-partlc_le configurations for the ap-
ground of prior theor§1° paren'E gl!gowa_ble covering fractlon.ranggab.s ¢, Where

A reconstruction algorithm based on stochastic optimiza#c=2 "+~ ¢ is the covering fraction, and is the space
tion techniques has been developed to generate realizatiofinension. This means a terminal covering fractiondef

(configurations)of particle systems or heterogeneous materi-— 0-5 in one dimensiond=1), ¢¢=0.25 in two dimensions
(f=2), and¢.=1/8 in three dimensionsd 3). (In three

als that possess a targeted set of lower-order correlatioyy ) i -
functions>* Of course, a finite set of lower-order correlation dimensions, Markov and Willis used a different approach

functions will not uniquely specify a disordered system int0 Show thaih.=1/8 is a singular limit of the step function

the thermodynamic limit, but the extent to which the actual92-) BY using the aforementioned construction method to
realization can be reconstructed reveals the level of informadenerate configurations corresponding to a unit step function

tion embodied within the correlation functions. Reconstruc-92: this paper provides strong numerical evidence that the
tions can also shed light on the mathematical properties tha€P function is indeed achievable in this range and only in

realizable correlation functions must possess. However, thifliS range. The precise determination of the pair potential
same procedure has been used to “construct” configurationg‘at achieves this step function will be the subject of a future

for a target correlation function in order to determine if suchPaPer- o -

a correlation function is realizabfé. In this mode, the pro-  Aside from these density limits specific to the step func-

cedure is referred to asanstructionalgorithm. tion, there are general nonnegativity conditions amust
The purpose of this paper is to utilize the construction®P®Y for it be realizable by a many-particle system. Since

technique to explore the realizability of a pair-correlation92() iS proportional to the probability of finding particles
separated by the distanceit cannot be negative, i.e.,

aCorresponding author: torquato@princeton.edu g,(r)=0. 2)

© 2003 American Institute of Physics 7065



7066 J. Chem. Phys., Vol. 119, No. 14, 8 October 2003 Crawford, Torquato, and Stillinger

The structure factoB(k) is related to the Fourier transform In Sec. Il, we describe the construction procedure used
of the total correlation functiorh(r)=g,(r)—1 via the to generate configurations of the step functipn and some
relatiorf caveats for this procedure when applied to a finite system. In
Sec. lll, we discuss the results found in the one- and two-
S(k)= 1+pf e *Th(r)dr, 3) dimensior?allcases. nge we also discuss the meagurem'ent of
other statistical descriptors of the generated configurations.

Concluding remarks and discussion of future work is de-

wherek is the wave vector anli=|k|. The second funda- _ )
scribed in Sec. IV.

mental constraint is the nonnegativity k), i.e.,
S(k)=0, (4) Il. CONSTRUCTION ALGORITHM

which must be obeyed for all real values kof The non- ‘We seek to determine whether the step funcga(r)
negativity of the structure factor physically arises from thedefined by Eq(1) is realizable by configurations of spheres
fact that S(k) is proportional to the intensity of scattered &t number density with hard cores of diameteD for par-
radiation from the macroscopic sample. Both of these non'L":"ic“’c"’erlng fractions in the range<Op=¢., where ¢,
negativity conditions are not restricted to states at thermal"2 - |he covering fraction of particle exclusion diameters
equilibrium, but are more general. It is known that these? i defined b§
con.di.tions. are necessafyand this WOI’k. shows that they are é=pvy(D/2), (5)
sufficient in the case of the step function.

It is useful to note that for an equilibrium hard-sphere
system characterized by the pair potential

wherewv,(r) is thed-dimensional volume of a single sphere
of radiusr given by
7472
+o, 0=sr<D, =— d
u=raran " ©
0, r>D, . . .
andI'(x) is the gamma function. In the specific cases of one
the step-function pair-correlation function defined by Eg.  and two dimensions, our focus in this paper, relati&n
is exact in the infinitely dilute limit p—0). However, for  gives
small positive values op, a peak develops at=D for the

u(r)=

equilibrium g,, which becomes more pronounced as the ¢=pD (d=1), @)
density is increased. The physical origin of this peak is a pmwD?
“shielding” effect; when a second particle is between one  ¢=—,— (d=2). (8)

and two diameters from a central particle located at the ori-
gin, the second one suffers fewer C0||isidm] average))n In one dimension and two dimensions, we will refer to these
the side facing the central one than on the opposite sidd1ard particles as hambds and disks, respectively. In all of
resulting in an effective attraction toward the central one. FoPUr simulations, the particles are contained within a
typical liquid densities, the equilibrium, also reveals short- d-dimensional cube with sides of length, so that p
range order, i.e., it displays finite-amplitude oscillations=N/L, and periodic boundary conditions are employed.
about unity that decay to zero with increasingn a length Following Rintoul and Torquafo and Yeong and
scale roughly comparable ®. Therefore it will be mean- Torquato; we use the method of simulated annealiig to
ingful and interesting to compare our results for the stepconstruct configurations of particles from a set of target cor-
function pair-correlation function at positive feasible valuesrelation functions. Our interest here is in a target pair-
of p to corresponding equilibrium results. It was shown in correlation functiong,(r), which in the case of statistically
Ref. 8 that an effective potential that could generate thdiomogeneous and isotropic systems is referred to as the ra-
former must have a finite repu|si0n beyond the hard Core(,jial distribution fUnCtlon(RDF) None of our results will be
i.e., r>D. This repulsion that acts beyond=D serves to ensemble averaged. Instead we will place the stringent de-
Comp|ete|y suppress the peakra:tD and the accompanying mand that a Single Configuration for a particular denSity
short-range order that would otherwise characterize the pur@atches the step-function RDF.
hard-sphere model. Starting from some initial configuratiofe.g., a regular
We note in passing that it has been shown that the sysrray or a random configuratiprthe construction technique
tem generated by the Step function ihweruniformsystem finds the realization in which the calculated RDF best
at the terminal densit}? Hyperuniformity is concerned with matches the target RDF defined by the step fundationThis
a certain type of behavior of local-density fluctuations. Con-is accomplished by introducing a fictitious energy
sider density fluctuations within a regular domain, or “win-
dow,” Q centered at poink,. For a very large class of par- E=2 [92(r)—g3(r)1% 9)
ticle systems, the number variance within the window, fi
<Né>—(NQ>2, grows asymptotically as the window volume. Wheregg(ri) is the target step-function RDF, defined by Eq.
A hyperuniform system is one in which the number variance(1), g,(r;) is the RDF at any time step in the simulation, and
grows only as the surface area of the window in three dimenthe sum is over all distances up to a specified limit, which we
sions, or as its perimeter in two dimensions. In other wordscall the sampling distance. The energy is calculated for the
infinite-wavelength density fluctuations vanish. initial configurationr of the N particles, then a new con-
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figuration is generated by the following rules. A patrticle is ues, dependent on the value of the denominator.d=ed,
moved by displacing it along each axis by amounts randomlyhe denominator of Eq13) has a fixed value, independent of
and uniformly distributed in the interval-6,5], wheredis  r, and only dependent on the bin width, the system size, and
the maximum step size. The energy is computed for this newthe covering fraction. Substituting in relatior), and setting
configuration as above, and the move is accepted or rejectddl=1 (so thatr is in terms of diameter),

with probability P(AE) according to a Metropolis accep-

tance rule: Ar ¢N=integer, (15)
1, AE=O, for g,(r) to have an integer value. Since we are trying to
P(AE)= (10)  match the step function, the program will be unable to do so

exp(—AE/T), AE>0, unlessg,(r) can equal unity.

whereT is a fictitious temperaturgThe acceptance of uphill For d=2, ensuring thag,(r) can equal unity, given the
moves with a Boltzmann factor probability allows the con-system parameters, is considerably more difficult since the
figuration to escape from local minima. Each particle isdenominator of relatiorfl4) depends om, and is therefore
moved sequentially in the same manner until the system idifferent for each bin. Fog,(r) to be an integer, the bin
equilibrated at a particular value of the temperature. The reawidth must be adjusted for each bin. If the bin width is kept
soning behind the method of simulated annealing is that if &onstant, the program will do its best to match the step func-
system is heated to a high temperattlirehen slowly cooled tion, resulting in a function that jumps above unity, then
to absolute zero, it will equilibrate in its ground state. In thisgradually decreases asincreases, then jumps above unity
ground state, the energy can be viewed as the least-squaragain, in order to attain a minimum distance from the target
error between the generated configuratiopr) and the function (see the first figure described in Sec. 1)l Baking
target functiorg,(r).° It therefore becomes crucial to choose the data generated from a run of constant bin size, we can
the fastest possible cooling schedule that will allow the sysuse ther andg,(r) values for each bin to adjudtr andr (r
tem to reach its global minimum without getting stuck in is dependent oAr since it must be in the middle of the bin
local minima. We found that a maximum step size &f so thatg,(r)=1. Using these adjusted values fdr andr,
=0.5D worked effectively in this study. another simulation is performed, this one generating the de-
At any particular step of the construction procedure, thesired flat pair-correlation function. Within these constraints
RDF is computed from a histogram of the average number ofor d=1 andd=2, the bin widths must still be chosen so
particle centersi(r) contained in a concentric shell of finite that the finalg,(r) is an accurate reflection of the system
thicknesgbin width) Ar at radial distance from a reference structure. It the widths of the bins are too small, the fluctua-
particle centef. The radial distance is taken to be halfway tions overwhelm the RDF, if the bins are too wide, there is
between the inner radius { Ar/2) and the outer radiug ( not enough information to accurately reproduce the target
+Ar/2) of each shell. Lehy(r) be the number of pairs of function®

particles in bink corresponding to a radial distanceThen The construction procedure was used to examine the step
ne(r) function up to the terminal density @=0.5 ford=1 and
n(r)= K (1)  ¢=0.25ford=2. At low densities, starting from a regular
N array (a square lattice fod=2 and evenly spaced rods for
and the RDF is calculated from the formula d=1) was found to get the system stuck in local minima,
and to take much longer to equilibrate at a particular tem-
o n(r) 2 peratureT. Starting from an equilibrium hard rod or hard
92(1)= PUshelT)’ (12) disk configuration alleviated this problem. Consequently, at

all densities, we started the annealing program from equilib-
rium configurations for all results reported below.
(r+Ar/2)9—(r—Ar/2)9 Despite previous results to the contrary for a different
Ushel(T) = v1(1) pr: ; correlation functior?,a “great deluge” algorithm, where only
downhill moves are accepteg@orresponding to a fictitious
andw,(r) is given by Eq.(6). For one and two dimensions, temperatureT=0), was ineffective. In all cases, it led to

wherewvg,e is the volume of thel-dimensional shell given by

we specifically have immediate trapping in a local minimum close to the initial
ne(r) configuration. _The most effective pooling _schedule was
gx(r)= SNZAT (d=1), (13)  found to be an incrementally decreasing function of tempera-
ture. At high initial temperatures, few Monte CarlMC)
N(r) cycles are needed, as the purpose of heating to these tem-

(d=2). (14)  peratures is simply to shake the system out of its initial con-
figuration. At each temperature, the energy of the system
Because of the finite system size, the resolution of theapidly takes on a Gaussian-like distributi@®ee Fig. 1). The
pair-correlation function becomes a problem. We calculatesystem reaches this equilibrium energy distribution after a
g»(r) via relations(13) and (14). By necessityn,(r) must finite number of MC cycles. As the temperature is lowered,
be an even integefthe distance between each pair of par-the mean energy is also lowered, and the distribution nar-
ticles is counted twice, once for each of the particles in-rows. The key to a successful cooling schedule appears to be
volved). Consequentlyg,(r) can only achieve certain val- approachingT=0 in temperature steps that are small

91 = 5 oNzrar
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0.03

T=0.0 T " T - N(N—1) calculations per MC cycle. Only smaller system
I : 1 sizes were computationally feasible. Early trials invol\d
0.025] =500 and 1000, but all later simulations had smaller sizes
| (N=200 ford=1 andN=289 ford=2).
I 0.02) The RDF for an equilibrium hard-sphere fluid system
E 00151 equals unity at large because the spheres are uncorrelated at
8 l large distances. This being the case, we do not need to match
= 01l the simulated correlation function to the target function at
| larger while annealing, since we can assume them to have
0.005H the same value. It is only the short-range order of the equi-
1 librium system that the simulated-annealing program must
9% T T ekt 600 suppress to make the simulated system’s RDF match the tar-
E get step function. But how far out should we try to match the

. . ) . . . systems? Obviously, the farther out the systems are matched,
FIG. 1. Energy histograms for one simulation done in one dimensieh at . . .
= 0.45. Thex axis is the energy in terms of number of misbinned pairs. The the more accurate _the conflguratlonal results will be, but
y axis is the probability at each temperature of finding the configuration acomputational time increases with the square of the sample
each energy. The curves fdr=0.0, 0.05, 0.10, 0.20, 0.30, 0.40, 0.50 are distance, making it prudent to limit the Samp“ng distance to

shown. It is clear that as the temperature is lowered, the mean energy | :
lowered, and the distribution becomes narrowerTAt0.0, each configura- 8n|y what is abSOIUtely necessary to Closely approach the

tion has a tendency to be trapped at a single energy, so the curve shown is EAf9€t funCtﬁon- _ _ _ . _
average over 16 configurations. The mean of this curve B=a8, with a Early trials in one dimension all used a sampling dis-

probability of 0.21. tance of five diameters &5). With promising results from
these, the sampling distance was increasad=tt0, leading
to great difficulties. For an equilibrium hard rod initial con-

enough. If the increments between temperatures are tod#guration, the mean particle separation is givendyt 1,
large, the system will tend to get stuck in local minima. At Where€¢ is the mean chord lengtfyap size)given by Eg.
the end of the cooling schedule, the system is run througk?l). Therefore, for densities less thér-0.4, only the near-
several thousand MC cycles will=0, to ensure that it is at €St neighbor is includedon averagejn the sampling dis-
an absolute energy minimum. tance. Given the numerical protocol, the program then works
It is noteworthy that ford=1, the energy of the system to flatten the pair-correlation function by adjusting only the
can only take certain incremental values, corresponding toearest-neighbor distances. As soon as two particles draw
the number of pairs that are the “Wrong” distance ammis- closer together to flatten out the function, they pU” away
binned pairs), i.e., pair distances that do not give a value offom the particles on either side of them, and these distances
unity for the RDF. As the system parametérs, N, and¢  are not counted. This leads to a configuration in which par-
are changed, the size of these increments changes. Since fifdes have paired. It is therefore a simple matter of optimiz-
uphill moves are accepted with the Boltzmann probabilitying each of the distances between the two particles in a pair,
exp(—AE/T), the effective temperature changes with N,  with no regard to their relative positions to any other par-
and ¢. For example, in a one-dimensional system with ticles, and the program easily matches the target step func-
=0.1 and¢=0.2 andN=200, one misbinned pair of centers tion. Increasing the sampling distance to 10 or 20 diameters
is equivalent td==0.0625. For a one-dimensional system atsuddenly makes the optimization problem much more diffi-
¢ =0.45 with the same bin widths and the same number o€ult. Moving each particle becomes a tug of war between its
particles, the energy of one mishinned pair &  distances to nearest neighbors and to neighbors farther away,
=0.012 345 68. Because of this, the temperaflinesed to  thus creating energy barriers for lowering the energy of the
evaluate the Boltzmann probability is effectively six times system, i.e., the energy surface becomes more rugged, and
hotter for the¢=0.45 system than theé=0.2 system. The the system becomes more easily trapped in local minima. It
temperatures in the cooling schedule need to be selected &scostly for the system to move away from its initial con-
the system parameters are changed to preserve the same figguration, so the simulated annealing program will have dif-
fective temperatures. ficulty eliminating large differences between the initial RDF
Two-dimensional systems do not encounter this problemand the step function when the sampling distance includes
The energy fod=2 is dependent onas well as the param- several nearest neighbors. At low sampling distances, the
eters listed above. Therefore the energy value for a mispairing phenomenon leads to meaningless results. It is there-
binned pair is different for each bin. Moreover, energy his-fore important to choose a sampling distance at each density
tograms for¢=0.1 and 0.2 are virtually identical for the that includes several nearest neighbors, as indicated by the
same temperature, indicating that the two systems, althougimean particle separation.
at different densities, experience the same effective tempera- This problem of sampling distance was not as severe in
ture. two dimensions. The reason is that a sampling distance that
Computational time increases as the square of systenmcludes the nearest-neighbor shell of a given particle will
size because to calculagg(r) for every MC cycle, the pro- include more than two of the particle’s near neighbors, which
gram must measure the distance between each particle apdevents the simple pairing phenomenon found in one di-
the other N—1) for each of theN particles, leading to mension.
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FIG. 3. The equilibrium configuratiottop) for ¢=0.45 is compared to the
annealed step function system for the configuration whose RDF is shown in
Fig. 1 (bottom). The equilibrium system shows larger gaps and more clus-
0y '2 ' ",, ' |6 ' |8 10 tering than the step-functiog, system, as expected. The rods have been
) /D stretched vertically to enhance ease of pattern visualization.
T T T T T
¢=04 |
equilibrium hard rods =2"9in both one and two dimensions. Moreover, satisfac-
N 7 tion of the nonnegativity conditiong,(r)=0 andS(k)=0 is
] sufficient in one and two dimensions to ensure that the step
= annealed result function g, is realizable by hard-sphere configurations.
% 1T N Nothing suggests that these conclusions would not hold in
higher dimensions. It is important to emphasize that all of
our annealed results for the step functmnreported below
0.5r ] are for a single configuration at a particular density, i.e., they
are not ensemble averaged.
00 . 1 . 5 : '3 ; "t ; 5 A. One dimension
2 — T/P — For d=1, simulations were run ap=0.20, 0.30, 0.40,
0=0.45 0.45, 0.50, i.e., up to and including the terminal density. A
equilibrivm hard rods 1 perfect result E=0) was achieved forp=0.2 up to a sam-
1.5 4 pling distance of 10, angp=0.30, 0.40, 0.45 to a sampling
distance of 5. Figure 2 shows several of these annealed cases
_ annealed result 1 and compares them to the corresponding equilibrgym
=1+ As can be seen in Fig. 3, the particles of the equilibrium
on
\/ systems have more of a tendency to cluster than the annealed
] systems. For simplicity, we take all distanget® be in terms
0.5 . of diameters, so that the contact distance occurs=t. In
order to suppress the short-range order of the system at equi-
librium, and eliminate the initial peak at the contact distance,
U T é : '3 : "t — the rods in the step-functiagy, system must have a repulsive

/D interaction potential, forcing them to spread out more. The
FIG. 2. RDF’'s in one dimension for densities ¢f=0.2 (top), ¢=0.4 _dlﬁerence betweer! the eq“"'bf'“m and the annealed syster_n
(middle), andg=0.45 (bottom). The annealing result for a single configu- 'S MOSt acute at higher densities, as this is where the equi-
ration is compared to the equilibrium hard rod RDF in each case. The valuibrium hard rod RDF differs most from the unit step func-
for each bin is plotted in the center of the bin for this and all following tion. At lower densities, the difference is less acute, and in-
equivalent graphs. deed in the limitp—0, the equilibrium hard rod RDF is the
step functiorf

Finally, we remark that the most effective way to lower e also achieved a perfect step function at the terminal
the energy of systems in one and two dimensions turned owensity ¢ = % for a sampling distance of 2.5. For a sampling
to be repetition of the algorithm. Even when an appropriatejistance of 5 at the terminal density, the annealed result was
cooling schedule had been designed, many initial configuranearly perfect; there were only a few misbinned pairs near
tions had to be processed before the global minimum wag=pD, resulting in a small peak at contact. We believe that
found. Adjusting the cooling schedule can increase the probhis imperfection is a finite-size effect, which would vanish
ability of perfectly matching the unit-step function, but it by in the infinite system limit. It is important to observe that the
no means makes this the certain outcome of everyalue ofi for the terminal density applies in the thermody-
simulation. namic limit®
Contrary to the expectation that configurations would
. RESULTS become more difficult to anneal to the step functipras the

Our results support the conclusion that the unit stegerminal density was approached, we found that annealing
function g»(r) is realizable up to the terminal density,  “equivalent” systems at all densities was comparable. In or-
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FIG. 4. RDF for $=0.7 in one dimension. The RDF for one annealed FIG. 6. RDF for¢=0.2 in two dimensions. The annealed step function for
configuration is compared to the analytical equilibrium hard rod RDF. Al- On€ configuration is contrasted with the equilibrium hard disk RDF.
though it is impossible to match the step function at this density, the simu-
lated annealing program outputs a function significantly different from the
equilibrium hard rod RDF at this density. in the infinite system limit, and expect that step function is
achievable up to the terminal densi#=0.25.
. . . At densities above the terminal density for step function
der for systems to be equivalent at different densities, one__.__ .. -~ o
) realizability, = 0.25, the program produced results similar
must hold constant the number of particles, use the samg . . : )
. . . . .10 those in one dimension. At a densityg# 0.30, there was
effective temperatures in the cooling schedule, while adjust- - . .
ing the sampling distance to reflect the difference in mear) peak atr =1 that decreased to a flat line with no further
air separation oscillations. At ¢=0.50, the initial peak is followed by a
P P o . . . trough (see Fig. 8). In contrast to one dimension, in two
Above the terminal density, the simulated annealing pro-

gram struggled to produce a physically unrealizable configuglmensmns’ there is a disorder-order phase transitios at

— 18,19 : . . . . )
ration, with some interesting results. At densities of 0.69. The highest density achievable in two dimen

=0.55, 0.6, the RDF generated by the program shows glons for an ordered systewh=/12=0.907 s for the

buildup to a low peak at= 1, then a flat curve beyond that, Close-packed triangular lattiéeSo the simulations run ab

markedly different from the damped oscillations of the equi—ZO'50 are below the freezing density, and still within the
librium hard rod system. Ath=0.7, 0.8, the peak at=1 is disordered phase. Even with these difficulties, the annealed

followed by a dip below (see Fig. 4). At a density o s_ystems sh(_)w much less clustering of disks tha_m the _equmb-
= . . rium hard disk system, as reflected by the relative heights of
=0.9, with very little room to maneuver, the program pro-

duces a slightly perturbed regular array. the peaks at the contact distance.

B. Two dimensions C. Lineal statistical descriptors

For d=2, simulations initially were run ag=0.10, - Theory

0.15, and 0.20. Perfect results were achievegat0.1 and There is a variety of other statistical descriptors available
0.15 at a sampling distance of 5, after adjustments wer& characterize the structure of many-particle systems; see,
made to the binwidthésee Fig. 5). At¢p=0.20 and a sam- for example, the book by Torquafotere we utilize lineal
pling distance of 3, we also achieved a perfect reggde  descriptors, such as the lineal-path functigiz) and related
Fig. 6). Not surprisingly, Fig. 7 shows that an equilibrium chord-length probability density functiop(z) to further
hard-disk configuration exhibits more clustering and largercharacterize the systems. For statistically isotropic media,
pores than a configuration for an annealed step-function syd-(z) is the probability that a line segment of lengtHies
tem. We note, however)=0.20 and a sampling distance of wholly in a single phase, in this case, the pore space, when
5, there were small deviations from the step function RDFrandomly thrown into the sample. The pore space is the
resulting in an energy oE=0.006 837 4, calculated using space exterior to that occupied by the particles. The lineal-
relation(9). As in the one-dimensional case, we believe thapath functionL(z) for any homogeneous and isotropic sys-
this imperfection is a finite-size effect, which would vanish tem of interacting identicatl-dimensional spheres involves

¢=01 0=0.1 FIG. 5. Output RDF’s for the simulated annealing pro-

g gram trying to match the step function in two dimen-
sion at¢=0.1. Left panel: Output RDF for one con-
figuration with constant bin widthAr=0.1, showing
the inability of the program to match the step function
[see the paragraph immediately below ELp)]. Right

0.sf 1 panel: The output for one configuration once the bin
widths have been adjusted to allow the program to per-
0 L L L K . . . fectly match the step function.
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FIG. 7. Configurations of 289 particles fégr=0.2 in two dimensions. The o
equilibrium hard disk systerfleft) shows more clustering and larger pores €c: Zp(Z)dZ- (20)
than the annealed step function syst@ight). 0

In the special case of hard-sphere systems in any ensemble,
the mean chord lengttor, equivalently, the mean gap size
integrals overg, and all the higher-order correlation func- petween the particless exactly given b¥
tions gs(r), ga(r),... and isexactly given b§*®

© (1-¢)wy
—1)k {c=—0D, (21)
L@)=1+3, ¢ " ) p“f 9(r’) 2600
k=1 :
" wherewy is the volume of a single sphere drdimensions of
. unit radius given by Eq(6) with r=1.
Xjﬂl m(x=rj;z,R)drj, (16) One can show that ifj, is the unit step function, then

. L L L(2) in one dimension is given by
where the exclusion region indicator functionis given by

1, xeQg(z,R), 1_¢_¢(£)+£ i)z 0<z<D
m(x;z,R)= 0, otherwise, a7 L(2)= ° 21b7 - @
f(z), z=D,

and Q¢ is the volume excluded to a spherical inclusion of
radiusR by a line of lengthe. For allz, L(z)=0. In addition,  wheref(z) is the functional form of.(z) for z=D, which is
sinceL(z) is a probability function, it is a monotonically uniquely determined by the infinite set of correlation func-
decreasing function of. tions g,,9s,04,... . Therefore combining Eqs(19), (21),

The lineal-path function is related to the chord-lengthgnd (22) for the step functiorg, yields in one dimension
probability density functionp(z).%® This has also been

called the chord-length distribution function. For general ¢ 0<7z<D
two-phase random media, “chords” are the line segments D' ==
between the intersections of an infinitely long line with the  p(2)= D d2f (23)

two-phase interface. The quantip(z)dz is the probability -,
of finding a “chord” of length betweerz andz+dz in the ¢ dz
pore spacé® Since it is a probability density functiop,(z)
=0 for all zand we have the normalization

z<D

Due to the nonnegativity op(z), the second derivative
d?f/dz?> must also be non-negative.

It is interesting to compare the lineal path function Eq.
(22) and chord-length density functign(z) Eq. (23) for the

4 — 7 T T T step functiong, to the corresponding functions for an equi-
e=05 librium systems of hard spheres at the covering fraction
| o _ which are given b¥
3 equilibrium hard disks 7
L 1 ¢ z 0 24
= =(1- - =
<.l | @=(1-dex— =55 =0 (24)
annealed result | @ 1) F{ ¢ z 0 25)
1 z)= exg — —|, z=0.
= =pp®N " 1=9)D
0 . T S T T In contrast to the step-functiog, counterparts, the equilib-
0 ! 2 ° 4 5 rium L(z) and p(z) are purely exponential functions. Of

course, expression®2) and(23) must approach the equilib-

F_IG. 8._ RDF for_¢=0.5 in two d_imensions. Li_ke th_e&=0.7 case in one rium functions(24) and (25) in the limit $—0.
dimension, the simulated annealing program, in trying to achieve the physi-

cally unrealizable step function creates an RDF significantly flatter than the 1N addi'tion to the nonnega_tiVitY af(z) and p(Z) and the
equilibrium. The annealed result RDF is the average of eight configurationsmonotonicity of L(z), which implies thatf(z) is a non-



7072 J. Chem. Phys., Vol. 119, No. 14, 8 October 2003 Crawford, Torquato, and Stillinger

T T T T T T T

0=04
06 . 06

$=04

] FIG. 9. Left panel:L(z) determined exactly from the
one-dimensional annealing results, averaged over 55
configurations, compared to best-fit curve forD,

7 f(zy=aexp(—b%, a=0.57911, b=0.71028, c

] =1.1878. Right panel: The annealing result is repre-
sented by p(z)=¢ [df?(z)/dZ?] for z>D. For
z<D, experimental results show thafz) = ¢. The an-
nealing result is compared @(z) for the equilibrium

3 s To 0 ‘ ‘ L hard rod system.

equilibrium hard rods

05 —annealed result | 05
~-fitted function

L)

annealed result

negative, concave, and monotonic functionzoff (z) must Our exact evaluation df(z) produces smooth curves. In
obey five exact conditions for the step functign. The  contrast, “binned” determinations qf(z) from experimental
lineal-path function and its first derivative must be continu-data resulted in noisy curves, even when averaged over a

ous atz=D and so number of configurations. Sind€z) cannot be determined
e exactly because we do not know the higher-order correlation
f(D)=1-2¢+ —, (26) functions for the step-functio, configurations that we
2 have constructed, we assume th@t) can be approximated
d as
Dd_Zz:D:_¢(1_¢)' o f(z)=aexp—bZz), (32)
The third condition follows from the continuity gi(z) at ~ which has the necessary non-negative and monotonic form.
z=D [cf. Eq.(23)]: Herea, b, andc are positive fit parameters. Of the functional
d2f forms tried, this one satisfied the five necessary conditions
= &2 (28)  most satisfactorily. The corresponding chord-length density
dZ 2=D function p(z) is given by
The integral conditiong18) and (20) in conjunction with ¢, 0=z<D,
Egs.(21) and (23) yields the fourth and fifth conditions on
abc . y
f(z) as p(z)= Texq—bzc)[bczz(c )—(c—1)zc"?], (33)
+Dfmd2fd =1 29 z=D
E o FEd z=1, (29) :
= d*f (1- ¢) 20 To illustrate the goodness of the fit, we consider a cov-
¢ 24z dz=—"0— & (30) ering fractionp=0.4, a value near the terminal density. We
see from Fig. 9 that the fit to the simulation data is extremely
2 Evaluation good; a=0.57911,b=0.71028,c=1.1878, giving a chi

squared value 0f?=2.8x10 °. This fit satisfies the five

Here we determind.(z) and p(z) for our constructed conditions(26)(30) to excellent approximations:
configurations in one dimension. One can use a stochastic

approach to compute(z) by tossing line segments of length f(D)=0.2846,
z into the system for each, and counting the number that

land entirely in the pore space. However, we use a procedure ﬁ =—0.2401,
that leads to an exact evaluationlgfz) for a given configu- 7=D

ration. The midpoint of any line segment of lengthcan 42

occupy any position in the pore space that is more than el —0.1574
away from any rod. The value af(z) is therefore exactly dz* 7=D '

the pore space “available” to the system bif rods with .
diametersD +z. The shells of lengtfa/2 that must be added f p(z)dz=1.000,
to each rod end may overlap, however, since the rods are Jo
required to be only farther thal apart. We calculaté (z) .
as the sum of all the gaps left when the rods are of size f zp(z)dz=1.447.
D+z: 0

1 The exact values are given by 0.280.24, 0.16, 1, and 1.5,
L@)=5 > (6-2U(5-2), (31)  respectively, at the densityp=0.4. The corresponding
i=1 . . . . .
chord-length density function is also plotted in Fig. 9.
whered; is the gap between thi¢h and the {(+ 1)th particle The dramatically different shape pf{z) from the equi-

andU(x) is the unit step function. A technique like this has librium function that can be seen in Fig. 9 corresponds to the
been used in two dimensions to compute the related nearestuppression of the peak at the contact distance by the step
neighbor probability distribution functioH. function g,. With fewer particles clustering, it is expected
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that the number of gaps of small size would be fewer, andhat displays smaller amplitude deviations from unity beyond
this is reflected in the shape p{z). This tendency toward a the exclusion diameter, compared to the equilibrium pair-
more spread-out, less clustered configuration for the areorrelation function at the samg However, even these di-
nealed step-function system can be seen in Fig. 3. Therefomainished oscillatory deviations increase in magnitudepas
the chord-length density function is a sensitive indicator ofincreases beyong., and our numerical procedure encoun-
the difference between configurations having the steptered increasing difficulty in attaining an optimal solution.
function g, and the ensemble of equilibrium configurations  The limited, but useful, results obtained in this study

at the same density. encourage the aggressive pursuit of a variety of extensions.
Perhaps the most obvious is to examine realizability of the
IV. CONCLUSION AND DISCUSSION unit step functiorg,(r) in three dimensions. Straightforward

d extrapolation of the results reported in this paper suggest that
indeed realizability is possible up to terminal covering frac-
tion ¢.=0.125, but not beyond. Furthermore, the chord-
éength density functiorp(z) should continue to be a sensi-
tive indicator of differences in patterns of short-range order
Qetween the constrained and the equilibrium systems.
Expanding the examination of realizability beyond just

Any pair-correlation functiong,(r) and its associate
structure factoiS(k) for a many-particle system are trivially
constrained by non-negativity conditiongl,(r)=0 and
S(k)=0. Unfortunately, no general theory has been availabl
to indicate whether any arbitrary candidate functgnthat

descriptor of short-range order in a specific many-particle

system. In other words, is the pair of necessary inequalitie%le fur:'t St?p fur]{_ctlot{gz(r)Tls of course _alrs];) a V;Fta Ibdl'rebcu?
also sufficient, or does there exist an as-yet undiscovere F future investigation. 1wo cases might profitably be dis-
tinguished, depending upon whiatvalue is involved when

satisfied to represent an attainable particle system? The onEe conditionS(k)=0 is about to be violated, thus defining a

reported herein provides some modest evidence in support g?rmlnal density. The cases examined in this paper have this

the proposition that only the two non-negativity conditionsocctutmng. atlrzo, gtIVIrllghnsetr;[o hyperumfolr(;nh?/wségﬁ‘?saé
are required, provided that the particle number density is not(::a erminal density. The other case wou » an
the terminal-density systems would not be hyperuniform. It

too large. If this proposition is true, it would stand in direct . vable that didate’s in the f | oht
contrast to the properties of a related two-point correlatior® ¢Oncelvable that candidagss in the former class mig

function S,(r) that arises in characterization of two-phasealways be realizable at and below their terminal densities,
random media(i.e., binary stochastic spatial processes while those in the latter class may not be realizable to the

where it is known that the two analogous non-negativity conSame extep_t. . .
ditions are only necessary for realizabifity. In addition to the extensions already mentioned, argu-
The specific cases examined involved a unit step funcents can be made in favor of examining multicomponent
(mixture) systems, as well as cases involving structured par-

tion form for g,(r), in one and two space dimensions. At' | th - ientational dinatedl of
simulated annealing stochastic numerical procedure serveﬁ: es (e.g., those requiring orientational coordinatesl o

to move particles about, starting from random initial posi-t ese open problems, if attacked by numerical means, are

tions, so as to minimize the mean-square error between tHli(e'Y to be even more dema_ndlng than the cases considered
pair-correlation function of intermediate particle configura-"? this paper. _Conseque_ntly, It ml_ght be advantageous to con-
tions, and the target unit step function. Results in both on ider alternative nl_JmencaI algonthms. Some that seem t(_) be
and two dimensions indicate that indeed the target Wageleva_mt are the simulated tempermg, or parallel_tempen_ng,
achievable up to a terminal covering fractigp=0.5 in one f[echnlques. that have the capacity ‘S surmoun_t high barriers
dimension, andp.=0.25 in two dimensions in the infinite n the configurational .search Space: Anoth_er l.('nd of nu-
system |imit?® These upper density limits agree with the merical advaqtage m|.ght stem fro”.‘ explonayon of j[he hy-
general result fod-dimensional space, implied by a previous pernetted (?’ha'mHNC) mtegral'gql.,latloﬁ,sm.c.e it supplies
study? that the terminal upper density i, =2~ The par- pair potential that, under_ equilibrium condltlons, should cor-
ticle system becomes “hyperuniform” ah. ; at that density respond(at least approximatelyto the given targegy(r).

S(0)=0 and long-range density fluctuations are severely in—By using that H_NC pair p_oten_tlal n a Monte_CarIo or
hibited. molecular-dynamics simulation, it should be possible to gen-

erate a set of good starting configurations for further refine-
ment by the other procedures mentioned.

additional set of constraints on candidatgs that must be

Configurational patterns exhibited by the many-particle
system subject to a unit step functigp are perceptibly dif-
ferent from those dominating the corresponding equilibrium
system of hard-core particles. In particular, the distributionaACKNOWLEDGMENTS
of distances between near neighbors, especially upon ap- ) )
proach to the terminal density, is significantly different from ~ This work was supported in part by the Petroleum Re-
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length density functiorp(z) is a particularly sensitive indi- Cciety, MRSEC Grant at Princeton University, NSF DMR-

In spite of the geometric impossibility to achieve the unit
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