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Questions concerning the properties and quantification of density fluctuations in point patterns continue to
provide many theoretical challenges. The purpose of this paper is to characterize certain fundamental aspects
of local density fluctuations associated with general point patterns in any space dimension d. Our specific
objectives are to study the variance in the number of points contained within a regularly shaped window � of
arbitrary size, and to further illuminate our understanding of hyperuniform systems, i.e., point patterns that do
not possess infinite-wavelength fluctuations. For large windows, hyperuniform systems are characterized by a
local variance that grows only as the surface area �rather than the volume� of the window. We derive two
formulations for the number variance: �i� an ensemble-average formulation, which is valid for statistically
homogeneous systems, and �ii� a volume-average formulation, applicable to a single realization of a general
point pattern in the large-system limit. The ensemble-average formulation �which includes both real-space and
Fourier representations� enables us to show that a homogeneous point pattern in a hyperuniform state is at a
‘‘critical point’’ of a type with appropriate scaling laws and critical exponents, but one in which the direct
correlation function �rather than the pair correlation function� is long ranged. We also prove that the non-
negativity of the local number variance does not add a new realizability condition on the pair correlation. The
volume-average formulation is superior for certain computational purposes, including optimization studies in
which it is desired to find the particular point pattern with an extremal or targeted value of the variance. We
prove that the simple periodic linear array yields the global minimum value of the average variance among all
infinite one-dimensional hyperuniform patterns. We also evaluate the variance for common infinite periodic
lattices as well as certain nonperiodic point patterns in one, two, and three dimensions for spherical windows,
enabling us to rank-order the spatial patterns. Our results suggest that the local variance may serve as a useful
order metric for general point patterns. Contrary to the conjecture that the lattices associated with the densest
packing of congruent spheres have the smallest variance regardless of the space dimension, we show that for
d�3, the body-centered cubic lattice has a smaller variance than the face-centered cubic lattice. Finally, for
certain hyperuniform disordered point patterns, we evaluate the direct correlation function, structure factor, and
associated critical exponents exactly.
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I. INTRODUCTION

The characterization of density fluctuations in many-
particle systems is a problem of great fundamental interest in
physical and biological sciences. In the context of liquids, it
is well known that long-wavelength density fluctuations con-
tain crucial thermodynamic and structural information about
the system �1�. The measurement of galaxy density fluctua-
tions is one of the most powerful ways to quantify and study
the large-scale structure of the Universe �2,3�. Knowledge of
density fluctuations in vibrated granular media has been used
to probe the structure and collective motions of the grains
�4�. Recently, the distribution of density fluctuations has been
employed to reveal the fractal nature of structures within
living cells �5�.

Clearly, density fluctuations that occur on some arbitrary
local length scale �4,6–10� provide considerably more infor-
mation about the system than only long-wavelength fluctua-
tions. Our main interest in this paper is to characterize cer-
tain fundamental aspects of local density fluctuations
associated with general point patterns in any space dimen-
sion d. The point patterns may be thought as arising from the

coordinates of the particles in a many-particle system, such
as the molecules of a liquid, glass, quasicrystal or crystal,
stars of a galaxy, grains of a granular packing, particles of a
colloidal dispersion, or trees in a forest.

Consider an arbitrary point pattern in d-dimensional Eu-
clidean space Rd. Let � represent a regular domain �win-
dow� in Rd and x0 denote a configurational coordinate that
specifies the centroid of the window � . The window will
always have a fixed orientation. There is a variety of inter-
esting questions that one could ask concerning the number of
points contained within � . For example, how many points
N� are contained in � at some fixed coordinate x0? This
question is a deterministic one if the point pattern is regular
and may be a statistical one if the point pattern is irregular
�see Fig. 1�. How does the number of points contained within
some initially chosen � at fixed coordinate x0 vary as the
size of � is uniformly increased? How do the number of
points within a fixed � fluctuate as x0 is varied?

For a Poisson point pattern, the statistics of the number of
points contained within a regular domain are known exactly.
For example, the number variance is given by

�N�
2 ���N��

2��N�� , �1�
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where angular brackets denote an ensemble average. Letting
� be a d-dimensional sphere of radius R and noting that
�N�� is proportional to Rd leads to the result that the number
variance grows as the sphere volume, i.e.,

�N�
2 ���N��

2�Rd. �2�

This result is not limited to Poisson point patterns. Indeed, a
large class of correlated irregular point patterns obeys the
variance formula �2�, as we will discuss in Sec. II.

Can the variance grow more slowly than the volume of
the domain or window? One can show that for any statisti-
cally homogeneous and isotropic point pattern, the variance
cannot grow more slowly than the surface area of the do-
main, whether it is spherical or some other strictly convex
shape �11,12�. Thus, it is natural to ask the following ques-
tion: For what class of point pattern does the variance grow
as the surface area? For a spherical domain, we want to
identify the point patterns that obey the variance relation for
large R,

�N�
2 ���N��

2	Rd�1. �3�

We will refer to such point patterns as ‘‘hyperuniform’’ sys-
tems because, as we will see, such systems do not possess
infinite-wavelength fluctuations. �This is to be contrasted
with ‘‘hyposurficial’’ systems, whose ‘‘surface’’ fluctuations
vanish identically.� Additionally, it is of great interest to
identify the particular point pattern that minimizes the am-
plitude �coefficient� of the fluctuations that obey Eq. �3� or
achieves a targeted value of this coefficient.

Clearly, points arranged on a regular �periodic� lattice are
hyperuniform. More generally, it is desired to know how the
number of lattice points N(R) contained within a spherical
window of radius R varies as a function of R when the sphere
is centered at x0. For simplicity, let us consider this question
in two dimensions for points arranged on the square lattice
and let the center of the circular window of radius R be
positioned at a point (a1 ,a2) in the unit square. The answer
to this query amounts to finding all of the integer solutions of

�n1�a1�
2��n2�a2�

2
R2, �4�

a problem of interest in number theory �13,14�. This problem
is directly related to the determination of the number of en-
ergy levels less than some fixed energy in integrable quan-
tum systems �9�. It is clear that N(R) asymptotically ap-

proaches the window area �R2 for large R and unit density.
The apparent ‘‘random’’ nature of N(R) is beautifully
illustrated in Fig. 2, which shows how the function
N(R)��R2 grows with R.

It is considerably more challenging to identify nonperi-
odic point patterns, such as disordered and quasiperiodic
ones, that are hyperuniform. The mathematical conditions
that statistically homogeneous hyperuniform systems must
obey �derived in Sec. II� are a necessary starting point in
identifying such hyperuniform point patterns. These condi-
tions, which include the counterintuitive property of a long-
ranged ‘‘direct’’ correlation function, are determined from a
general formula for the number variance of such systems,
which is obtained in Sec. II. The fact that the direct correla-
tion function of a hyperuniform pattern is long ranged is
reminiscent of the behavior of the pair correlation function of
a thermal system near its critical point. Indeed, we show that
a statistically homogeneous point pattern in a hyperuniform
state is at a ‘‘critical point’’ of a type with appropriate scaling
laws and critical exponents. By deriving a Fourier represen-
tation of the local variance, it is also shown that the non-
negativity of the variance does not add a new realizability
condition on the pair correlation function beyond the known
ones.

To date, only a few statistically homogeneous and isotro-
pic patterns have been rigorously shown to be hyperuniform.
One of the aims of this paper is to identify other such hype-
runiform examples, and to describe a procedure to find them
systematically. This requires a formulation for the local vari-

FIG. 1. Schematics indicating
a regular domain or window �
and its centroid x0 for two differ-
ent point patterns. Left panel: A
periodic point pattern. Right
panel: An irregular point pattern.
We will show that the statistics of
the points contained within � for
these two types of patterns are
fundamentally different from one
another.

FIG. 2. The function N(R)��R2 vs R for the unit-spacing
square lattice, using a circular window of radius R centered on a
lattice point.
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ance that can be applied to a single realization of any pattern,
which is accomplished in Sec. III. In Sec. IV we prove that
the simple periodic linear array yields the global minimum
value of the average variance among all infinite one-
dimensional hyperuniform patterns. Interestingly, we also
show that the variance for large spherical windows enables
us to rank-order common regular lattice and certain disor-
dered point patterns in one, two, and three dimensions �see
Secs. IV and V�. Our results suggest that the local variance
may provide a useful order metric for general point patterns
�see Sec. VI�. Contrary to the conjecture that the Bravais
lattice associated with the densest packing of congruent
spheres has the smallest variance regardless of the space di-
mension, we show that for d�3, the body-centered cubic
lattice has a smaller variance than the face-centered cubic
lattice. In Sec. V, we evaluate the direct correlation function,
structure factor, and associated critical exponents exactly for
certain hyperuniform disordered point patterns. Three appen-
dixes provide analytical formulas for key geometrical quan-
tities required for the theory, an evaluation of the variance
for hard rods in equilibrium for large windows, and a discus-
sion of a certain property of hyposurficial point patterns.

II. LOCAL VARIANCE FORMULA FOR REALIZATIONS
OF STATISTICALLY HOMOGENEOUS SYSTEMS

A general expression for the local number variance for
realizations of statistically homogeneous point patterns in d
dimensions is derived. This is necessarily an ensemble-
average formulation. We obtain both a real-space and a Fou-
rier representation of the variance. From these results, we
obtain formulas for asymptotically large windows. We show
that a hyperuniform point pattern is at a type of critical point
with appropriate scaling laws and critical exponents, but one
in which the direct correlation function is long ranged.

A. Preliminaries

Consider N points with configuration rN�r1 ,r2 , . . . ,rN
in a volume V. The local number density at position x is
given by

n�x��
i�1

N

��x�ri�, �5�

where �(x) is the Dirac delta function. The point pattern is
statistically characterized by the specific probability density
function PN(rN), where PN(rN)drN gives the probability of
finding point 1 in volume element dr1 about r1, point 2 in
volume element dr2 about r2 , . . . , point N in volume ele-
ment drN about rN . Thus, PN(rN) normalizes to unity and
drN�dr1 ,dr2 , . . . ,drN represents the Nd-dimensional vol-
ume element. The ensemble average of any function f (rN)
that depends on the configuration of points is given by

� f �rN����
V
�

V
•••�

V
f �rN�PN�rN�drN. �6�

Because complete statistical information is usually not
available, it is convenient to introduce the reduced generic
density function �n(rn) (n�N), defined as

�n�rn��
N!

�N�n �!�V
•••�

V
PN�rN�drN�n, �7�

where drN�n�drn�1drn�2•••drN . In words, �n(rn)drn is
proportional to the probability of finding any n particles
(n
N) with configuration rn in volume element drn. In
light of its probabilistic nature, it is clear that �n(rn) is a
non-negative quantity, i.e., �n(rn)�0, �rn.

For statistically homogeneous media, �n(rn) is transla-
tionally invariant and hence depends only on the relative
displacements, say with respect to r1:

�n�rn���n�r12 ,r13 , . . . ,r1n�, �8�

where ri j�rj�ri . In particular, the one-particle function �1
is just equal to the constant number density of particles � ,
i.e.,

�1�r1���� lim
N ,V→�

N

V
. �9�

The limit indicated in Eq. �9� is referred to as the thermody-
namic limit. Since our interest in this section is in statistically
homogeneous point patterns, we now take the thermody-
namic limit. It is convenient to define the so-called n-particle
correlation function,

gn�rn��
�n�rn�

�n
. �10�

In systems without long-range order and in which the par-
ticles are mutually far from one another �i.e., ri j��ri j�→� ,
1
i� j
N), �n(rn)→�n and we have from Eq. �10� that
gn(rn)→1. Thus, the deviation of gn from unity provides a
measure of the degree of spatial correlation between the par-
ticles, with unity corresponding to no spatial correlation.

The important two-particle quantity

g2�r12��
�2�r12�

�2
�11�

is usually referred to as the pair correlation function. The
total correlation function h(r12) is defined as

h�r12��g2�r12��1, �12�

and thus is a function that is zero when there are no spatial
correlations in the system. When the system is both statisti-
cally homogeneous and isotropic, the pair correlation func-
tion depends on the radial distance r12 only, i.e.,

g2�r12��g2�r12�, �13�

and is referred to as the radial distribution function. From
Eq. �11�, we see that �s1(r)g2(r)dr is proportional to the
conditional probability of finding a particle center in a
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spherical shell of volume s1(r)dr , given that there is another
at the origin. Here s1(r) is the surface area of a
d-dimensional sphere of radius r, which is given by

s1�r ��
2�d/2rd�1

��d/2�
, �14�

where �(x) is the gamma function. Hence, for a finite sys-
tem, integrating (N�1)g2(r)/V over the volume yields N
�1, i.e., all the particles except the one at the origin.

Observe that the structure factor S(k) is related to the
Fourier transform of h(r), denoted by h̃(k), via the expres-
sion

S�k��1�� h̃�k�. �15�

The Fourier transform of some absolutely integrable function
f (r) in d dimensions is given by

f̃ �k��� f �r�e�ik•rdr, �16�

and the associated inverse operation is defined by

f �r��
1

�2��d� f̃ �k�eik•rdk, �17�

where k is the wave vector. It is well known that the struc-
ture factor is proportional to the scattered intensity of radia-
tion from a system of points and thus is obtainable from a
scattering experiment. An important property of the structure
factor is that it must be non-negative for all k, i.e.,

S�k��0 �k. �18�

B. General variance formulas

Let R symbolize the parameters that characterize the ge-
ometry of the window � . For example, in the case of an

ellipsoidal window, R would represent the semiaxes of the
ellipsoid. Let us introduce the window indicator function

w�x�x0 ;R��� 1, x��

0, x�� ,
�19�

for a window with a configurational coordinate x0. The num-
ber of points N� within the window at x0, which we hence-
forth denote by N(x0 ;R), is given by

N�x0 ;R���
V

n�x�w�x�x0 ;R�dx

�
i�1

N �
V
��x�ri�w�x�x0 ;R�dx

�
i�1

N

w�ri�x0 ;R�. �20�

Therefore, the average number of points contained within the
window in a realization of the ensemble is

�N�R����
V

i�1

N

w�ri�x0 ;R�PN�rN�drN

��
V
�1�r1�w�r1�x0 ;R�dr1

���
Rd

w�r;R�dr

��v1�R�, �21�

where v1(R) is the volume of a window with geometric
parameters R. Note that translational invariance of the point
pattern, invoked in the third line of relation �21�, renders the
average �N(R)� independent of the window coordinate x0.

Similarly, ensemble averaging the square of Eq. �20� and
using relation �21� gives the local number variance as

�N2�R����N�R��2��
V
�1�r1�w�r1�x0 ;R�dr1��

V
�

V
��2�r1 ,r2���1�r1��1�r2��w�r1�x0 ;R�w�r2�x0 ;R�dr1dr2

��N�R���1���
Rd

h�r���r;R�dr� , �22�

where h(r) is the total correlation function defined by Eq.
�12�,

��r;R��
v2

int�r;R�

v1�R�
, �23�

and

v2
int�r;R���

Rd
w�r1�x0 ;R�w�r2�x0 ;R�dx0 �24�

is the intersection volume of two windows �with the same
orientations� whose centroids are separated by the displace-
ment vector r�r1�r2 �15�. Appendix A provides explicit
analytical formulas for the intersection volume for spherical
windows in arbitrary dimension d. As before, statistical ho-
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mogeneity, invoked in the second line of Eq. �22�, renders
the variance independent of x0.

Remarks.
�1� Formula �22� was previously derived by Landau and

Lifschitz �16�, although they did not explicitly indicate the
scaled intersection volume function �(r;R). Martin and Yal-
cin �17� derived the analogous formula for charge fluctua-
tions in classical Coulombic systems.

�2� The local variance formula �22� is closely related to
one associated with the local volume fraction fluctuations in
two-phase random heterogeneous materials �15,18�. Both
formulas involve the scaled intersection volume function
�(r;R). The essential difference is that the variance for local
volume fraction fluctuations involves a different correlation
function from h(r), namely, the probability of finding two
points, separated by a displacement r, both in the same
phase.

�3� The existence of the integral in Eq. �22� requires that
the product h(r)�(r;R) be integrable. For finite size win-
dows, this will be the case for bounded h(r) because �(r;R)
is zero beyond a finite distance. For infinitely large windows,
�(r;R)�1, and integrability requires that h(r) decays faster
than �r��d�� for some ��0. For systems in thermal equilib-
rium, this will be the case for pure phases away from critical
points. The structure factor S(k) �defined by Eq. �15�� at k
�0 diverges as a thermal critical point is approached, imply-
ing that h(r) becomes long ranged, i.e., decays slower than
�r��d �19�.

An outstanding question in statistical physics is: What are
the existence conditions for a valid �i.e., physically realiz-
able� total correlation function h(r) �20� of a point process at
fixed density �? The generalization of the Wiener-Khinchtine
theorem for multidimensional spatial stochastic processes
�21� states a necessary and sufficient condition for the exis-
tence of an autocovariance function of a general stochasti-
cally continuous homogeneous process is that it has a spec-
tral �Fourier-Stieltjes� representation with a non-negative
bounded measure. If the autocovariance is absolutely inte-
grable, this implies that its Fourier transform must be non-
negative. The total correlation function h(r) is the nontrivial
part of the autocovariance function for a point process, i.e., it
excludes the � function at the origin. The fact that h(r)
comes from a statistically homogeneous point process, how-
ever, would further restrict the existence conditions on h(r)
beyond the Wiener-Khinchtine condition, which amounts to
the non-negativity of the structure factor. Obviously, besides
the condition that S(k)�0, we have the pointwise condition
h(r)��1 for all r. The determination of other realizability
conditions on h(r) is a open question �20�.

Thus, it is interesting to inquire whether the non-
negativity of the local number variance, given by formula
�22�, is a new condition on h(r) beyond the non-negativity
of the structure factor S(k). As we now prove, the answer is
no. By Parseval’s theorem for Fourier transforms �22�, we
can rewrite the general variance formula �22� for an arbi-
trarily shaped �regular� window as

�N2�R����N�R��2

��N�R���1�
�

�2��d� h̃�k��̃�k;R�dk� , �25�

where

�̃�k;R��
w̃2�k;R�

v1�R�
�0 �26�

is the Fourier transform of the scaled intersection volume
function �23� and w̃(k;R) is the Fourier transform of the
window indicator function �19�. Again, by Parseval’s theo-
rem

1

�2��d� �̃�k;R�dk�
1

v1�R�
� w2�r�dr�1. �27�

Finally, utilizing definition �15� of the structure factor, we
arrive at the Fourier representation of the number variance:

�N2�R����N�R��2��N�R��� 1

�2��d� S�k��̃�k;R�dk� .

�28�

Interestingly, we see that the variance formula can be rewrit-
ten in terms of the structure factor and the non-negative func-
tion �̃(k;R), the Fourier transform of the scaled intersection
volume function �(r;R): a purely geometric quantity. Since
the latter is independent of the correlation function h(r), we
conclude that the non-negativity of the number variance does
not introduce a new realizability condition on h(r).

Remarks.
�1� Given the Fourier representation formula �28�, it is

simple to prove that the local number variance is strictly
positive for any v1(R)�0. Both the functions �̃(k;R) and
S(k) are non-negative. Therefore, because the non-negative
integrand of formula �28� cannot be zero for all k, it imme-
diately follows that the local variance is strictly positive for
any statistically homogeneous point pattern whenever
v1(R)�0, i.e.,

�N2�R����N�R��2�0. �29�

�2� Let the window grow infinitely large in a self-similar
�i.e., shape- and orientation-preserving� fashion. In this limit,
which we will denote simply by v1(R)→� , the function
�̃(k;R) appearing in Eq. �28� tends to (2�)d�(k), where
�(k) is a d-dimensional Dirac delta function, and therefore
dividing variance �28� by �N(R)� yields

lim
v1(R)→�

�N2�R����N�R��2

�N�R��
�S�k�0��1���

Rd
h�r�dr.

�30�

Observe also that the form of the scaled variance �30� for
infinitely large windows �or infinite-wavelength limit� is
identical to that for equilibrium ‘‘open’’ systems, i.e., grand
canonical ensemble, in the infinite-system limit. It is well
known that the variance in the latter instance is related to
thermodynamic compressibilities or susceptibilities �1�. The
important distinction is that result �30� is derived by consid-
ering window fluctuations in an infinite ‘‘closed’’ possibly
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nonequilibrium system. When the point pattern comes from a
statistically homogeneous equilibrium ensemble, one can in-
terpret the fluctuations as arising from differences in the
point patterns in the ensemble members for a fixed window
position or, equivalently, from moving the asymptotically
large window from point to point in a single system. The
latter scenario can be viewed as corresponding to density
fluctuations associated with an open system.

C. Asymptotic variance formulas

Here we apply the previous results for statistically homo-
geneous point patterns to obtain asymptotic results for large
windows. The conditions under which these expressions
yield variances that only grow as the surface area of � are
determined. These conditions can be expressed in terms of
spatial moments of the total correlation function h(r). For
simplicity, we first consider the case of spherical windows,
but we show that the results apply as well to nonspherical
windows.

Many of our subsequent results will be given for a
d-dimensional spherical window of radius R centered at po-
sition x0. The window indicator function becomes

w� �x�x0�;R ����R��x�x0��, �31�

where �(x) is the Heaviside step function,

��x ��� 0, x�0

1, x�0.
�32�

Therefore, the function v1(R), defined in relation �21�, be-
comes the volume of a spherical window of radius R given
by

v1�R ��
�d/2

��1�d/2�
Rd. �33�

It is convenient to introduce a dimensionless density � de-
fined by

���v1�D/2���
�d/2

2d��1�d/2�
Dd, �34�

where D is a characteristic microscopic length scale of the
system, e.g., the mean nearest-neighbor distance between the
points.

Substitution of expansion �A14� for the scaled intersec-
tion volume �(r;R) into Eq. �22�, and assuming that the
resulting integrals separately converge, yields the variance
formula for large R as

�N2�R ����N�R ��2�2d��A� R

D � d

�B� R

D � d�1

��� R

D � d�1� ,

�35�

where A and B are the asymptotic constants given by

A�1���
Rd

h�r�dr�1�
�

v1�D/2��Rd
h�r�dr, �36�

B��
�d��d/2�

2Dv1�D/2��� d�1

2 ��� 1

2 � �Rd
h�r�rdr, �37�

and �(x) signifies terms of lower order than x �23�. In what
follows, the asymptotic constants A and B will generically be
referred to as ‘‘volume’’ and ‘‘surface-area’’ coefficients for
point patterns in any dimension.

Remarks.
�1� Observe that the volume coefficient A is equal to the

non-negative structure factor in the limit that the wave num-
ber approaches zero, i.e.,

A� lim
�k�→0

S�k��1���
Rd

h�r�dr�0, �38�

where S(k) is defined by Eq. �15� for any dimension. Con-
sistent with our earlier observations about relation �30�, we
see that A is the dominant term for very large windows and
indeed is the only contribution for infinitely large windows.
It is well known that point patterns generated from equilib-
rium molecular systems with a wide class of interaction po-
tentials �e.g., hard-sphere, square-well, and Lennard-Jones
interactions� yield positive values of A in gaseous, liquid,
and many solid states. Indeed, A will be positive for any
equilibrium system possessing a positive compressibility.
This class of systems includes correlated equilibrium particle
systems, an example of which is discussed in Appendix B.
The coefficient A will also be positive for a wide class of
nonequilibrium point patterns. One nonequilibrium example
is the so-called random sequential addition process �15�. To
summarize, there is an enormously large class of point pat-
terns in which A is nonzero.

�2� Because the local variance is a strictly positive quan-
tity for R�0 �cf. Eq. �29��, we have from Eq. �35� that for
very large windows

A� R

D � d

�B� R

D � d�1

�0. �39�

The crucial point to observe is that if the volume coefficient
A identically vanishes, then the second term within the
brackets of Eq. �35� dominates, and we have the condition

B�0, �40�

where we have used the fact that the variance cannot grow
more slowly than Rd�1, i.e., the surface area of the window
�11�. We will refer to a system in which

A� lim
�k�→0

S�k��0 �41�

as a ‘‘hyperuniform’’ system. Such point patterns do not pos-
sess infinite-wavelength fluctuations. In a recent cosmologi-
cal study �3�, the term ‘‘superhomogeneous’’ has been used
to describe such systems. Note that for a one-dimensional
hyperuniform system, the variance is exactly �not asymptoti-
cally� given by
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�N2�R ����N�R ��2�2�B , �42�

where B is given by Eq. �37� with d�1, implying that the
fluctuations are bounded, i.e., do not grow with R �24�.

�3� By contrast, we will refer to a point pattern in which
the surface-area coefficient vanishes (B�0) as a ‘‘hyposurfi-
cial’’ system. A homogeneous Poisson point pattern is a
simple example of such a system. Inequality �39� in conjunc-
tion with the fact that the variance cannot grow more slowly
than the surface area of a spherical �or strictly convex� win-
dow for statistically homogeneous and isotropic point pat-
terns �11�, enables us to conclude that such a system cannot
simultaneously be hyperuniform and hyposurficial, i.e., the
volume coefficient A �cf. Eq. �36�� and surface-area coeffi-
cient B �cf. Eq. �37�� cannot both be zero. In Appendix C, we
examine the question of how small the volume coefficient A
can be made if the point pattern is hyposurficial.

�4� Observe also that the asymptotic variance formula
�35� and the analysis leading to condition �40� are valid for
any statistically homogeneous point pattern. Now if we fur-
ther assume that the point pattern is statistically isotropic,
then the volume coefficient �36� and surface-area coefficient
�37� can be expressed in terms of certain moments of h,
namely,

A�1�d2d��xd�1�, �43�

B��
d22d�1��d/2�

�� d�1

2 ��� 1

2 � ��xd�, �44�

where

�xn���
0

�

xnh�x �dx �45�

is the nth moment of the total correlation function h(x) and
x�r/D is a dimensionless distance. Following the previous
analysis, we see that if A�0, then the condition for the
variance to grow as the surface area implies that the dth
moment of h must be strictly negative, i.e.,

�xd��0. �46�

D. Direct correlation function and new critical exponents

The direct correlation function c(r) of a hyperuniform
system behaves in an unconventional manner. In real space,
this function is defined by the Ornstein-Zernike equation

h�r��c�r����
Rd

h�r�r��c�r�dr�. �47�

This relation has primarily been used to study liquids in
equilibrium �1�, but it is a perfectly well-defined quantity for
general �nonequilibrium� systems, which are of central inter-
est in this paper. The second term is a convolution integral
and therefore Fourier transforming Eq. �47� leads to

c̃�k��
h̃�k�

1�� h̃�k�
, �48�

where c̃(k) is the Fourier transform of c(r). Using relation
�28� and definition �48�, we can reexpress the number vari-
ance for a window of arbitrary shape in terms of the Fourier
transform of the direct correlation function as follows:

�N2�R����N�R��2��N�R��� 1

�2��d� �̃�k;R�

1�� c̃�k�
dk� .

�49�

We know that for a hyperuniform system, h̃(0)��1/� by
definition, i.e., the volume integral of h(r) exists and, in
particular, h(r) is a short-ranged function that decays to zero
faster than �r��d. Interestingly, this means that the denomi-
nator on the right-hand side of Eq. �48� vanishes at k�0 and
therefore c̃(k�0) diverges to �� . This implies that the real-
space direct correlation function c(r) is long ranged, i.e.,
decays slower than �r��d, and hence the volume integral of
c(r) does not exist. This is an unconventional behavior be-
cause, in most equilibrium instances, c(r) is a short-ranged
function, even in the vicinity of thermodynamic critical
points where h(r) is long ranged. One can see that c(r) for
a hyperuniform system behaves similarly to the total corre-
lation function h(r) for an equilibrium system near its criti-
cal point �19�, i.e., each of these functions in these respective
instances become long ranged. If this analogy holds, then
one expects the direct correlation function for hyperuniform
systems to have the following asymptotic behavior for large
r��r� and sufficiently large d:

c�r�	�
1

rd�2��
�r→��, �50�

where (2�d)��
2 is a new ‘‘critical’’ exponent associ-
ated with c(r) for hyperuniform systems that depends on the
space dimension �25�. For noninteger values of � , the
asymptotic relation �50� implies that the Fourier transform
h̃(k) is a nonanalytic function of k��k�. We will show in
Sec. V that there is a class of hyperuniform systems that
obey Eq. �50� but with integer values of � , implying that
h̃(k) is an analytic function of k. Inversion of Eq. �50� yields

c̃�k�	�
1

k2��
�k→0 �, �51�

which, when combined with Eq. �48�, yields the asymptotic
form of the structure factor

S�k�	k2�� �k→0 �. �52�

The specific asymptotic form of S(k) for small k contributes
to determining the ‘‘universality’’ class of the hyperuniform
system.

Let us now consider a point pattern with a reduced density
� that is nearly hyperuniform and that can be made hyper-
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uniform by increasing and/or decreasing the density. We de-
note by �c the reduced density at the hyperuniform state.
The reduced densities � and �c play the same role as tem-
perature T and critical temperature Tc , respectively, in the
analogous thermal problem in the vicinity of a critical point.
Thus, we can define critical exponents associated with the
manner in which certain quantities diverge as the critical
�hyperuniform� point is approached. For example, for
��c����1, the inverse of the structure factor at k�0,
S�1(0) and the correlation length � obey the power laws

S�1�0 �	� 1�
�

�c
� ��

, �→�c
� , �53�

�	� 1�
�

�c
� ��

, �→�c
� , �54�

where � and � are non-negative critical exponents that are
related by the formula

���2���� . �55�

As will be discussed in Sec. V, � characterizes the decay of
the direct correlation function in the vicinity of ���c .
Analogous critical exponents can be defined for densities
near but above �c , as summarized in Table I. In Sec. V B,
we determine the critical exponents exactly for certain mod-
els of disordered point patterns in d dimensions.

III. VARIANCE FORMULA
FOR A SINGLE-POINT PATTERN

In this section, we derive a new formula for the number
variance of a single realization of a point pattern consisting
of a large number of points N in a large system of volume V.
This is necessarily a volume-average formulation. Fluctua-
tions for a fixed window size arise because we let the win-
dow uniformly sample the space. As we will show, depend-
ing on the nature of the point pattern, this formula will
generally lead to a result that is different from formula �22�,

which was derived for a statistically homogeneous system.
We also show that the formula derived here is preferable for
finding point patterns with an extremal or targeted value of
the number variance.

For notational simplicity, we consider a d-dimensional
spherical window of radius R, keeping in mind that the re-
sults of this section apply as well �with obvious notational
changes� to regular domains of arbitrary shape. We assume
that the characteristic size of the system is much larger than
the window radius so that boundary effects can be neglected
and that the large numbers N�1 and V�1 are comparable
such that ��N/V is a finite number density. Let us recall
relation �20� for the number of points N(x0 ;R) contained
within a window at position x0 in a system of volume V in
which there are N points. We let the window uniformly
sample the space and define the average number of points
within the window to be

N�R ��
1

V�V

i�1

N

w� �ri�x0�;R �dx0���
V
��R�r �dr

��v1�R ��2d�� R

D � d

, �56�

where v1(r) and � are given by Eqs. �33� and �34�, respec-
tively.

Similarly, squaring relation �20� and averaging yields

N2�R ��
1

V�V

i�1

N

w� �ri�x0�;R �dx0

�
1

V�V

i� j

N

w� �ri�x0�;R �w� �rj�x0�;R �dx0

��v1�R ��
�v1�R �

N 
i� j

N

��ri j ;R �, �57�

where �(r;R) is the scaled intersection volume, given ex-
plicitly by Eq. �A5�, and ri j��ri�rj�. Therefore, the local
variance �2(R) is given by

�2�R ��N2�R ��N�R �2

�N�R ��1��v1�R ��
1

N 
i� j

N

��ri j ;R ��
�2d�� R

D � d�1�2d�� R

D � d

�
1

N 
i� j

N

��ri j ;R �� .

�58�

The last term within the brackets is the sum of scaled inter-
section volumes between all point pairs, per point.

Remarks:
�1� It is important to observe that the series in Eq. �58�

terminates for ri j�2R even for infinitely large systems.
�2� Note that the variance formula �58� is different from

the ensemble-average formula �22�, which involves an addi-
tional weighted average over pairs of points; thus, the ap-

TABLE I. Definitions of the critical exponents in the vicinity of
or at the hyperuniform state. Here S�1(0) is the inverse of the
structure factor at k�0, � is the correlation length, and c(r) is the
direct correlation function.

Exponent Asymptotic behavior

�
S�1�0�	�1�

�

�c
���

��→�c
��

��
S�1�0�	���c

�1����

��→�c
��

�
�	�1�

�

�c
���

��→�c
��

��
�	���c

�1����

��→�c
��

� c(r)	r2�d�� (���c)
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pearance of the total correlation function h(r). Therefore,
the variance function �58�, unlike the variance function �22�,
will generally contain small-scale fluctuations with respect to
R, of wavelength on the order of the mean separation be-
tween the points that are superposed on the large-scale varia-
tions with respect to R �see examples in Sec. IV�. Expres-
sions �58� and �22� are identically the same for statistically
homogeneous �infinite� systems, in which case the ampli-
tudes of the small-scale fluctuations vanish.

�3� Because the variance formula is valid for a single
realization, one can use it, in principle, to find the particular
point pattern that minimizes the variance at a fixed value of
R. In other words, it is desired to minimize �2(R) for a
particular value of R among all ri j
2R , i.e.,

min
�ri j
2R

�2�R �, �59�

where �2(R) is given by Eq. �58�. The scaled intersection
volume �(ri j ;R) appearing in Eq. �58� is a non-negative
function of ri j �see Fig. 9� and can be viewed as a repulsive
pair potential between a point i and a point j. Finding the
global minimum of �2(R) is equivalent to determining the
ground state for the ‘‘potential energy’’ function represented
by the pairwise sum in Eq. �58�. Such global optimization
problems can be attacked using simulated annealing tech-
niques, for example. More generally, one could devise an
optimization scheme in which a targeted value of the vari-
ance �rather than an extremal value� is sought �26�.

�4� Because the pairwise sum in Eq. �58� is positive, we
immediately obtain from Eq. �58� the following lower bound
on the variance:

�2�R ��2d�� R

D � d�1�2d�� R

D � d� . �60�

This bound is exact for R
rmin/2, where rmin is the mini-
mum pairwise distance, and therefore provides an accurate
estimate of the variance for small R. For sufficiently large R,

however, the bound becomes negative and therefore provides
a poor estimate of the variance.

�5� For large R in the special case of hyperuniform sys-
tems, the large-scale variations in R will grow as Rd�1, and
so we have from Eq. �58� that

�2�R ����R �� R

D � d�1

�O� R

D � d�2

, �61�

where

��R ��2d�� R

D � �1�2d�� R

D � d

�
1

N 
i� j

N

��ri j ;R ��
�62�

is the asymptotic ‘‘surface-area’’ function that contains the
small-scale variations in R.

�6� It is useful to average the small-scale function �(R)
over R to yield the constant

��L ��
1

L�0

L

��R �dR , �63�

where �(R) is given by Eq. �62�. In the case of a statistically
homogeneous system, the constant surface-area coefficient

�� lim
L→�

�L �� lim
L→�

1

L�0

L

��R �dR �64�

is trivially related to the surface-area coefficient B, defined
by Eq. �37� in the asymptotic ensemble-average formula, by
the expression

��2d�B�
� 2d�1�2d��d/2�

Dv1�D/2��� d�1

2 ��� 1

2 � �Rd
h�r�rdr.

�65�

�7� Because the formula for the coefficient �is defined for
a single realization, we can employ it to obtain the particular
point pattern that minimizes it. Thus, the optimization prob-
lem is the following:

min
�ri j
2L

� , �66�

where � is given by Eq. �63�.
�8� For large systems in which any point ‘‘sees’’ an envi-

ronment typical of all points, relation �58� for the variance
can be simplified. This requirement is met by all infinite
periodic lattices for any R as well as statistically homoge-
neous point patterns for sufficiently large R. In such in-
stances, the second term within the brackets of Eq. �58� can
be written as sum of scaled intersection volumes over N
�1 points and some reference point. Thus, we can rewrite
the variance as

�2�R ��2d�� R

D � d�1�2d�� R

D � d

� 
k�1

N�1

��rk ;R �� ,

�67�

FIG. 9. The scaled intersection volume �(r;R) for spherical
windows of radius R as a function of r for the first five space
dimensions. The uppermost curve is for d�1 and the lowermost
curve is for d�5.

LOCAL DENSITY FLUCTUATIONS, . . . PHYSICAL REVIEW E 68, 041113 �2003�

041113-9



where rk is the distance from the reference point to the kth
point. The asymptotic expression �61� for �2(R) and relation
�63� for �(R) still apply but with �(R) given by the simpler
formula

��R ��2d�� R

D � �1�2d�� R

D � d

� 
k�1

N�1

��rk ;R �� . �68�

We emphasize that the simplified formulas �67� and �68�
cannot be used for the aforementioned optimization calcula-
tions. The latter requires the full pairwise sum appearing in
the general relation �58�.

�9� In order to make the surface-area function �(R) or
surface-area coefficient � independent of the characteristic
length scale or, equivalently, density of the hyperuniform
point pattern, one can divide each of these quantities by
� (d�1)/d, i.e.,

��R �

� (d�1)/d
or

�

� (d�1)/d
. �69�

This scaling arises by recognizing that normalization of the
asymptotic relation �61� by expression �56� for �N̄(R)� taken
to the power (d�1)/d renders the resulting normalized re-
lation independent of R/D . Such a scaling will be used to
compare calculations of �(R) and � for different ordered
and disordered point patterns to one another in the subse-
quent sections. Note that since one-dimensional hyperuni-
form patterns have bounded fluctuations, this scaling is irrel-
evant for d�1.

IV. CALCULATIONS FOR INFINITE
PERIODIC LATTICES

It is useful and instructive to compute the variance, using
the formulas derived in the preceding section, for common
infinite periodic lattices, which are hyperuniform systems. To
our knowledge, explicit calculations have only been obtained
for the square lattice �13� and triangular lattice �14� in two
dimensions. Here we will obtain explicit results for other
two-dimensional lattices as well as one- and three-
dimensional lattices. We take the window to be a
d-dimensional sphere of radius R.

For infinite periodic lattices, Fourier analysis leads to an
alternative representation of the variance. Let the sites of the
lattice be specified by the primitive lattice vector P defined
by the expression

P�n1a1�n2a2�•••�nd�1ad�1�ndad , �70�

where ai are the basis vectors of the unit cell array and ni
spans all the integers for i�1,2, . . . ,d . Denote by U the unit
cell and vC its volume. It is clear that the number of points
N(x0 ;R) within the window at x0 �cf. Eq. �20�� in this in-
stance becomes

N�x0 ;R ��
P

��R��P�x0��, �71�

where the sum is over all P.
The number N(x0 ;R) is a periodic function in the win-

dow position x0 and therefore it can be expanded in a Fourier
series as

N�x0 ;R ���v1�R ��
q�0

a�q�eiq•x0, �72�

where q is the reciprocal lattice vector such that q•P
�2�m �where m�	1,	2,	3, . . . ) and the sum is over all
q except q�0. Following Kendall and Rankin �14�, the co-
efficients a(q), for q�0, are given by

a�q��
1

vC
�

U
N�x0 ;R �e�iq•x0dx0

�
1

vC


P
�

U
��R��P�x0��e�iq•x0dx0

�
1

vC
�

Rd
��R��T��eiq•TdT�

1

vC
� 2�

qR � d/2

RdJd/2�qR �,

�73�

where J�(x) is the Bessel function of order � . Note that the
integral in the third line is nothing more than the Fourier
transform of the window indicator function, which is given
by Eq. �A3�. The analysis above assumes that there is one
point per unit cell, i.e., we have considered Bravais lattices.
One can easily generalize it to the case of an arbitrary num-
ber of points nC per unit cell. Formula �73� would then in-
volve nC�1 additional terms of similar form to the original
one.

By Parseval’s theorem for Fourier series, the number vari-
ance �2(R) is given explicitly by

�2�R ��
1

vC
�

U
�N�x0 ;R ���v1�R ��2dx0

�
q�0

a2�q�

�
Rd

vC
2 q�0

� 2�

q � d

�Jd/2�qR ��2. �74�

One can easily obtain an asymptotic expression for the vari-
ance for large R by replacing the Bessel function in Eq. �74�
by the first term of its asymptotic expansion, and thus we
have

�2�R ����R �� R

D � d�1

�O� R

D � d�2

, �75�

where D is a characteristic microscopic length scale, say, the
lattice spacing, and

��R ��
2d�1�d�1D2d

vC
2 

q�0

cos2�qR��d�1 ��/4�

�qD �d�1

�76�

S. TORQUATO AND F. H. STILLINGER PHYSICAL REVIEW E 68, 041113 �2003�

041113-10



describes small-scale variations in R. As before, it is conve-
nient to compute the average of �(R) over R to give the
surface-area coefficient:

�� lim
L→�

1

L�0

L

��R �dR�
2d�d�1D2d

vC
2 

q�0

1

�qD �d�1
.

�77�

It is useful here to apply the specialized volume-average
formula �67� to the case of infinite periodic lattices. Recog-
nizing that the configuration of an infinite periodic point pat-
tern may be characterized by the distances rk and coordina-
tion numbers Zk for the successive shells of neighbors (k
�1,2,3, . . . ) from a lattice point, we find from Eq. �67� that
the variance can also be represented as

�2�R ��2d�� R

D � d�1�2d�� R

D � d

�
k�1

�

Zk��rk ;R �� .

�78�

The asymptotic expression �61� for �2(R) and relation �63�
for the surface-area coefficient �(R) still apply but with
�(R) given by

��R ��2d�� R

D � �1�2d�� R

D � d

�
k�1

�

Zk��rk ;R �� .

�79�

Formula �78� was obtained by Kendall and Rankin �14� us-
ing a more complicated derivation. Moreover, their deriva-
tion only applies to periodic point patterns. Our more general
formula �67� is also valid for statistically homogeneous point
patterns. We also note that our most general volume-average
representation �58� of the variance, from which formula �67�
is derived, is applicable to arbitrary point patterns and its
derivation is quite straightforward.

One can also evaluate the asymptotic coefficient � using
the ensemble-average formula �65�. Strictly speaking, this
formula is not applicable to periodic point patterns because
such systems are not statistically homogeneous �neither are
they statistically isotropic�. To see the potential problem that
arises by naively applying Eq. �65�, let the origin be a lattice
point in the system and consider determining the radial dis-
tribution function g2(r) by counting the number of lattice
points at a radial distance rk from the origin. For a lattice in
d dimensions, we have that

g2�r ��
k�1

�
Zk��r�rk�

�s1�rk�
, �80�

where s1(r) is the surface area of a sphere of radius r given
by Eq. �14� and Zk is the coordination number of the kth
shell. It is seen that substitution of the corresponding total
correlation function h(r)�g2(r)�1 into Eq. �65� results in
a nonconvergent sum. However, using a convergence ‘‘trick’’
�27�, one can properly assure a convergent expression by

reinterpreting the surface-area coefficient �65� for a periodic
lattice in the following manner:

�� lim
�→0�

�2d�1�2d��d/2�

Dv1�D/2��� d�1

2 ��� 1

2 � �Rd
e��r2

h�r �rdr

� lim
�→0�

2d�1�d

D�� 1

2 � � ��d/2

v1�D/2�� (d�1)/2

�
��d/2�

�� d�1

2 � k�1

�

Zkrke��rk
2� . �81�

A. One-dimensional examples

Here we obtain exact expressions for the number of points
and number variance for general one-dimensional periodic
point patterns using the aforementioned Fourier analysis. Us-
ing this result, we prove that the simple periodic linear array
corresponds to the global minimum in � . Subsequently, we
employ the volume-average and ensemble-average formula-
tions of Secs. II and III to obtain some of the same results in
order to compare the three different methods. Recall that
hyperuniform systems in one dimension have bounded fluc-
tuations.

Let us first consider the simplest periodic point pattern in
which each point is equi-distant from its near neighbors �see
Fig. 3� and let this nearest-neighbor distance be unity (vC
�D�1). Applying relations �72� and �73� and recognizing
that q�2�ma1 /D (m�	1,	2, . . . ) for nonzero q yields
the number of points contained within a one-dimensional
window of radius R centered at position x0:

N�R;x0��2R�
2

� 
m�1

�
sin�2�mR �cos�2�mx0�

m
.

�82�

According to relation �74�, the associated variance is given
by

�2�R ��
2

�2 m�1

�
sin2�2�mR �

m2
. �83�

The variance �2(R) is a periodic function with period 1/2
and is equal to the quadratic function 2R(1�2R) for 0
R

FIG. 3. Portions of two one-dimensional periodic point patterns,
where vC�D�1. The top and bottom arrays are the single-scale
and two-scale examples, respectively.
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1/2 �see Fig. 4�. Finally, the surface-area coefficient � ,
defined by Eq. �77�, which in one dimension amounts to the
positional average of the variance for any value of R, is
exactly given by the constant

��
1

�2 m�1

�
1

m2
�

1

6
. �84�

It is known that this simple linear array yields the mini-
mum value of � among all one-dimensional regular lattices.
This is intuitively clear from the volume-average variance
relation �58� for d�1; the linear repulsive effective ‘‘pair
potential’’ contained therein is evidently responsible for such
a minimum. However, heretofore it was not known whether
this pattern corresponded to a global minimum, i.e., the
smallest value of � among all infinite one-dimensional hy-
peruniform patterns. We now prove that the single-scale lat-

tice indeed produces the global minimum. To prove this as-
sertion, we utilize the identity

f �x ��
1

�2 m�1

�
1�2cos�2�mx �

m2
�

1

2
�2x�1�x � �85�

and note that f (x) is a convex quadratic non-negative func-
tion for all real x. Now consider a case in which there are M
points per unit cell in which the length of the unit cell is still
unity. Thus, excluding the point at each lattice site, there are
M�1 points inside the unit cell with positions
�1 ,�2 , . . . ,�M�1 such that each � i lies in the interval (0,1).
Without loss of generality, we arrange the M�1 points such
that � i�� i�1 (i�1,2, . . . ,M�2), but their positions are
otherwise arbitrary. Following a similar analysis as the one
above, we find that the number of points within a window
centered at x0 is exactly given by

N�R;x0��2MR�2 
m�1

� sin�2�mR �� 
j�0

M�1

cos�2�m�x0�� j���
m

, �86�

where �0�0. The variance is therefore given by

�2�R ��
2

�2 m�1

� sin2�2�mR �� M� 
j�1

M�1

cos�2�m� j�� 
j�k

M�1

cos�2�m��k�� j���
m2

. �87�

We see that the variance �2(R) for an arbitrary one-dimensional point pattern within the unit cell is a periodic function with
period 1/2. �As we will see, the variance in higher dimensions is not a periodic function in R for periodic point patterns.� The
average of the variance is exactly equal to the surface-area coefficient �77�:

��
1

�2 m�1

� M� 
j�1

M�1

cos�2�m� j�� 
j�k

M�1

cos�2�m��k�� j��

m2
��

M �M�3 �

12
� 

j�1

M�1

f �� j�� 
j�k

M�1

f ��k�� j�, �88�

FIG. 4. Left panel: The qua-
dratic periodic variance function
�2(R) for the single-scale peri-
odic one-dimensional point pat-
tern given by Eq. �83�. The hori-
zontal line is the average �
�1/6. Right panel: The
piecewise-quadratic periodic vari-
ance function �2(R) for the two-
scale periodic one-dimensional
point pattern given by Eq. �87� for
the case ��1/4. The horizontal
line is the average ��7/24.
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where f (x) is given by Eq. �85�. Because � is given by a
sum of convex quadratic non-negative functions, the global
minimum is found from the zeros of the derivative  �/ �n :

 �

 �n
�0�1�2�n�

j�1

n�1

�1�2�n�2� j�

� 
j�n�1

M�1

�1�2�n�2� j�

�n�1,2, . . . ,M�1 �. �89�

It is easy to verify that the global minimum is achieved when
the M�1 are uniformly distributed in the interval �0,1�, i.e.,
�n�n/M (n�1,2, . . . ,M�1), yielding ��1/6. Since this
result is valid for arbitrary M, the simple single-scale lattice
produces the global minimum value of � among all infinite
one-dimensional hyperuniform point patterns.

Note that the single-scale lattice corresponds to the dens-
est packing of one-dimensional congruent hard spheres
�rods� on the real line. This might lead one to conjecture that
the Bravais lattice associated with the densest packing of
congruent spheres in any space dimension d provides the
minimal value of � among all periodic lattices for spherical
windows. As we will see, this turns out to be the case for
d�2, but not for d�3.

The variance as computed from Eq. �87� for the case M
�2, which we call the ‘‘two-scale’’ lattice �see Fig. 3�, is
included in Fig. 4 for ���1�1/4. In this instance, �
�7/24. Clearly, the variance for the two-scale case bounds
from above the variance for the single-scale case. Table II
compares the surface-area coefficient for the single-scale and
two-scale one-dimensional lattices. The other one-
dimensional results summarized in Table II will be discussed
in the ensuing sections. The potential use of the local vari-
ance as an order metric for hyperuniform point patterns in
any dimension is discussed in Sec. VI.

Consider obtaining the volume-average representation of
the variance for the two aforementioned one-dimensional pe-
riodic patterns from Eq. �78�. Using relations �A5� and �A9�
for the scaled intersection volume �(r;R), we find for any
one-dimensional periodic point pattern in which D�1 that

�2�R ��2�R�1�2�R�
k�1

MR

Zk� 1�
rk

2R ���2R�rk�� ,

�90�

where M R corresponds to the largest value of k for which
rk�2R . Because in one dimension �(R)��2(R), where
�(R) is the function defined by Eq. �79�, it follows that the
average � is given by

��2�
0

1/2

��R �dR��L� � 1�
4�L

3 ��
k�1

ML

Zk� 1�
rk

2L � 2� ,

�91�

where M L corresponds to the largest value of k for which
rk�2L . Using the fact that ��1, rk�k , and Zk�2 for all k
for the single-scale lattice, one can easily reproduce the
graph for �2(R) depicted in Fig. 4 using relation �90� and
verify that ��1/6 employing relation �91�. Similarly, for the
two-scale case, we have that ��2, rk�k/4, and Zk�1 for
odd k, and rk�k/2 and Zk�2 for even k. Hence, relation
�90� leads to the same graph of the variance shown in Fig. 4,
and relation �91� yields ��7/24 for ��0.25, as before.

We can also compute the surface-area coefficient using
the ensemble-average relation �81�. In one dimension, this
relation yields

�� lim
�→0�

��2

�
��

k�1

�

Zkrke��rk
2� , �92�

where we have taken D�1. The sum in �92� can be evalu-
ated exactly using the Euler-Maclaurin summation formula
�28�. If f (k) is a function defined on the integers, and con-
tinuous and differentiable in between, the Euler-Maclaurin
summation formula provides an asymptotic expansion of the
sum k�0

n f (k) as n→� . Applying this asymptotic formula
to Eq. �92� in the cases of the single-scale and two-scale
lattices yields that ��1/6 and ��7/24, respectively, which
agree with the results obtained using the previous two meth-
ods. Although the Fourier-analysis and volume-average pro-
cedures are more direct methods to determine � for one-
dimensional lattices, we will see that representation �81�
provides an efficient means of computing � for lattices in
higher dimensions.

B. Two-dimensional examples

Here we evaluate variance characteristics for the follow-
ing four common two-dimensional lattices: square, triangu-
lar, honeycomb, and Kagomé lattices. From the lattice series
�74�, �76�, and �77� with d�2, we have general two-
dimensional series relations for the variance �2(R),
asymptotic surface-area function �(R), and surface-area co-
efficient � , respectively. For a specific lattice, the evaluation
of any of these series requires the reciprocal lattice vector q
and vC . For example, for the square lattice, q�2�(m1a1
�m2a2)/D (mi�0,	1,	2, . . . ) for nonzero q and vC
�D2. The sums are straightforward to evaluate, even if they

TABLE II. The surface-area coefficient � for some ordered and
disordered one-dimensional point patterns. The result for the two-
scale lattice is for ���1�0.25.

Pattern � �

Single-scale lattice 1 1/6!0.166667
Step�delta-function g2 0.75 3/16�0.1875
Step-function g2 0.5 1/4�0.25
Two-scale lattice 2 7/24!0.291667
Lattice gas 1 1/3!0.333333
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converge slowly. Provided that R is not very large, however,
the corresponding volume-average relations �78� and �79� are
superior for computational purposes because the series in-
volved are finite rather than infinite. For example, the
asymptotic surface-area function �(R) for the square lattice
is plotted in Fig. 5 using Eq. �79� with Eq. �A10� for 1
R

4. The function is seen to be aperiodic, but fluctuates
around an average value in a bounded fashion. It is worth
noting that the behavior of �(R) for larger values of R is
qualitatively the same. Interestingly, the average value of
�(R) over this small interval near R�0 �as well as other
intervals of the same length� is quite close to the infinite-
interval average value � �29�.

The average value of the surface-area function �(R) over
all R, equal to the surface-area coefficient � �cf. Eq. �77��, is
given �to six significant figures� by ��0.457 649. Series
�77� for the square lattice was first evaluated by Kendall
�13�. Because it is a slowly converging series, he exploited
certain results of number theory to reexpress the sum in
terms of a more rapidly convergent series.

We found that numerical evaluation of the ensemble-
average relation �81� is a simple and effective means of com-
puting accurately the surface-area coefficient � for any com-
mon lattice. In two dimensions, this relation yields

�� lim
�→0�

� 16�2

�1/2�3/2
�

8�

� 
k�1

�

Zkrke��rk
2� . �93�

The sum in Eq. �93� is easily computed as a function of the
convergence parameter � for any simple lattice. For suffi-
ciently small � , this sum is linear in � and extrapolation to
�→0� yields results that are accurate to at least six signifi-
cant figures. We have also computed the surface-area coeffi-
cient for triangular, honeycomb, and Kagomé lattices. The
result for the triangular lattice was first reported by Kendall
and Rankin �14�. In Table III, we compare all of these results
for the common two-dimensional lattices to one another by
tabulating the normalized scale-independent surface-area co-
efficient, i.e., �/�1/2 �cf. Eq. �69��. Rankin �30� proved that
the triangular lattice has the smallest normalized surface-area
coefficient for circular windows among all infinite periodic
two-dimensional lattices, which is borne out in Table III.
However, there is no proof that the triangular lattice mini-
mizes �/�1/2 among all infinite two-dimensional hyperuni-
form point patterns for circular windows. Included in Table
III are results for disordered point patterns that will be dis-
cussed in the ensuing sections.

Although the normalized surface-area coefficient is small-
est for the triangular lattice, Table III reveals that the corre-
sponding coefficients for the other lattices are not apprecia-
bly larger. This suggests that the fluctuating surface-area
function �(R) for nontriangular lattices may be smaller than
the corresponding function for the triangular lattice for cer-
tain values of R. This is indeed the case as illustrated in Fig.
6, where the difference between the normalized scale-
independent surface-area function �(R) for the triangular
and square lattices is plotted for the range 100D
R

110D using relation �79�. This difference oscillates rapidly
about zero over this range of R, but the same qualitative
trends occur for all values of R and for any pair of periodic
lattices considered here. Given our previous interpretation of
the global minimum of the variance as corresponding to the
ground state of a many-particle system with a potential en-
ergy function given by �(r;R) �Sec. III�, we see that the
optimal lattice structure is sensitive to small changes in the
value of R �which determines the range of the potential�.
This calls into question previous studies �31� that claim to
have found stable ground-state lattices for two-dimensional

FIG. 5. The asymptotic surface-area function �(R) for the
square lattice for 1
R
4, where D is the lattice spacing. The
horizontal line is the asymptotic average value ��0.457 649.

TABLE III. The surface-area coefficient � for some ordered and disordered two-dimensional point
patterns. For ordered lattices, � represents the close-packed covering fraction.

Pattern � �/�1/2

Triangular lattice �/�12!0.9069 0.508347
Square lattice �/4!0.7854 0.516401
Honeycomb lattice �/(3�3)!0.6046 0.567026
Kagomé lattice 3�/(8�3)!0.6802 0.586990
Step�delta-function g2 0.5 25/2/(3�)!0.600211
Step-function g2 0.25 8/(3�)!0.848826
One-component plasma 2/��!1.12838
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systems of particles with purely repulsive interaction poten-
tials of the same qualitative form as shown for �(r;R) in
Fig. 9 with d�2.

C. Three-dimensional examples

Here we specialize to common infinite three-dimensional
periodic lattices: simple cubic �sc� lattice, face-centered cu-
bic �fcc� lattice, hexagonal-close-packed �hcp� lattice, body-
centered cubic �bcc�, and the diamond lattice. Explicit results
for the number variance for such lattices have heretofore not
been reported. From Eqs. �74�, �76�, and �77� with d�3, we
have general three-dimensional relations for the variance
�2(R), asymptotic surface-area function �(R), and surface-
area coefficient � , respectively. These expressions are easily
evaluated for the specific lattice given vC and the reciprocal
lattice vectors q. As we noted earlier, the volume-average
relations �78� and �79� for d�3 are superior for computa-
tional purposes provided that R is not very large. Qualita-
tively, the three-dimensional trends for the surface-area func-
tion �(R) are similar to the two-dimensional ones described
above �see, for example, Figs. 5 and 6� and so we will not
present explicitly such three-dimensional results here.

The ensemble-average relation �81�, which for d�3 and
D�1 yields

�� lim
�→0�

�72�2

�2
�6�

k�1
Zkrke��rk

2� �94�

and provides an efficient means of computing the surface-
area coefficient � for three-dimensional infinite periodic lat-
tices by extrapolating the results for sufficiently small � to
�→0�. This has been carried out for all of the aforemen-
tioned common three-dimensional lattices and the results are
summarized in Table IV, where we tabulate the normalized
scale-independent surface-area coefficient, i.e., �/�2/3 �cf.
Eq. �69��.

Contrary to the expectation �/�d/(d�1) should, among all
lattices, be a global minimum for the closest-packed lattices
for spherical windows, we find that the minimum in three
dimensions is achieved for the bcc lattice, albeit very close in
numerical value to the fcc value �the next smallest value�
�32�. This suggests that the closest-packed Bravais lattice for
d�3 does not minimize �/�d/(d�1) �33�. Included in Table
IV are results for disordered point patterns that will be dis-
cussed in the ensuing sections.

V. NONPERIODIC HYPERUNIFORM SYSTEMS

In this section, we briefly describe the known nonperiodic
hyperuniform point patterns in one, two, and three dimen-
sions and identify some others. For certain one-, two, and
three- dimensional disordered hyperuniform point patterns,
we exactly determine the corresponding surface-area coeffi-
cients, structure factors, direct correlation functions, and
their associated critical exponents. A discussion concerning
the potential use of surface-area coefficient � as an order
metric for general hyperuniform point patterns is reserved for
Sec. VI.

A. Examples

Statistically homogeneous hyperuniform point patterns in
one dimension are not difficult to construct. Two examples
are discussed here: one is a ‘‘lattice-gas’’ type model and the
other is a construction due to Goldstein et al. �34�. The first

FIG. 6. The difference between the normalized scale-
independent surface-area function �(R) for the triangular and
square lattices as a function of R, where D is the lattice spacing.
Here " tri��(R) tri /� tri

1/2 and "sq��(R)sq /�sq
1/2 .

TABLE IV. The surface-area coefficient � for some ordered and disordered three-dimensional point
patterns. For ordered lattices, � represents the close-packed covering fraction.

Pattern � �/�2/3

bcc lattice 3�/(8�3)!0.6802 1.24476
fcc lattice �/�18!0.7405 1.24552
hcp lattice �/�18!0.7405 1.24569
sc lattice �/6!0.5236 1.28920
Diamond lattice 3�/(16�3)!0.3801 1.41892
Damped-oscillating g2 0.46 1.44837
Step�delta-function g2 0.3125 51/3
9/210/3!1.52686
Step-function g2 0.125 2.25
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example is constructed by tessellating the real line into regu-
lar intervals of length D. Then a single point is placed in
each interval �independently of the others� at any real posi-
tion with uniform random distribution. The number density
��1/D , and the pair correlation function is simply given by

g2�r ��� r/D , r
D

1, r�D .
�95�

One can easily verify that the system is hyperuniform (A
�0) and that the surface-area coefficient �65� is given by

�� 1
3 , �96�

exactly twice the surface-area coefficient for the simple
single-scale periodic point pattern �cf. Eq. �84��. This one-
dimensional lattice-gas model is a special case of the so-
called d-dimensional shuffled lattice that we will describe
below.

A less trivial example of a statistically homogeneous one-
dimensional hyperuniform system is the construction of
Goldstein et al. �34�, which obtains from a homogeneous
Poisson point process a new hyperuniform point process.
This construction is defined as follows: First, one defines a
statistically homogeneous process X(x) on the real line such
that X(x)
1. This process is specified by dynamics such
that X(x) decreases at the rate of unity, except at the points
of the Poisson process, where X(x) jumps up by one unit
unless this jump violates the upper bound condition, in
which case no jump occurs. Second, one takes the points of
the new point process to be those points in which X(x) ac-
tually jumps. This new point process is hyperuniform. It is
not known how to extend this construction to higher dimen-
sions (d�2).

The construction of statistically homogeneous and isotro-
pic point patterns that are hyperuniform in two or higher
dimensions is a challenging task. An example of a statisti-
cally homogeneous d-dimensional system that is hyperuni-
form is the so-called shuffled lattice �35�, but it is not statis-
tically isotropic. This is a lattice whose sites are
independently randomly displaced by a distance x in all di-
rections according to some distribution with a finite second
moment.

Gabrielli et al. �35� have observed that the a point pattern
derived from the ‘‘pinwheel’’ tiling of the plane �36� has a
number variance that grows as the surface area �perimeter� of
the window, and is statistically homogeneous and isotropic.
The prototile of the pinwheel tiling is a right triangle with
sides of length 1, 2, and �5. The tiling is generated by per-
forming certain ‘‘decomposition’’ and ‘‘inflation’’ operations
on the prototile. In the first step, the prototile is subdivided
into five copies of itself and then these new triangles are
expanded to the size of the original triangle. These decom-
position and inflation operations are repeated ad infinitum
until the triangles completely cover the plane �see Fig. 7�. It
is obvious from the aforementioned discussion that the point
pattern that results by randomly placing a point in each el-
ementary triangle is hyperuniform. Importantly, because the
tiles appear in infinitely many orientations, one can show that

the resulting pattern is not only statistically homogeneous
but also statistically isotropic. The full rotational invariance
of the pattern is experimentally manifested by a diffraction
pattern consisting of uniform rings rather than isolated Bragg
peaks.

The one-component plasma is a statistical mechanical
model that is known to have a number variance that grows
only as the surface area of the window �17,37�. The one-
component plasma is a system of point particles of charge e
embedded in a uniform background that imparts overall
charge neutrality. In d�2, the n-particle correlation func-
tions for this model are exactly solvable in the thermody-
namic limit when the coupling constant ��e2/(kT)�2 �38�,
and, in particular, the total correlation function is then given
by

h�r ���e���r2
. �97�

Substitution of Eq. �97� into Eq. �81� gives the surface area
coefficient �37� as

��
2

��
�1/2, �98�

where ����D2/4. This evaluation of � is included in
Table III. Observe that the structure factor of the
d-dimensional one-component plasma at small k behaves as

S�k �	k2 �k→0 � �99�

and, therefore, the corresponding asymptotic behavior of the
Fourier transform of the direct correlation function is given
by

c�k �	�
1

k2
�k→0 �. �100�

Another interesting model that is known to be hyperuni-
form �3,35� is the Harrison-Zeldovich �39� power spectrum

FIG. 7. Portion of a pinwheel tiling.
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for the primordial density fluctuations in the Universe. Here
the structure factor for small k behaves as

S�k �	k . �101�

Recently, Gabrielli et al. �35� have discussed the construc-
tion of point patterns in three dimensions that are consistent
with the Harrison-Zeldovich spectrum.

The present authors have recently introduced and studied
so-called g2-invariant processes �20,40,41�. A g2-invariant
process is one in which a chosen non-negative form for the
pair correlation function g2 remains invariant over a nonva-
nishing density range while keeping all other relevant mac-
roscopic variables fixed. The upper limiting ‘‘terminal’’ den-
sity is the point above which the non-negativity condition on
the structure factor �cf. Eq. �18�� would be violated. Thus, at
the terminal or critical density, the system is hyperuniform if
realizable. In the following section, we will calculate the
surface-area coefficient exactly for several of these
g2-invariant processes. We will also exactly determine the
corresponding structure factors, direct correlation functions,
and their associated critical exponents.

Interestingly, random packings of spheres near the maxi-
mally random jammed �MRJ� state �42,43� appear to be hy-
peruniform. Figure 8 depicts that the structure factor for such
a computer-generated 40 000-particle packing is vanishingly
small for small wave numbers. The packing is strictly
jammed �44�, which means that the particle system remains
mechanically rigid under attempted global deformations �in-
cluding shear� that do not increase volume and, furthermore,
the packing is saturated. A saturated packing of hard spheres
is one in which there is no space available to add another
sphere. In the case of saturated packings of identical hard
spheres of unit diameter, no point in space has distance
greater than unity from the center of some sphere. An inter-
esting postulate would be that all strictly jammed saturated
infinite packings of identical spheres are hyperuniform. Ex-
amples of strictly jammed saturated periodic packings in two

and three dimensions include the closest-packed triangular
and face-centered cubic lattices, respectively. In light of this
discussion, one can view a disordered packing near the MRJ
state as a type of ‘‘glass’’ for the hard-sphere system. An
important open fundamental question is whether there are
molecular glasses �with ‘‘soft’’ intermolecular potentials�
that become hyperuniform in the limit at which the tempera-
ture vanishes. Indeed, our preliminary results indicate that
this possibility is attainable.

B. Exact results for g2-invariant processes

Here we evaluate the surface-area coefficient exactly for
three different disordered g2-invariant processes studied by
us earlier �20,40,41�. We also exactly determine the corre-
sponding structure factors, direct correlation functions, and
their associated critical exponents.

1. Step function g2

Let us first consider the g2-invariant process in which a
spherically symmetric pair correlation or radial distribution
function is defined by the unit step function �40�:

g2�r ����r�D ��� 0, r
D

1, r�D .
�102�

The condition g2(r)�0 for r
D prevents any pair of points
from getting closer than a distance D to one another. Note
that in the special case of a system of identical hard spheres
in equilibrium in the limit �→0, g2 is exactly given by Eq.
�102�. The corresponding total correlation function is given
by

h�r �����D�r ��� �1, r
D

0, r�D ,
�103�

which when substituted into Eqs. �43� and �44� yields the
volume and surface-area coefficients as

A�S�k�0 ��1�2d� , B�
�

2d�
�

2d�2d2��d/2�

���d�3 �/2���1/2�
� .

�104�

The reduced density � defined by Eq. �34� �equivalent to the
covering fraction of the hard cores of diameter D) lies in the
range 0
�
�c , where

�c�
1

2d
�105�

is the terminal or critical density, i.e., the density at which
the system is hyperuniform, where A�0 and

B���
d2��d/2�

4���d�3 �/2���1/2�
. �106�

The values of the scale-independent surface-area coefficient
�/� (d�1)/d for d�1,2, and 3 are given in Tables II, III, and
IV, respectively. It is worth noting that a recent study �45�
provides convincing numerical evidence that the step-
function g2 is realizable by systems of impenetrable

FIG. 8. The structure factor for a random packing of three-
dimensional identical hard spheres of diameter D near the MRJ
state �42,43� as computed from a single realization consisting of
40 000 particles in a cubical box with periodic boundary conditions
using the protocol described in Ref. �43�. The packing �covering�
fraction of spheres � is 0.632.
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d-dimensional spheres �with d�1 and d�2) for densities up
to the terminal density. Thus, it appears that satisfying the
non-negativity conditions on g2(r) and S(k) in this instance
is sufficient to ensure realizability.

The Fourier transform of the total correlation function
�103� yields the analytic function

h̃�k ���� 2�

kD � d/2

DdJd/2�kD �. �107�

Thus, use of Eq. �15� gives the structure factor for � in the
range 0
�
�c to be

S�k ��1���1�d/2�� 2

kD � d/2� �

�c
� Jd/2�kD �. �108�

Similarly, the Ornstein-Zernike relation �48� yields an exact
expression for the Fourier transform of the direct correlation
function:

c̃�k ��

�� 2�

kD � d/2

DdJd/2�kD �

1���1�d/2�� 2

kD � d/2� �

�c
� Jd/2�kD �

. �109�

Thus, the small-k expansions of S(k) and c̃(k), which
determine their behavior in the vicinity of, and at, the critical
point, are, respectively, given by

S�k ��� 1�
�

�c
��

1

2�d�2 �

�

�c
�kD �2�O„�kD �4…

�110�

and

c̃�k ��
�v1�D �

� 1�
�

�c
��

1

2�d�2 �

�

�c
�kD �2�O„�kD �4…

,

�111�

where v1(D) is the volume of a d-dimensional sphere of
radius D �cf. Eq. �33��. At the critical point ���c , we see
that S(k)	k2 and c̃(k)	�k�2, and therefore comparison to
Eqs. �52� and �51� yields the exponent ��0. Relation �110�
leads to the power law

S�1�0 ��� 1�
�

�c
� �1

, �→�c
� , �112�

which upon comparison to Eq. �53� immediately yields the
critical exponent ��1. The correlation length � is defined
via Eq. �111�, which we rewrite as

k2c̃�k ����2c̃�k ���G , kD�1, �113�

where

��
D

�2�d�2 ��c�
1/2 � 1�

�

�c
� �1/2

, �→�c
� , �114�

G�
2�d�2 �v1�D �

D2

�c

�
, �115�

and v1(D) is the volume of a sphere of radius D defined by
Eq. �33�. Comparison of Eq. �114� to the power law �54�
yields the exponent ��1/2. Note that the exponent values
��1, ��1/2, and ��0 are consistent with interrelation
�55�. Inversion of Eq. �113� yields the partial differential
equation

#2c�r ����2c�r ��G��r�, r�D , �116�

where the spherically symmetric Laplacian operator #2 in
any dimension d is given by

#2�
1

rd�1

 

 r � rd�1
 

 r � . �117�

We see that the direct correlation function in real space for
large r is determined by Green’s function of the linearized
Poisson-Boltzmann equation.

Let us first determine the solutions of Eq. �116� at the
critical point ���c where � diverges to infinity. Thus, the
asymptotic behavior of c(r) for r�D is given by the
infinite-space Green’s function for the d-dimensional
Laplace equation �42�, and so we obtain

c�r ��	
�6� r

D � , d�1

4 ln� r

D � , d�2

�
2�d�2 �

d�d�2 � � r

D � d�2

, d�3.

�118�

Observe that it is only for d�3 that c(r) follows the power-
law form �51� with an exponent ��0. The fact that � takes
an integer value is due to the fact that h̃(k) is an analytic
function. Note also that the real-space direct correlation
function of the one-component plasma has precisely the
same asymptotic form as Eq. �118�, albeit with different am-
plitudes �prefactors�.

As �→� for fixed r, the solutions of Eq. �116� are

c�r ��	
�6

�c

� � �

D � exp��r/��, d�1

4
�c

�
ln� r

D � exp��r/��, d�2

�
2�d�2 ��c

d�d�2 �� � r

D � d�2

exp��r/��, d�3.

�119�

On the other hand, it is worth noting that as r→� for fixed
� , the asymptotic behavior changes according to the relation
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c�r ���
�d�2 ��2��c

��1�d/2�� � D

� � (d�3)/2� D

r � (d�1)/2


exp��r/��, d�1. �120�

2. Step¿delta function g2

Here we consider the g2-invariant process defined by a
radial distribution function that consists of the aforemen-
tioned unit step function plus a � function contribution that
acts at r�D:

g2�r ����r�D ��
Z

�s1�D �
��r�D �, �121�

where Z is a non-negative constant and s1(D) is the surface
area of a sphere of radius D defined by Eq. �14�. Function
�121� was one of several examples studied by Torquato and
Stillinger �20� to understand the relationship between short-
range order and maximal density in sphere packings. In this
investigation, Z was interpreted as the average contact coor-
dination number. Here we consider their case IV �given in
the appendix of Ref. �20�� in which the condition

Z�
2dd

d�2
� �122�

is obeyed in order to constrain the location of the minimum
of the structure factor to be at k�0. Here the reduced den-
sity � lies in the range 0
�
�c , and

�c�
d�2

2d�1
�123�

is the terminal or critical density. Note that the function
specified by relation �121� is a special limit of the radial
distribution function corresponding to the dilute and narrow
limit of the square-well potential studied by Sakai, Stillinger,
and Torquato �41�.

Substitution of Eq. �121� into Eqs. �43� and �44� yields the
volume and surface-area coefficients as

A�S�k�0 ��1�
2d�1

d�2
� ,

B�
�

2d�
�

2d�2d2��d/2�

�d�2 ����d�3 �/2���1/2�
� . �124�

At the critical density, A�0 and

��2d�cB�
d2�d�2 ���d/2�

16���d�3 �/2���1/2�
. �125�

The values of the scale-independent surface-area coefficient
�/� (d�1)/d for d�1,2 and 3 are given in Tables II, III, and
IV, respectively.

The combination of relations �15�, �48�, and �121� gives
the structure factor and Fourier transform of the direct cor-
relation function, respectively, for � in the range 0
�

�c :

S�k ��1�
2d/2��2�d/2�

�kD �(d/2)�1 � �

�c
� �J (d/2)�1�kD �

d�2
�

Jd/2�kD �

kD � ,

�126�

c̃�k ��

�2��d/2Dd

�kD �(d/2)�1 �J (d/2)�1�kD �

d�2
�

Jd/2�kD �

kD �
1�

2d/2��2�d/2�

�kD �(d/2)�1 � �

�c
� �J (d/2)�1�kD �

d�2
�

Jd/2�kD �

kD � .

�127�

Therefore, the Taylor expansions of S(k) and c̃(k) about k
�0 are, respectively, given by

S�k ��� 1�
�

�c
��

1

8�d�2 ��d�4 �

�

�c
�kD �4�O„�kD �6…

�128�

and

c̃�k ��
�2v1�D �

� 1�
�

�c
��

1

8�d�2 ��d�4 �

�

�c
�kD �4�O��kD �6�

.

�129�

Relation �128� leads to the power law

S�1�0 ��� 1�
�

�c
� �1

, �→�c
� , �130�

which upon comparison to Eq. �53� again yields the critical
exponent ��1. The correlation length � is defined via Eq.
�129�, which we rewrite as

k4c̃�k ����4c̃�k ���G , kD�1, �131�

where

��
D

�8�d�2 ��d�4 ��c�
1/4 � 1�

�

�c
� �1/4

, �→�c
� ,

�132�

G�
16�d�2 ��d�4 �v1�D �

D4

�c

�
. �133�

Comparison of Eq. �132� to the power law �54� yields the
exponent ��1/4. We see that the exponent values ��1, �
�1/4, and ���2 are consistent with inter-relation �55�.
Inversion of Eq. �131� yields the partial differential equation

#4c�r ����4c�r ���G��r�, r�D , �134�

where #4�#2#2 is the spherically symmetric biharmonic
operator, and #2 is given by Eq. �117�.
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The solutions of Eq. �134� at the critical point ���c (�
→�) are given by the infinite-space Green’s function for the
d-dimensional biharmonic equation. It is only for d�5 that
the solutions admit a power law of form �54� with an expo-
nent ���2, namely,

c�r ���
8�d�2 ��d�4 �

d�d�2 ��d�4 � � D

r � d�4

, d�5. �135�

3. Damped-oscillating g2

In three dimensions, Torquato and Stillinger �20� also
considered a g2-invariant process that appends a damped-
oscillating contribution to the aforementioned step�delta-
function g2. Specifically, they examined the radial distribu-
tion function

g2�r ����r�D ��
Z

�4�D2
��r�D ��

a1

r
e�a2r


sin�a3r�a4���r�D �. �136�

Here we consider their case II, where at the terminal density
�c�0.46, Z�2.3964, a1�1.15, a2�0.510, a3�5.90, and
a4�1.66. At this critical point, the volume coefficient A
�0 and the surface-area coefficient �65� is given by

��36�c
2�6�cZ�144a1�c

2I , �137�

where

I��
1

�

xe�a2xsin�a3x�a4�dx�
�2a3

3�a3
5�6a2

2a3�2a2
2a3

3�4a2
3a3�4a2a3

3�a2
4a3�

�a2
2�a3

2�3
e�a2cos�a3�a4�

�
�2a3

4�6a2a3
2�a2

5�2a2
4�2a2

3�a2a3
4�2a2

3a3
2�

�a2
2�a3

2�3
e�a2sin�a3�a4�.

Substitution of the aforementioned parameters in Eq. �137�
yields ��0.863 082. This evaluation of � is included in
Table IV. With this choice of g2, the first nonzero term of the
small-k expansion of the structure factor S(k) at the critical
point is of order k4, and therefore the exponent ���2, as
in the previous case. However, here c(r) does not admit the
power-law form �50� for large r because ���1.

VI. DISCUSSION AND CONCLUSIONS

The principal theme presented in this paper is that number
fluctuations calculated for variable window geometries offer
a powerful tool to characterize and to classify point-particle
media. This theme encompasses both spatially periodic
�crystalline� particle patterns and those that are globally dis-
ordered �amorphous�. By considering the large-window
asymptotic limit, special attention attaches to volume and to
surface fluctuations in space dimension d�1. A special class
of ‘‘hyperuniform’’ point patterns has been recognized for
which the volume fluctuations vanish identically; equiva-
lently these are systems for which the structure factor S(k)
vanishes at k�0. Another special class of ‘‘hyposurficial’’
point patterns has also been recognized for which the surface
fluctuations vanish identically. The first of these special at-
tributes requires that the (d�1)-st spatial moment of the
total correlation function be constrained in magnitude; the
second requires a similar constraint on the dth spatial mo-
ment of the total correlation function. The preceding text
demonstrates that no point pattern can simultaneously be
both hyperuniform and hyposurficial.

All infinitely extended perfectly periodic structures are

hyperuniform. We have stressed that geometrically less regu-
lar cases of hyperuniformity also exist, including those that
are spatially uniform and isotropic. The suitably normalized
surface fluctuation quantity, which measures the extent to
which hyperuniform systems fail to attain hyposurficial sta-
tus, becomes a natural non-negative order metric that we
have evaluated numerically for a basic sampling of struc-
tures. We proved that the simple periodic linear array yields
the global minimum value for hyperuniform patterns in d
�1, and showed that the triangular lattice produces the
smallest values for the cases tested in d�2. But in spite of
the fact that these minimizing structures correspond to opti-
mal packings of rods and disks, respectively, the face-
centered-cubic lattice for optimal sphere packing does not
minimize the surface-fluctuation order metric for d�3. In-
stead, the body-centered cubic lattice enjoys this distinction
�46�. For each choice of space dimension, other lattices and
irregular hyperuniform patterns yield higher values for this
order metric. An order metric for hyperuniform systems
based on the local variance may find potential use in catego-
rizing ‘‘jammed’’ and ‘‘saturated’’ sphere packings �42–
44,47� whose long-wavelength density fluctuations vanish.

It is clearly desirable to extend the set of point patterns for
which the surface fluctuation order metric has been numeri-
cally evaluated. This would help to strengthen the impression
created thus far that regardless of space dimension d, point
patterns arranged by increasing values of the order metric are
indeed essentially arranged by increasing structural disorder.
It will be important in the future to include a selection of
two- and three-dimensional quasicrystalline point patterns
�48� in the comparisons; the presumption at the present state
of understanding is that they would present order metrics
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with values that lie between the low magnitudes of periodic
lattices, and the substantially larger magnitudes of spatially
uniform, isotropic, irregular point patterns. It would also
benefit insight to include cases of spatially uniform, but an-
isotropic, point patterns; for example, those associated with
‘‘hexatic’’ order in two dimensions �49�.

An important class of hyperuniform systems arises from
the so-called ‘‘g2-invariant processes’’ �20,40,41,46�. These
processes require that the pair correlation function g2(r) re-
main unchanged as density increases from zero. For those
g2-invariant processes that correspond to thermal equilib-
rium, this criterion is implemented by virtue of compensating
continuous changes in the particle pair potential function.
For any given choice of the invariant g2, such a process is in
fact achievable, but only for densities up to a terminal den-
sity limit. At this upper limit, the system of points attains
hyperuniformity, i.e., S(k)�0. Furthermore, examination of
the Ornstein-Zernike relation reveals that the direct correla-
tion function c(r) develops a long-range tail as the terminal
density is approached from below. By implication, for the
special case of a thermal equilibrium process, the pair poten-
tial at the terminal density develops a long-range repulsive
Coulombic form. The conclusion is that hyperuniformity at
that terminal density is logically associated with the local
electroneutrality condition that all equilibrium systems of
electrostatically charged particles must obey �50�.

The Ornstein-Zernike relation, though originally con-
ceived to apply to systems in thermal equilibrium, can nev-
ertheless be formally applied to any system for which the
pair correlation function g2(r) is available. Hyperuniform
systems that are irregular and isotropic possess short-range
pair correlation only, but as in the examples just cited the
corresponding direct correlation functions are long ranged.
In an important sense, hyperuniform systems exhibit a kind
of ‘‘inverted critical phenomenon.’’ For conventional liquid-
vapor critical points, h(r)�g2(r)�1 is long ranged and im-
plies diverging density fluctuations and isothermal compress-
ibilities, while the direct correlation function c(r) remains
short ranged. Hyperuniform systems have short range for
h(r), vanishing volume fluctuations and isothermal com-
pressibility, and a long-ranged c(r).

As a final matter, we mention that an attractive direction
for future study of hyperuniformity and related concepts in-
volves consideration of collective density variables. These
are defined by a nonlinear transformation of point-particle
positions rj (1
 j
N) as follows:

��k��
j�1

N

exp� ik•rj�. �138�

If the particles interact through a spherically symmetric pair
potential whose Fourier transform exists and is denoted by
V(k), then the overall potential energy for the N particles in
volume V can be expressed in the following manner:

$�
1

2V 
k

V�k ����k����k��N� . �139�

It has been demonstrated �51� that at least in one dimension,
application of a suitable V(k), followed by $ minimization,
can totally suppress density fluctuations for k’s near the ori-
gin. This automatically produces a hyperuniform system con-
figuration. Analogous studies need to be pursued for two-
and three-dimensional systems.
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APPENDIX A: INTERSECTION VOLUME OF TWO
IDENTICAL d-DIMENSIONAL SPHERES

In this appendix, we obtain an explicit expression for the
scaled intersection volume of two identical d-dimensional
spheres of radius R whose centers are separated by a distance
r. This function �(r;R) is defined by Eq. �23�.

We begin by noting that the d-dimensional Fourier trans-
form �16� of any integrable function f (r) that depends only
on the modulus r��r� of the vector r is given by �22�

f̃ �k ���2��d/2�
0

�

rd�1 f �r �
J (d/2)�1�kr �

�kr �(d/2)�1
dr , �A1�

and the inverse transform �17� of f (k) is given by

f �r ��
1

�2��d/2�0

�

kd�1 f �k �
J (d/2)�1�kr �

�kr �(d/2)�1
dk . �A2�

Here k is the modulus of the wave vector k and J�(x) is the
Bessel function of order � .

The Fourier transform of the window indicator function
�31� is given by

w̃�k;R ��
�2��d/2

k (d/2)�1�0

R

rd/2J (d/2)�1�kr �dr

�� 2�

kR � d/2

RdJd/2�kR �. �A3�

Therefore, the Fourier transform of �(r;R), defined by Eq.
�26�, is given by

�̃�k;R ��2d�d/2��1�d/2�
�Jd/2�kR ��2

kd
. �A4�

Using the inverse transform �A2� yields the scaled intersec-
tion volume function to be
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��r;R ��
2d��1�d/2�

r (d�2)/2 �
0

� �Jd/2�kR ��2J (d/2)�1�kr �dk

kd/2

�I1�x2� d�1

2
,
1

2 ���2R�r �, �A5�

where

Ix�a ,b ��
Bx�a ,b �

B�a ,b �
�A6�

is the normalized incomplete beta function �28�,

Bx�a ,b ���
0

x

ta�1�1�t �b�1dt , �A7�

is the incomplete beta function, and

B�a ,b ���
0

1

ta�1�1�t �b�1dt�
��a ���b �

��a�b �
�A8�

is the beta function.
For the first five space dimensions, relation �A5�, for r


2R , yields

��r;R ��1�
r

2R
, d�1 �A9�

��r;R ��
2

� � cos�1� r

2R ��
r

2R � 1�
r2

4R2� 1/2� , d�2

�A10�

��r;R ��1�
3

4

r

R
�

1

16 � r

R � 3

, d�3 �A11�

��r;R ��
2

� � cos�1� r

2R ��� 5r

6R
�

1

12 � r

R � 3�

� 1�

r2

4R2� 1/2� , d�4 �A12�

��r;R ��1�
15

16

r

R
�

5

32 � r

R � 3

�
3

256 � r

R � 5

, d�5.

�A13�

Figure 9 shows graphs of the scaled intersection volume
�(r;R) as a function of r for the first five space dimensions.
For any dimension, �(r;R) is a monotonically decreasing
function of r. At a fixed value of r in the open interval
(0,2R), �(r;R) is a monotonically decreasing function of
the dimension d.

Expanding the general expression �A5� through first order
in r for r
2R yields

��r;R ��1�

�� d

2
�1 �

�� d�1

2 ��� 1

2 �
r

R
�o� r

R � , �A14�

where o(x) indicates terms of higher order than x. This re-
lation will be of use to us in developing an asymptotic ex-
pression for the number variance for large windows.

APPENDIX B: FLUCTUATIONS IN EQUILIBRIUM
HARD-PARTICLE SYSTEMS

Hard particles in equilibrium represent an example of a
correlated system that is generally not hyperuniform. The
one-dimensional case of identical hard rods of length D in
equilibrium is a particularly instructive case because the ra-
dial distribution function g2(r) �in the thermodynamic limit�
is known exactly for all densities �52�:

�g2�x ��
k�1

�

��x�k �
�k�x�k �k�1

�1���k�k�1 �!
exp��

��x�k �

1�� � ,

�B1�

where x�r/D is a dimensionless distance and ���D is the
covering fraction of the rods, which lies in the closed interval
�0,1� . Below the close-packed space-filling value of ��1,
the radial distribution function is a short-ranged function in
the sense that one can always find a large enough value of r
beyond which g2(r) remains appreciably close to unity. That
is, for ��1, the correlation length is always finite. However,
the point ��1 is singular in the sense that the system ex-
hibits perfect long-range order and thus is hyperuniform. In-
deed, at ��1, the nearest-neighbor distance for each rod is
exactly equal to D: a situation that is identically the same as
the single-scale one-dimensional periodic point pattern stud-
ied in Sec. IV.

Using relation �B1� in conjunction with relations �36� and
�37� enables us to compute the ‘‘volume’’ and ‘‘surface-area’’
contributions to the variance as a function of reduced density
� for identical hard rods in equilibrium. The results are sum-
marized in Fig. 10. We see that as the density increases, the
volume fluctuations decrease monotonically and only vanish
at the space-filling density ��1: the hyperuniform state. Of
course, B vanishes at ��0 and increases in value as � in-
creases until it achieves a maximum value at �!0.5. At the
hyperuniform state (��1), B��/2�1/12, which corre-
sponds to the perfectly ordered close-packed state. For suffi-
ciently small densities, the surface-area coefficient of equi-
librium hard-sphere systems in higher dimensions is
expected to have the same qualitative behavior as the one-
dimensional case. Specifically, the same trends should occur
in higher dimensions for densities in the range 0
�
� f ,
where � f corresponds to the freezing density, i.e., the point
above which the system undergoes a disorder to order phase
transition. For densities between freezing and melting points,
the behavior of the surface-area coefficient is expected to be
qualitatively different from that for hard rods in equilibrium,
which is devoid of a phase transition. However, we can de-
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finitively assert that the highest achievable density along the
stable crystal branch is a hyperuniform state. In particular,
for hard disks (d�2) and hard spheres (d�3) in equilib-
rium, the hyperuniform states correspond to the close-packed
triangular lattice and the fcc lattice, respectively.

APPENDIX C: HOW SMALL CAN THE VOLUME
COEFFICIENT BE FOR HYPOSURFICIAL SYSTEMS?

We know that a statistically homogeneous and isotropic
point pattern cannot simultaneously be hyperuniform and hy-
posurficial, i.e., the volume coefficient A �cf. Eq. �43�� and
surface-area coefficient B �cf. Eq. �44�� both cannot be zero
for a strictly convex window �Sec. II C�. The purpose of this
appendix is to investigate how small A can be made for an
infinite hyposurficial point pattern (B�0). To that end we
consider a hypothetical spherically symmetric pair correla-
tion function g2(r) and a spherical window. We do not place
any additional restrictions on g2(r) besides the necessary
realizability conditions that g2(r)�0 for all r and S(k)�0
for all k. The hypothetical correlation function is character-
ized by three parameters � , C, and D as follows:

g2�r ��gS�r ��gL�r �, �C1�

where gS(r) denotes the short-ranged part defined by the
step function

gS�r ��� 0, 0
r
D

1, r�D ,
�C2�

and gL(r) denotes the long-ranged part defined by

gL�r ��� 0, 0
r
D

C�� D

r � d�1��

, r�D .
�C3�

Here D is a length parameter, C is a dimensionless constant,
and � is a positive (��0) but small parameter. The neces-
sary condition g2(r)�0 requires that the constant C satisfy
the trivial inequality

C����1. �C4�

The form of g2 ensures that we can make the surface-area
coefficient B vanish identically, as required. According to
relation �44�, the surface-area coefficient B is proportional to
the dth moment of the total correlation function h(r)
�g2(r)�1. The dth moment integral for the hypothetical
pair correlation function �C1� is given by

�
0

�

h�r �rddr��
Dd�1

d�1
�CDd�1. �C5�

To make this integral vanish, we take

C�
1

d�1
�0, �C6�

which of course satisfies inequality �C4�. For such a hypo-
surficial correlation function �C1� that also satisfies the non-
negativity condition S(k)�0, we now show that the volume
coefficient A is only nonzero by O(�2).

Consider volume coefficient A �cf. �38�� with this value of
C:

A� lim
�k�→0

S�k��1���
Rd

h�r�dr�1�2d��� 2dd�

d�1 � �

1��
,

�C7�

where ���v1(D/2) is a dimensionless density. If one incor-
rectly sets A to be zero, one finds that the corresponding
density is given by

�*�
1

2d� 1�
d�

�d�1 ��1��� �
. �C8�

At such a value of � , however, S(k) will be negative for
some k�0 near the origin for sufficiently small but nonzero
� , which shows in this specific instance that the point pattern
corresponding to such a hypothetical g2 cannot simulta-
neously be hyperuniform and hyposurficial, as expected.
However, one can make S(k�0) positive and very small
�while satisfying S(k)�0 for all k] at a value � slightly
smaller than Eq. �C8� in the limit �→0�.

The other necessary condition S(k)�0 will be obeyed for
all k provided that the number density is no larger than some
‘‘terminal density’’ �c �or �c) �20,40,41�. The structure fac-
tor is given by

S�k ��1���HS�k ��HL�k �� , �C9�

where HS(k) and HL(k) are the Fourier transforms of
gS(r)�1 and gL(r), respectively. The terminal density is
given by

FIG. 10. The volume coefficient A(�)�(1��)2 and surface-
area coefficient B(�) �defined in relation �35�� as a function of the
reduced density � for a one-dimensional system of identical hard
rods in equilibrium. At the hyperuniform density ��1, B��/2
�1/12, which corresponds to the perfectly ordered close-packed
state.
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�c��
1

min
k

�HS�k ��HL�k ��
. �C10�

For simplicity, we will specialize to the case d�3, keep-
ing in mind that our general conclusions apply to arbitrary
dimension. Based on the aforementioned arguments, it is suf-
ficient to consider the behavior of S(k) for small k:

S�k ��1�8���1�
�kD �2

10
�O„�kD �4…��6�

�

1��

�
3����

21���1���

�� 1

2
�

�

2 �
�� 2�

�

2 � �kD�1���
��

1��
�kD �2

�O„�kD �4…. �C11�

The nonanalytic term �kD�1�� �which arises due to inclusion
of relation �C3� for gL] has the effect of displacing the mini-
mum of S(k) away from the origin when gL�0 to a sym-
metric pair of locations determined by

�kminD��
15�

16
� �C12�

as �→0�. Moreover, in this leading order

S�0 ��S�kmin��
45�2�

64
�2. �C13�

Note that this would lead to an O(�2) correction to expres-
sion �C8� for �* . In summary, by adopting the correlation
function �C1� with C�1/(d�1), we can make the surface-
area coefficient B�0 and at the terminal density �c , the
structure factor S(0)�A is only nonzero by O(�2).
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