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The multidimensional potential-energy “landscape” formalism offers useful insights into the properties of
supercooled liquids and glasses. However, its mathematical fundamentals present formidable subtlety and
complexity. In the interests of developing a useful approximation for the statistical mechanics of landscapes,
we have developed a simple family of models describing the energy-depth distribution of landscape basins.
Our analysis begins with the “Gaussian” model that has been advocated in the recent literature, a physically
appealing and thermodynamically rather accurate description that straightforwardly predicts a positive-
temperature ideal glass transition. Careful enumeration of low-lying basins reveals however that the Gaussian
model requires modification in the form of a logarithmic correction. Consequently, we have carried out algebraic
and numerical analyses of a logarithmically modified Gaussian model, including depth dependence of the
mean intrabasin vibrational free energy. The logarithmic modification has the effect of eliminating the positive-
temperature ideal glass transition of the precursor pure-Gaussian model. Nevertheless, it is sufficiently similar
to that unmodified model at and above any kinetic glass transition temperature to be able to represent measurable
calorimetric data with reasonable accuracy.

I. Introduction

Recent years have witnessed an explosive growth of interest
in the theory of glasses (amorphous solids) and of the viscous
liquids from which they are commonly formed by rapid
cooling.1-4 The technical applications of amorphous solids are
numerous. Examples include the use of carbohydrate glasses
to prolong the shelf life of labile biochemicals in the pharma-
ceutical industry;5 optical waveguides, which consist of amor-
phous silica; the use of metallic glasses for corrosion resistance;6

photovoltaic cells made of glassy silicon; engineering plastics,
the majority of which are amorphous;7 and of course window
glass, which consists mainly of sand, lime, and soda and is the
best-known and oldest example of an engineered amorphous
solid.8 Scientifically, viscous liquids and glasses command
interest because the molecular basis underlying their physical
properties and rich phenomenology remains incompletely
understood. One of the distinguishing characteristics of deeply
supercooled liquids near their glass transition is the pronounced
slowing down of their rate of structural relaxation. A striking
manifestation of this slowing down is the extraordinary increase
in shear viscosity near the glass transition, by as much as
3 orders of magnitude over a temperature interval of 10 K.9

Understanding the way in which liquids acquire amorphous
rigidity upon cooling without undergoing appreciable structural
change is one of the most important challenges in modern
condensed matter physics.10

In glasses and viscous liquids, molecules are in simultaneous
contact with many neighbors. Under these conditions, it is
natural to consider their fullN-body potential-energy function
Φ(x1...xN) of the configurational coordinates and to seek to
describe the manner in which its details generate the variety of

experimentally observed collective thermodynamic and kinetic
phenomena.11 The potential energy as a function of the system’s
configurational degrees of freedom has frequently been called
its “energy landscape”, thereby suggesting novel modes of
analysis. The energy landscape perspective has emerged as a
useful tool for the theoretical and computational investigation
of condensed-matter phenomena generally, but specifically of
supercooled and glassy behavior. Some recent examples of the
application of landscape-based concepts include studies of the
temperature-dependent manner in which a liquid samples its
potential energy landscape and its relationship to the dynamics
of structural relaxation;12 investigation of the mechanical
properties of molecular fluids;13 calculation of liquid-phase
properties from the statistics governing the sampling of local
potential-energy minima;4,14studies of the relationship between
macroscopic flow and transitions between local minima in the
energy landscape;15 and analysis of the relationship between
configurational entropy and diffusivity in supercooled water.16

Even in the simplest case of a fluid composed of structureless
particles with no internal degrees of freedom, the energy
landscape is a hypersurface in 3N + 1 dimensions whose
visualization is impossible for even modest system sizesN.
Furthermore, the number of permutationally distinct local
potential-energy minima has the approximate asymptotic form
exp(KN), whereK is a positive,N-independent quantity.17 This
exponentially huge enumeration total forces the description of
landscapes to be statistical rather than taxonomic.18 A central
quantity in the statistical theory then becomes the density of
potential-energy minima as a function of their depth, and the
investigation of such depth distributions for various material
systems is currently a very active area of research. One preferred
approach is to simulate the motion of several hundred molecules
by computer, either stochastically or deterministically.12,16,19-26

Periodic energy minimizations then provide information on the
manner in which the system samples its underlying energy
landscape as a function of the imposed thermodynamic condi-
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tions, such as temperature and density. Although this approach
has already yielded valuable information, the computational
demands resulting from the need to couple conventional Monte
Carlo or molecular dynamics with frequent energy minimiza-
tions are considerable, and it is important to explore simulta-
neously other routes to the investigation of energy landscapes
in many-body systems. One such alternative approach consists
of constructing model functions to describe the statistical
properties of energy landscapes for real substances and to
investigate theoretically the ensuing collective thermodynamic
and dynamical consequences.4 This is the strategy that we follow
in this work.

In the interests of completeness and self-containment, the
following section II summarizes the basic definitions and
formulas that describe thermal equilibrium in the energy
landscape (“inherent structure”) formalism. This leads naturally
to the simplest “reasonable” model for the landscape depth
distribution, the Gaussian model, whose attributes and implica-
tions form the subject of section III. One of those implications
is the prediction of an “ideal glass transition” at a positive “ideal
glass transition temperature”. Section IV focuses on the
enumeration of amorphous inherent structures at the low-
potential-energy end of the distribution and reaches the conclu-
sion that the otherwise useful Gaussian distribution requires a
qualitative modification; the modification has the effect, in
principle, of eliminating the ideal glass transition. Section V
thereupon introduces a logarithmically modified version of the
Gaussian distribution. Numerical analysis of that modified form
leads to results that are presented in section VI. Those numerical
results include an unexpected “fixed point” phenomenon. They
also illustrate the fact that calorimetric data for glass formers
obtained at temperatures above an experimental (kinetically
controlled) glass transition can invite simple extrapolation that
misleadingly suggests a false conclusion about the existence of
an ideal glass transition. The final section VII summarizes
conclusions and provides discussion of several relevant issues.
Throughout this work we use the term “ideal glass transition”
to denote the condition in which the system adopts a mechani-
cally stable amorphous configuration possessing the lowest
available energy. The same term is sometimes used to describe
the transition from ergodic to nonergodic behavior as predicted
by mode-coupling theory.27 The two phenomena are very
different and should not be confused.

II. Basic Formulas

The descriptive formalism to be used in the following has
been developed to describe and to exploit the multidimensional
landscape topography ofΦ(x1...xN), the many-particle potential-
energy function. Here the coordinates of the individual particles
have been denoted by thexi (1 e i e N); they specify center
positions, spatial orientations, and molecular internal degrees
of freedom, as required by the case of interest. The potential-
energy function is basic to determination of both the dynamical
evolution and the thermodynamic equilibrium states of the
many-particle system.

By implementing a steepest-descent mapping for the function
Φ, it is possible to divide the multidimensional configuration
space of particle coordinates exhaustively into a set of “basins”,
each one containing a single localΦ minimum (“inherent
structure”).11 A convenient and natural-order parameter for
classifying potential-energy minima of a many-body system is
their depth on a per-particle basis4,11

In the conventional large-system limit (with particle-number
density F held fixed), the depth distributionW(æ,F) of geo-
metrically distinguishable potential-energy minima can legiti-
mately be treated as a continuous and at-least-once-differentiable
function ofæ. In accord with the behavior of the total number
of inherent structures,W(æ,F) is also asymptotically an expo-
nentially rising function ofN. Therefore, for present purposes
we simply write

Here,σ(æ,F) g 0 is independent ofN, andC is a normalization
constant with dimensions (energy)-1 that is also independent
of N.11 Theæ range of definition for the enumeration function
σ(æ,F) is bounded by a lower-limitæl, corresponding to the
energetically most stable arrangement (inherent structure) of
particles at number-densityF and by an upper limitæu, the
potential energy per particle of the least-stable (highest-lying)
inherent structure at that number-densityF

Because the particle arrangements at these extremes are expected
to be substantially unique, aside from permutational symmetry,
they should be points at which the enumeration function
vanishes

The vast majority of the inherent structures have depth
parameters lying between these extremes, the implication of
which is that σ(æ,F) should pass through a maximum with
respect toæ within the interval (II.3).

The tiling of the multidimensional configuration space by
basins and the identification of their embedded potential minima
leads to a separation of the many-body problem into a purely
configurational part (the inherent structures) and a vibrational
deformation part (the intrabasin displacements from the inherent
structures). This in turn creates a formal simplification for the
canonical partition function that describes the states of thermo-
dynamic equilibrium. The result is the following expression for
the Helmholtz free energy per particle that is asymptotically
exact in the large-system limit11

Here â ) 1/kBT, where kB is Boltzmann’s constant and
f(vib)(æ,â,F) is the vibrational free energy per particle for
intrabasin displacements, averaged over basins with depths in
a narrow range aboutæ. The quantityæ*(â,F) is the value of
the order parameter that locates the depth of basins preferentially
occupied under the prevailing temperature and density condi-
tions; it obeys the variational relation

Because expression II.5 refers to strict thermal equilibrium,
it automatically contains the capacity to describe the liquid above
its melting temperature as well as the freezing of the liquid into
the crystalline solid phase at lower temperature. However, if
interest primarily lies in describing the molecular behavior of
supercooled liquids and the glasses that they form, a modifica-
tion of the basin/inherent structure representation must be
implemented. Specifically, this requires projecting out ofæ ) Φ(min)/N (II.1)

W(æ,F)) C exp[Nσ(æ,F)] (II.2)

æl(F) e æ e æu(F) (II.3)

σ(æl,F) ) σ(æu,F) ) 0 (II.4)

âF/N ) min
(æ)

[âæ - σ(æ,F) + âf(vib)(æ,â,F)]

) âæ* - σ(æ*,F) + âf(Vib)(æ*,â,F) (II.5)

{(∂/∂æ)â,F[σ(æ,F) - âf(vib)(æ,â,F)]}æ)æ* ) â (II.6)
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consideration all basins whose inherent structures contain
substantial patterns of crystallinity.28 As a result, only those
basins corresponding to amorphous inherent structures will be
considered, and they possess a diminished distribution function
Wa(æ,F), and corresponding enumeration functionσa(æ,F).
Furthermore, this amorphous basin set is defined over a
foreshortenedæ interval

The lower amorphous limit is expected to be above that of the
most stable crystalline configuration, but it is less certain that
the constraint of amorphous character has the effect of moving
the upper limit downward.

After the removal of crystallite-containing basins, the resulting
modified canonical partition function describes the “equili-
brated” liquid below its normal freezing point. The Helmholtz
free energy for the metastable supercooled liquid then possesses
a representation entirely analogous to that shown in eqs II.5
and II.6 above

and the mean depthæa*(â,F) of the bottoms of the dominating
amorphous-structure basins satisfies the modified variational
condition

In these expressions,fa(vib) is the depth-dependent vibrational
free energy per particle for the restricted basin set.

The constant-volume heat capacity of the amorphous system,
CVa follows by applying two constant-volumeâ derivatives to
the Helmholtz free-energy expression II.8 and applying the
variational criterion (II.9)

Notice that despite the clean separation of configurational and
vibrational contributions to the free-energy expression II.8, this
heat capacity formula exhibits cross terms (the second and third
terms) between these two types of degrees of freedom. In any
case, thermodynamic relations II.8-II.10 cease to have direct
experimental relevance once the system is cooled below a kinetic
glass transition temperature and is then unable to sustain
equilibration within the manifold of amorphous-state basins.

Although the Helmholtz free energyFa has direct relevance
to isochoric (constant volume) conditions, the Gibbs free energy
Ga is more directly connected to the isobaric (constant pressure)
conditions under which the majority of laboratory studies of
supercooled liquids and glasses are performed. To derive
isobaric expressions analogous to those displayed in eqs II.8-
II.10, one starts by replacing the potential energyΦ with a
“potential enthalpy” functionΨ, whose variables are the set of
molecular coordinates augmented with the fluctuating system
volumeV29

wherep is the applied pressure. The relevant configuration space
is thus increased by one dimension, and in that larger space

steepest-descent mapping on theΨ hypersurface identifies
isobaric basins and their embedded isobaric inherent structures.
After removing crystal-pattern-containing basins, isobaric dis-
tribution, enumeration, and vibrational free-energy functionsŴa,
σ̂a, and f̂a(vib) can be defined by straightforward extension of
the isochoric case. The supercooled liquid Gibbs free-energy
then follows a format analogous to that shown earlier for the
Helmholtz free energy but now using the enthalpy per particle
ψ as the appropriate intensive order parameter

The dominating isobaric basin depthψa* satisfies a variational
criterion analogous to that in eq II.9

The constant-pressure heat capacityCpa for the amorphous
system then possesses a form analogous to that forCVa shown
above in eq II.10 upon application of two constant-pressureâ
derivatives

Although the landscape relations displayed above concern
thermodynamic (i.e., static) properties of the supercooled liquid,
the venerable Adam-Gibbs theory30 offers a useful connection
to time-dependent characteristics. This theory developed and
exploited the concept of independent “cooperatively rearranging
regions” within the liquid medium whose kinetics were postu-
lated to underpin relaxation phenomena in the supercooled
temperature range. A principal conclusion of the Adam-Gibbs
approach was that long mean relaxation timesτ observed for
deeply supercooled liquids could be expressed in the following
form

hereτ0 andA are temperature-independent constants, andSconf

is the configurational contribution to the system entropy. The
potential energy, or potential enthalpy, landscape viewpoint
provides an immediate identification of that configurational
entropy, having separated the vibrational contributions. Under
isochoric (constant volume) circumstances

while under isobaric (constant pressure) circumstances

Given this interpretation, models of the inherent-structure depth
distribution for the purposes of thermodynamic description
automatically become models for relaxation phenomena as well
and by implication for the temperature dependence of shear
viscosity η(T). This stems from the generalization of the fact
that for a Maxwell fluid,η can be written as a product of a
shear relaxation timeτ and a high-frequency modulusG∞, where

âGa/N ) âψa* - σ̂a(ψa*,p) + â f̂a
(vib)(ψa*,â,p) (II.12)

{(∂/∂ψ)â,p[σ̂(ψ,p) - âψ - â f̂a
(vib)(ψ,â,p)]}ψ)ψa*

) 0 (II.13)

Cpa

NkB
) -â2{[1 + (∂ f̂a

(vib)

∂ψ )
â,p

+ â(∂2f̂a
(vib)

∂â∂ψ )
p
](∂ψa*

∂â )
p

+

2(∂ f̂a
(vib)

∂â )
ψ,p

+ â(∂2f̂a
(vib)

∂â2 )
ψ,p

}
ψ)ψa

*

(II.14)

τ(T) ) τ0 exp( A
TSconf(T)) (II.15)

Sconf(T,F) ) NkBσa[æa*(T),F] (II.16)

Sconf(T,p)) NkBσ̂a[ψa*(T),p] (II.17)

æl(F) < æla(F) e æ e æua(F) e æu(F) (II.7)

âFa/N ) âæa* - σa(æa*,F) + âfa
(vib)(æa*,â,F) (II.8)

{(∂/∂æ)â,F[σa(æ,F) - âæ - âfa
(vib)(æ,â,F)]}æ)æa*

) 0 (II.9)

CVa

NkB
) -â2{[1 + (∂fa

(vib)

∂æ )
â,F

+ â(∂2fa
(vib)

∂â∂æ )
F
](∂æa*

∂â )
F

+

2(∂fa
(vib)

∂â )
æ,F

+ â(∂2fa
(vib)

∂â2 )
æ,F

}
æ)æa

*

(II.10)

Ψ(x1...xN,V) ) Φ(x1...xN) + pV (II.11)
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the former obeys eq II.15 and the latter is only weakly dependent
on temperature.

It should be noted in passing that thermodynamic measure-
ments will access only a portion of theæa or ψa intervals over
which the respective distribution functionsWa or Ŵa are defined.
Specifically, the very high potential energy, or very high
potential enthalpy portions of these distributions would not
contribute to thermodynamic functions. However, this does not
mean that they have no physical significance. Basins for
unusually high isochoric or isobaric inherent structures can
certainly be populated by irreversible processes (cold working,
deposition from the vapor phase, etc.). Also, formal analytic
continuation of equilibrium properties from positive to negative
â (positive to negative temperature) is a process for accessing
the highæ and highψ parts of the distributions.31

III. Gaussian Landscape Distribution
The simplest functional form for the basin-depth distribution

functions Wa(æ,F)and Ŵa(ψ,p) that might offer qualitatively
useful representations for an amorphous landscape would be
Gaussian functions of the intensive depth parameteræ or ψ. In
other words, the respective enumeration functionsσa(æ,F) and
σ̂a(ψ,p) would be approximated by inverted parabolas. Specif-
ically, one can set

Note that all of theR’s are positive and thatæ0 andψ0 locate
the distribution maxima, respectively. The lower and upper
limits of the inherent structure distributions are the points at
which these quadratic functions vanish

The qualitative applicability of these Gaussian distribution forms
receives support from approximate distributions that have been
derived from experimental calorimetric data on several glass
formers; these have includedo-terphenyl at 1 atm29 as well as
1-propanol and 3-methylpentane at various pressures.31 It also
receives support from atomistic simulations that directly examine
inherent structures and their depth distributions in liquids.22,32

Thermodynamic application of the model forms (III.1 and
III.2) would be straightforward if correspondingly simple
expressions could be justified for the vibrational free energy
quantitiesfa(vib) and f̂a(vib) as functions of their respective depth
variables. A natural first estimate would be that these functions
are independent of their depth variables, which is equivalent to
assuming that, on average, basins have the same aperture profile
regardless of their position on the depth scale. While this may
not be grossly inaccurate, evidence indicates that a better
assumption is that these vibrational free energies have a modest
linear dependence on basin depth and that the linear dependence
is itself proportional to absolute temperature.32,33Thus we write

When isochoric expressions (eqs III.1 and III.5) are inserted
into eq II.9 for the determination ofæa*, the result is a linear
equation with the solution

An analogous result describes the isobaric case

The last two expressions, eqs III.7 and III.8, are valid for
temperatures such that the enumeration functionsσa and σ̂a

remain nonnegative.
It is clear from the last two equations that temperature

reduction (â increase) causes bothæa* andψa* to drift to lower
values, provided that they are still within the limits, III.3 and
III.4, respectively. However, such drift must cease when the
lower limits are encountered, at which point the system has
occupied the lowest available amorphous-state basins. This
defines the “ideal glass transition temperature”Tig ≡ (kBâig)-1.
For isochoric circumstances, this is found from eqs III.3 and
III.7 to be

The isobaric version follows from eqs III.4 and III.8

The system remains stuck in the lowest basins atæla* or ψla*
upon any further cooling below the ideal glass transition
temperature.1,34 This sudden switch from temperature-varying
to temperature-invariantæa* or ψa* is an intrinsic property of
the Gaussian landscape distribution model. It should be noted
that the ideal glass transition temperature at which the system
occupies the lowest-available amorphous-state basin is different
from the so-called Kauzmann temperature, where the entropy
of the supercooled liquid equals that of the stable crystal.35

We close this section III by exhibiting expressions for the
heat capacities implied by the Gaussian landscape distribution
model. For this model, general expression II.10 forCVa reduces
to

in which

The parallel result forCpa is

in which

σa(æ,F) = R0(F) - R2(F)[æ - æ0(F)]2 (III.1)

σ̂a(ψ,p) = R̂0(p) - R̂2(p)[ψ - ψ0(p)]2 (III.2)

æla ) æ0 - (R0/R2)
1/2

æua ) æ0 + (R0/R2)
1/2 (III.3)

ψla ) ψ0 - (R̂0/R̂2)
1/2

ψua ) ψ0 + (R̂0/R̂2)
1/2 (III.4)

fa
(vib)(æ,â,F) = f1(â,F) + â-1F(F)(æ - æ0) (III.5)

f̂a
(vib)(ψ,â,p) = f̂1(â,p) + â-1F̂(p)(ψ - ψ0) (III.6)

æa*(â,F) ) æ0(F) -
â + F(F)

2R2(F)
(III.7)

ψa*(â,p) ) ψ0(p) -
â + F̂(p)

2R̂2(p)
(III.8)

kBTig(F) ) {2[R0(F)R2(F)]1/2 - F(F)}-1 (III.9)

kBTig(p) ) {2[R̂0(p)R̂2(p)]1/2 - F̂(p)}-1 (III.10)

CVa

NkB
) -â2{(∂æa*

∂â )
F

+ 2(∂f1
∂â)

F
+ â(∂2f1

∂â2)
F
}

æ)æa
*

(III.11)

(∂æa*

∂â )
F

) - 1
2R2(F)

(0 < â < âig(F))

) 0 (âig(F) eâ) (III.12)

Cpa

NkB
) -â2{(∂ψa*

∂â )
p

+ 2(∂ f̂1

∂â)
p

+ â(∂2f̂1

∂â2)
p
}

ψ)ψa

(III.13)
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As a consequence of the forms III.5 and III.6 assumed for the
vibrational free energies, the heat capacity expressions (eqs
III.11 and III.13) now consist of independent configurational
and vibrational contributions. It should be noted in passing that
these decoupled heat capacity expressions are quite general,
given the assumed forms III.5 and III.6; only the specific
expressions III.12 and III.14 forâ derivatives of the dominant
depth parameters depend on the Gaussian model choice.

IV. Aspects of Inherent Structure Enumeration

For simplicity of presentation, we shall confine attention
temporarily to the isochoric (constant volume) case. The
variational criterion (eq II.9) identifiesæa*(â,F) by matching
the slopes inæ of the curves forσa(æ) and for âæ +
âfa(vib)(æ,â,F). It is easy to see that the prediction of an ideal
glass transition at a positive temperature for the Gaussian
landscape distribution model stems directly from the fact that
its parabolicσa(æ), eq III.1, possesses a positive slope at its
lower endpoint,æla. That is,σa(æ) for æ g æla has a Taylor
expansion with leading-order term

Indeed, any model landscape distribution possessing this
qualitative property can be anticipated to predict a positive-
temperature ideal glass transition.

Provided that interest focuses on the immediate neighborhood
of the lower limitæla, it suffices to disregard the nonlinear terms
in expansion (eq IV.1). The numberM(æ) of distinguishable
potential-energy minima (inherent structures) whose energies
per particle lie at or belowæ > æla is expressed by the integral

Inverting this expression leads to the following prediction for
the level of system-wide potential-energy excitation below which
M distinguishable local minima lie, specifically

We now ask how large this last quantity (eq IV.3) must be
so that the integerM is some small (but positive and not
infinitesimal) fraction of the very large integerN

whereê is independent ofN. This will be itself a large integer
(M . 1) because we are ultimately interested in the large-
system-limit behavior (Nf ∞). But because the totality of
distinguishable inherent structures is exponentially large inN,
M is still a miniscule portion of that totality. The choice (eq
IV.4) transforms eq IV.3 to

The implication of eq IV.5 is that the excitation energy above
the absolute (amorphous) minimum required to reach the lowest
êN inherent structures, in a system ofN particles, rises
logarithmically withN. Hence it is unbounded in the large-N
limit. This feature appears to violate common qualitative
understanding of molecular interactions and of the particle
packings that they produce.28 Starting with a global-minimum
amorphous mechanically stable packing, essentially independent
local particle rearrangements are possible at a variety of
positions throughout the system, the number of which is
necessarily proportional to the system’s size, i.e., proportional
to N. These localized rearrangements are not identical in
character because they depend on details of particle-packing
geometry at each qualifying position within the variable
amorphous medium. Such rearrangements consequently will be
broadly distributed in excitation energy and will include the
well-documented “two-level systems” that appear to be char-
acteristic of most amorphous media.36,37However, each typically
involves modest displacement of onlyO(1) particles from their
positions at the global minimum, and so each involves only an
O(1) excitation energy. Therefore, anO(1) upper limit to
excitation energy already includesO(N) distinct local rearrange-
ment possibilities. Consequently, the realistic version of eq IV.5
should have its right member equal to anN-independentO(1)
quantity, not a logarithmically growing term.

To create a realistic version of eq IV.5, that is to say, one in
which the total energy above the deepest amorphous minimum
required to reach the lowestêN inherent structures (ê, 1) is
anO(1) quantity, the initial slope ofσa(æ) just aboveæla must
be infinite. More specifically, the leading-order behavior foræ
> æla must have a bounded logarithmic form28

whereB is a positive constant. With this singular form

as required, which is not strictly consistent with the presence
of a positive-temperature ideal glass transition. Instead of
attaining the lower limit valueæla at a positive temperature,
æa* instead continuously drifts downward with decreasing
temperature, attainingæla only at absolute zero. However, this
observation does not necessarily diminish the utility of the “ideal
glass transition” as an empirical device to describe the way in
which real glass formers (especially those designated as
“fragile”),38 behave both thermodynamically and kinetically at
higher temperature. In connection with simple landscape models
such as the Gaussian version described in the previous section
III, one needs to bear in mind that expression IV.6 is only a
desirable and relevant modification at the low end of the
amorphous inherent structure distribution. In any event, it
constitutes a feature not directly observable due to the interven-
tion of the laboratory glass transition at a temperatureTg, which
is always higher than an inferred ideal glass transition temper-
ature.

The argument just presented concerns isochoric (constant
volume) conditions. Nevertheless, the reader should be aware
that an analogous version applies to isobaric (constant pressure)

(∂ψa*

∂â )
p

) - 1
R̂2(p)

(0 < â < âig(p))

) 0 (âig(p) e â) (III.14)

σa(æ) ) A(æ - æla) + O[(æ - æla)
2]

A ) σa′(æla + 0) > 0 (IV.1)

M(æ) ) C∫æla

æ
exp[Nσa(æ′)] dæ′

= C∫æla

æ
exp[NA(æ′- æla)] dæ′

) C
NA

{exp[NA(æ- æla)] - 1} (IV.2)

N[æ(M) - æla] ) 1
A

ln(1 + ANM
C ) (IV.3)

M ) êN (0 < ê , 1) (IV.4)

N[æ(êN) - æla] = 1
A

ln(AêN2

C )
) (2/A) ln N+ O(1) (IV.5)

σa(æ) ) -B(æ - æla) ln(æ - æla) + O(æ - æla) (IV.6)

lim
æfæla+0

(dσa

dæ) ) +∞ (IV.7)
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circumstances, in which the intensive potential-enthalpy order
parameterψ replaces the intensive potential-energy order
parameteræ. The corresponding conclusion is that isobaric
landscape enumeration models with finite positive initial slopes
σ̂a′(ψla + 0) are also at variance with qualitative understanding
of intermolecular interactions in condensed media. Conse-
quently, isobaric enumeration functions also require a bounded
logarithmic form analogous to that shown in eq IV.6 above.

V. Logarithmic Modification

The concepts presented in the preceding section IV warrant
examination of a modified version of the simple Gaussian model
that was discussed in section III. Specifically, it is important to
incorporate the infinite-slope logarithmic form (eq IV.6) at the
lower endpoint of the enumeration intervals ofσa andσ̂a in order
to avoid the misleading implication of a positive-temperature
ideal glass transition. So as to change the original model as
little as possible, we have chosen to retain its bilateral symmetry
about its maximum.

When it is expressed in reduced form, the isochoric Gaussian
model has the following appearance

where the scaled energy order parameter is defined by

The modification now to be considered incorporates a nonne-
gative parameterγ into a generalization of the scaled form (V.1)

By increasingγ continuously over the interval 0e γ e 1, this
expression transforms continuously from the original Gaussian
model, eq V.1, to a pure logarithmic form. Regardless of theγ
value in this interval,σa/R0 vanishes atu ) (1 and passes
through a single maximum atu ) 0, for which σa/R0 ) 1.

Figure 1 presents plots of the logarithmically modified
function (eq V.3) for severalγ choices that span its interval of
positive values. An obvious feature presented by that group of
curves is that rather little overall change in shape results asγ
increases to switch the model from pure Gaussian form to pure
logarithmic form. Consequently, this modification should not
materially compromise the ability to represent many-body
thermal behavior as has been claimed for the unmodified
Gaussian model. The infinite slopes that exist at the endpoints
with positive γ are subtle and barely visible in Figure 1 but
remain significant features that frustrate the occurrence of ideal
glass transitions.

We shall continue to suppose that the vibrational free energy
function fa(vib) is adequately represented by eq III.5. Upon
inserting the logarithmically modified model function (eq V.3)
and the vibrational free-energy function (eq III.5) into criterion
II.9, an implicit result emerges for determination of the scaled
order parameterua* as a function of temperature

This result displays a notable characteristic that arises from the
second factor in the right member. Specifically, the basin-depth
dependence of vibrational free energy embodied by the function
F(F) creates an effective shift in the inverse-temperature quantity
â

Referring to eq III.11, one sees that the configurational
contribution to the isochoric heat capacity is

By applying aâ derivative to eq V.4, this converts to a form
specific to the logarithmically modified Gaussian model

Each of the isochoric results shown in eqs V.1-V.7 has an
analogous isobaric partner of exactly the same formal structure.
Because of the strong correspondence, it should not be necessary
to repeat the sequence of equations. One point may be worth
stressing, however. The available evidence from isochoric
computer simulations32,33indicates that the vibrational quantity
F(F) is positive, implying that the more disordered (and thus
higher-energy) inherent structures are more tightly packed and
more vibrationally constrained. By contrast, isobaric conditions
should relieve that tighter packing and consequent vibration-
constraining effect,39 possibly leading in some cases to a
negativeF̂(p). If that is so, isochoric and isobaric conditions

Figure 1. Plots of the scaled enumeration functionσa/R0 for the
logarithmically perturbed Gaussian model. The independent variable
is the scaled isochoric depth parameter, defined in eq V.2. The curves
shown correspond to five choices for the interpolation parameterγ )
0.00, 0.25, 0.50, 0.75, and 1.00. The unperturbed Gaussian model arises
from the first of these,γ ) 0.

σa/R0 ) 1 - u2 (V.1)

u )
æ - æ0

æ0 - æla
(-1 e u e 1) (V.2)

σa/R0 )

(1 - γ)(1 - u2) + γ{1 - (2 ln 2)-1[(1 + u) ln(1 + u) +
(1 - u) ln(1 - u)]} (V.3)

-[2(1 -γ)ua* + γ
2 ln 2

ln(1 + ua*

1 - ua*)] )

(æ0 - æla

R0
)[â + F(F)] (V.4)

â + F(F) ) âeff ) (kBTeff)
-1 (V.5)

CVa
(conf)

NkB
) -â2(æ0 - æla)(∂ua*

∂â )
F
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CVa
(conf)

NkB
)

â2(æ0 - æla)
2

R0 [2(1 - γ) + ( γ
ln 2)( 1

1 - (ua*)
2)]-1

(V.7)
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would lead respectively to opposing shifts of the effective
inverse temperature compared to absolute temperature.

VI. Numerical Results

Figure 2 presents the results of numerical calculations for
the scaled isochoric depth parameterua*, based on eq V.4,
plotted vs the scaled effective temperature

The curves shown involve the same fiveγ choices that were
used in Figure 1. Figure 2 is also immediately relevant to the
isobaric case, provided that the vertical axis represents scaled
potential-enthalpy depth parameterûa* and the horizontal axis
represents the corresponding effective temperature

Notice that asT f ∞, the isochoric effective temperatureTeff

f [kBF(F)]-1 while the isobaric effective temperatureT̂eff f
[kBF̂(p)]-1. As indicated previously, under some circumstances
it is possible that these limits could have opposing signs.

Two notable features stand out in Figure 2. First, in distinction
to theγ ) 0 Gaussian model limit, theua* (or ûa*) curves for
γ > 0 only fall to zero when the effective temperature itself
falls to zero. As expected, therefore, the logarithmic modification
formally eliminates the ideal glass transition. Second, the
numerical results shown seem to suggest that the entire family
of curves for 0e γ e 1 all pass through a common fixed point.
The insert in Figure 2 strengthens that conclusion by presenting
a magnified view of the common crossing region.

It is possible to demonstrate directly that indeed there is a
mathematically well-defined common crossing point in Figure
2. This point can be located by differentiating eq V.4 with
respect to the mixing coefficientγ, solving for dua*/dγ and
setting that derivative equal to zero. The result is a transcen-

dental equation

Its relevant real root is found to be

By substituting this value into eq V.4, one evaluates the effective
temperature at this fixed point

It can be shown that a fixed point exists whenever two basin
enumeration functionsH(u) andG(u) are combined linearly (e.g.,
σa/R0 ) (1 - γ) H(u) + γ G(u), as shown in eq V.3 for the
Gaussian and logarithmic cases), provided a slope-matching
condition dH/du) dG/duis satisfied for some particular value
u* of u. In such cases, the slope at the invariant point is a
measure of the relative weight of each basin enumeration
function; the higher the slope, the more a real system’s depth
distribution of basins approximates that described by the function
H(u).

Figure 3 shows the variation of the scaled enumeration
functionσa/R0 with the scaled isochoric effective temperature.
The same fiveγ values that were used in the preceding Figures
1 and 2 are represented in this plot as well. Although a quick
glance at Figure 3 might suggest the presence of another fixed
crossing point, that is actually not the case.

Figure 4 offers plots of configurational heat capacities for
the sameγ choices as in the previous plots. These curves are
based on the earlier eq V.7. It is very clear that continuously
turning on the logarithmic perturbation diminishes the heat
capacity at low temperature while still producing a maximum
in this quantity.

Figure 2. Curves of the equilibrium scaled isochoric depth parameter
ua* vs effective temperature. The same fiveγ values (0.00, 0.25, 0.50,
0.75, and 1.00) have been used here as in Figure 1. As remarked in the
text, these results are immediately applicable to isobaric conditions,
upon reinterpretation of the axis labels.

R0kBTeff

æ0 - æla
≡ ( R0

æ0 - æla
)( kBT

1 + F(F)kBT) (VI.1)

R̂0kBT̂eff

ψ0 - ψla
) ( R̂0

ψ0 - ψla
)( kBT

1 + F̂(p)kBT) (VI.2)

Figure 3. Variation of the scaled isochoric enumeration functionσa/
R0 with scaled effective temperature. As in the preceding Figures 1
and 2, the values of the mixing parameterγ are 0.00, 0.25, 0.50, 0.75,
and 1.00.

ua* ) 24ua
*
- 1

24ua
*
+ 1

(VI.3)

ua* = -0.8072515584 (VI.4)

R0kBTeff

æ0 - æla
) - 1

2ua*

= 0.6193856113 (VI.5)
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Although the logarithmic modification formally eliminates
an ideal glass transition, the thermodynamic properties produced
by the model, when examined only above a kinetic glass
transition, might reasonably be extrapolated to predict an ideal
glass transition at positive temperature. One such extrapolation
might utilize the inflection point ofσa(æa*) or σ̂a(ψa*) vs
temperature and linearly extrapolate the slope at the inflection
point to intersection with the horizontal axis. This predicts an
apparent ideal glass transition temperature for isochoric condi-
tions

with an equivalent expression for isobaric conditions. Figure 5
provides a scaled plot of the apparent ideal glass transition
temperature estimated in this way. Notice that the effect of
increasingγ from 0 to 1 is to reduce the apparent ideal glass
transition temperature by a factor of approximately 2.

VII. Conclusions and Discussion

The principal conclusion to be drawn from this paper is that
while simple models of the Gaussian type for enumeration of
inherent structures offer a crude but useful approximation, they
require modification at the lower end of their distributions. This
modification is necessary to avoid spurious prediction of an ideal
glass transition. Careful examination of the enumeration problem
for atomic and molecular glass formers, whether they are subject
to isochoric (constant volume) or isobaric (constant pressure)
conditions, implies that logarithmic corrections are necessary.
A specific modification of the Gaussian model conforming to
this necessity has been proposed here, and has been the object
of numerical study.

The logarithmically modified Gaussian model presents con-
siderable flexibility for representing either experimental of
simulational data for real or computational glass formers,
respectively. In the isochoric setting, the adjustable parameters
areR0, R2, æ0, f1(â), F, and the logarithmic mixing parameter
γ. Isobaric conditions present an equivalent set. On account of

this flexibility, attempts to determine optimal-fit values for these
parameters from standard calorimetric data alone may not yield
unique results. It may be necessary to supplement that data with
experimental hyperquenching results39 or simulational sampling
of inherent structures and evaluation of their basin properties.32,33

It would also be valuable to investigate the theoretical possibility
to carry out the enumeration program outlined in Section IV
above for the low end of the potential-energy or potential-
enthalpy range in order to assign the logarithmic parameterγ
directly.

Although the Adam-Gibbs relation, eqs II.15-II.17, connects
calorimetric behavior of glass formers to their kinetic charac-
teristics and in particular makes that connection for the
logarithmically modified Gaussian model, its fundamental
“landscape” justification remains somewhat obscure. It has been
pointed out40 that from the purely mathematical point of view,
any given basin-depth distribution can correspond to a wide
range of potential-energy or potential-enthalpy multidimensional
topographies. In particular, this means that the depth distribution
by itself does not control the arrangement or height of barriers
separating distinct inherent structures and their basins. Therefore,
the empirical success of the Adam-Gibbs relation implies the
presence and kinetic relevance of a physical constraint on
multidimensional “landscapes” that severely limits those that
satisfy the depth distribution alone. An attractive possibility that
deserves future research attention is that physically reasonable
landscapes obey a topographic scaling relation that links basin
populations at a given depth to the average barrier heights
(landscape “roughness”) at that depth.

The model enumeration function described in this paper has
some obvious limitations. One of these is its underlying
assumption of bilateral symmetry about its maximum, introduced
here for simplicity and on account of no compelling evidence
to the contrary. Another limitation concerns the elementary form
adopted for the isochoric and isobaric vibrational free energy
functions, eqs III.5 and III.6; recall that these assumed forms
had the effect of decoupling configurational and vibrational
degrees of freedom in the total free energy, as well as leading
to the existence of an effective temperature, eq V.5. Finally, it
should be stressed that the model investigated here does not

Figure 4. Scaled values of the isochoric configurational heat capacity
for the logarithmically modified Gaussian model. The values of the
mixing parameterγ are the same as in the preceding Figures.

Tig(apparent)) Tinfl -
σa(Tinfl)

σa′(Tinfl)
(VI.6)

Figure 5. Apparent ideal glass transition effective temperatures (scaled)
for the logarithmically modified Gaussian model as a function of the
mixing parameterγ. These temperatures arise from an inflection-point
extrapolation criterion, eq VI.6.
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produce any phase transitions within the amorphous manifold
of basins. For that reason, it is inapplicable to those substances
such as carbon,41 phosphorus,42 silica,43 and water44 for which
liquid-liquid phase transitions have been reported. As a result
of these considerations, a case can be made for various
extensions of the present work, but for any extension it remains
necessary to observe the low-end enumeration condition ad-
vanced above in Section IV.
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