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Hard-particle packings have provided a rich source of outstanding theoretical problems and served
as useful starting points to model the structure of granular media, liquids, living cells, glasses, and
random media. The nature of ‘‘jammed’’ hard-particle packings is a current subject of keen interest.
Elsewhere, we introducedrigorousandefficientlinear-programming algorithms to assess whether a
hard-sphere packing is locally, collectively, or strictly jammed, as defined by Torquato and Stillinger
@J. Phys. Chem. B105, 11849~2001!#. One algorithm applies to ideal packings in which particles
form perfect contacts. Another algorithm treats the case of jamming in packings with significant
interparticle gaps. We have applied these algorithms to test jamming categories of ordered lattices
as well as random packings of circular disks and spheres under periodic boundary conditions. The
random packings were produced computationally with a variety of packing generation algorithms,
all of which should, in principle, produce at least collectively jammed packings. Our results
highlight the importance of jamming categories in characterizing particle packings. One important
and interesting conclusion is that the amorphous monodisperse sphere packings with densityw
'0.64 were for practical purposes strictly jammed in three dimensions, but in two dimensions the
monodisperse disk packings at previously reported ‘‘random close packed’’ densities ofw'0.83
were not even collectively jammed. On the other hand, amorphous bidisperse disk packings with
density of w'0.84 were virtually strictly jammed. This clearly demonstrates one cannot judge
‘‘stability’’ in packings based solely on local criteria. Numerous interactive visualization models are
provided on the authors’ webpage. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1633647#
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I. INTRODUCTION

Packings of hard particles interacting only with infini
repulsive pairwise forces on contact are applicable as mo
of complex many-body systems because repulsive inte
tions are the primary factor in determining their structu
Hard-particle packings are therefore widely used as sim
models for granular materials,1,2 glasses,3 liquids,4 and other
random media,5 to mention a few examples. Furthermor
hard-particle packings, and especially hard-sphere packi
have inspired mathematicians and been the source of nu
ous challenging~many still open!theoretical problems.6

We focus our attention in this paper on the venera
idealized hard-sphere model, i.e., the only interparticle in
action is an infinite repulsion for overlapping particles, sin
this enables us to be precise about the important conce
‘‘jamming.’’ In particular, a hierarchical classificatio
scheme for jammed packings intolocally, collectively, and
strictly jammedpackings was proposed in Ref. 7. This cla

a!Electronic mail: torquato@electron.princeton.edu
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sification is closely related to the concepts of ‘‘rigid’’ an
‘‘stable’’ packings found in the mathematics literature.8,9 The
idealized hard-sphere model is in a sense the9Ising model9
for studying a variety of hard-particle physical systems, a
the importance of understanding it in detail cannot be ov
stated. The term jamming is used in a different sense in
modeling of granular media, which includes effects such
friction, adhesion, particle deformability, etc., and, by de
nition, hard-sphere systems do not include these effects.
also important to note that we do not discuss dynamical
fects in hard-particle packings. In the present work, ha
sphere jamming is presented from a rigorous perspective
focuses on thegeometryof the final packed states. We not
that extensions of this work to packings of nonspherical p
ticles ~such as ellipses, ellipsoids, or spherocylinders! are
possible and the subject of current and future research.

There are still many important and challenging questio
open even for the simplest type of hard-particle packin
i.e., monodisperse packings of smooth perfectly imp
etrable spheres. One important category of open probl

http://dx.doi.org/10.1063/1.1633647
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pertains to the enumeration and classification of both orde
and disordered jammed circular disk and sphere packings
the various jamming categories described in the followi
Since one cannot enumerate all possible packings even
small number of particles, it is desirable to devise a small
of parameters that can characterize packings well. Two
portant scalar properties of packings are thedensity (packing
fraction) f andorder metricc. For any two statesX andY,
cX.cY implies that stateX is to be considered as mor
ordered than stateY. Candidates for such an order metr
include various translational and orientational ord
parameters,5 but the search for better order metrics is s
very active.

Figure 1 from Ref. 10 shows a conjectured region
feasible hard-sphere packings in thef–c plane. It is clear
that only a small subset of this feasible region will be occ
pied by jammed packings~for a givenjamming category!, as
schematically indicated in Fig. 1. Several limit points in th
region are particularly interesting.

~1! Point A corresponds to the lowest-density jamm
packing, and its location strongly depends on the jamm
category used. It can be shown that there are zero-den
locally jammed disk and sphere packings~see references an
discussion in Ref. 11!. However, for collectively and stric
jammed packings, it is not known what are the lowest p
sible densities.

~2! PointB corresponds to the most dense jammed pa
ing. It has of course already been identified to be a triang
packing for disks and the FCC/HCP variant lattice f
spheres. But much less is known about polydispe
packings,11,12 or packings of nonspherical particles.

~3! MRJ point represents the maximally random jamm
~MRJ! state,10 which has recently supplanted the ill-define
‘‘random close packed’’~RCP! state. The RCP state wa
widely believed to have a packing fractionw'0.63– 0.64 in
three dimensions. The MRJ state is the most disorde
jammed packing in a given jamming category~locally, col-
lectively, or strictly jammed!. The MRJ state is well-defin
for a given jamming category and choice of order metric

Numerical algorithms have long been the primary to
for studying random packings quantitatively. In a separ
paper,13 we introduced two algorithms to assess whethe
hard-sphere packing is locally, collectively, or strict

FIG. 1. A highly schematic plot of the jammed subspace in the dens
disorder plane.
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jammed.7 The first algorithm targets packings with perfe
interparticle contacts, while the second allows for significa
interparticle gaps. Both algorithms are based on linear p
gramming and are applicable to both ordered and disorde
disk and sphere packings of arbitrary polydispersity. In R
13 we give a complete description of the algorithms. He
we demonstrate their applicability, usefulness, and efficie
in analyzing large disordered packings, as produced by v
ous packing generation algorithms. Algorithms that gener
large-scale hard-particle packings are very important, es
cially because experimental hard-particle configurations
difficult to obtain and are limited in applicability. Of particu
lar interest are stochastic algorithms aimed at producingran-
dom (disordered) packings.

Through numerical investigations, we show here th
several previously used packing algorithms generate col
tively jammed packings under appropriate conditions. In p
ticular, we study in detail monodisperse sphere as well
monodisperse and bidisperse disk packings produced by
Lubachevsky–Stillinger packing algorithm.14 We also tested
a sample of monodisperse sphere and bidisperse disk p
ings produced by the algorithm described in Ref. 15, as w
as monodisperse sphere packings produced by the Zinch
packing algorithm,16 and observed similar behavior as for th
Lubachevsky–Stillinger packings.

Our testing of these packings enables us to arrive at s
eral important conclusions. First, we find that the amorph
monodisperse sphere packings~with covering fraction, or
density, w'0.64) and bidisperse disk packings (w'0.84)
are practically strictly jammed~though not in the ideal
sense!. Second, we observe that large monodisperse
packings are invariably highly crystalline (w'0.88) and are
only collectively jammed. Previously reported17 low cover-
ing fractions for ‘‘random close packed’’ disks ofw
'0.82– 0.84 were not even found to be collectively jamm
This conclusion clearly demonstrates that the distinctions
tween the different jamming categories are important a
one cannot judge ‘‘stability’’ in packings based solely o
local criteria, as has been done extensively in
literature.18–20 Preliminary investigations with an extensio
of the Lubachevsky–Stillinger algorithm indicate that it
possible to produce ideal strictly jammed packings, which
important in order to eliminate finite-size boundary effec
especially for monodisperse disk packings.

In Sec. II, we introduce important notation, definition
and review basic concepts. In Sec. III, we describe vari
algorithms that are used to generate random packings.
will analyze the resultant packings. In Sec. IV we discuss
numerical implementation, and provide results for orde
periodic lattice packings and random packings. Finally,
conclude with a discussion of the results and future dir
tions of investigation in Sec. V.

II. BACKGROUND AND METHODOLOGY

Here we briefly summarize some of the essential no
tion, problem statements, and methods, as described in d
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in Ref. 13. We consider a sphere packing in Euclide
d-dimensional spaceRd, characterized by the positions o
the sphere centersR5(r1 ,...,rN),

P~R!5H r iPRd, i 51,...,N:ir i2r j i>
Di1D j

2
; j Þ i J ,

where the diameter of thei th sphere isDi , and here we
focus on monodisperse packings, i.e., packings where al
spheres are identical,Di5D. Our perspective on jamming
focuses on the setJR of configurations around a particula
initial configuration R reachable viacontinuousdisplace-
ments of the spheresDR(t), subject to nonoverlapping con
straints and certain boundary conditions. Heret is a time-like
parameter, and we will often drop it for brevity, but it shou
be kept in mind that any change in configuration we consi
must be reachable via a continuous deformation. If the ex
of JR is small, in the sense that only small continuous d
placements of the particles from their initial configuratio
are possible for allRPJR , the packing is considere
jammed. The natural length scale defining the meaning
‘‘small’’ is the typical size of the particles, or the size of th
interparticle gaps, depending on the context and the typ
packing under consideration. In a jammedideal packing,
which has perfect interparticle contacts, the particles can
at all be displaced continuously from their current config
ration ~modulo trivial rigid-body motions!. By changing the
boundary conditions, we get several different categories
jamming, namely local, collective, and strict jamming.7 We
briefly review these definitions for the convenience of t
reader in the following. We consider first ideal packings, a
discuss interparticle gaps in more detail as an extension

We specialize these jamming definitions for period
sphere packings for concreteness, but packings in a con
hard-wall containers can also be considered.Periodic (re-
petitive) packingsare characterized by a unit cell and a la
tice L5$l1 ,...,ld%, whereli are linearly independentlat-
tice vectors. We additionally allow the lattice to continuous
change byDL(t) as the particles displace, where«5«T

5(DL)L21 is the symmetricmacroscopic strain tensor.21,22

Finite systems of spheres are characterized as follow

~1! Locally jammed: Each particle in the system is loca
trapped by its neighbors, i.e., it cannot be transla
while fixing the positions of all other particles. Eac
sphere simply has to have at leastd11 contacts with
neighboring spheres, not all in the samed-dimensional
hemisphere.

~2! Collectively jammed: Any locally jammed configuratio
where all finite subsets of particles are trapped by th
neighbors. For periodic boundary conditions, collect
jamming implies that there is no nonvanishing contin
ous periodic displacement of the particlesDR(t) that
maintains impenetrability other than trivial uniform
translations of the packing, whilekeeping the lattice
fixed,DL(t)50.

~3! Strictly jammed: Any collectively jammed configuratio
that disallows all globally uniform volume
nonincreasing deformations of the system boundary.
periodic packings, the boundary is in fact the lattice, a
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strict jamming implies that there is no nonvanishing co
tinuous periodicDR(t) which maintains impenetrability
other than trivial uniform translations of the packin
even if we allow avolume-nonincreasing continuous la
tice deformationDL(t) ~this translates to a strain tenso
with a nonpositive trace!.

Observe that these jamming categories are orderedhierarchi-
cally, with local being a prerequisite for collective and sim
larly collective being a prerequisite for strict jamming.
should be mentioned that jammed random particle packi
produced experimentally or in simulations typically contain
small population of ‘‘rattlers,’’ i.e., particles trapped in a ca
of jammed neighbors but free to move within the cage. F
present purposes we shall assume that these have bee
moved before considering the~possibly! jammed remainder
~subpacking!.

In Ref. 13, we presented a randomized linear progra
ming ~LP! algorithm to test whether a given packing
jammed or not, for each of the above-given jamming cate
ries. The essential ingredient of this algorithm is to apply
randomly selectedload ~i.e., a force!on each particle~lo-
cally, or collectively!and then solve a linear program whic
takes into account a linearized version of the impenetrab
constraints between neighboring particles to find whet
~and how!the particles displace~and possible the lattice de
forms! in order to support this applied load. If the particle
do not displace then we apply the load of opposite sign
repeat the test. If the particles do not displace again, then
ideal packing under consideration is jammed.

Computer-generated packings, which we analyze,
never ideal and there are always small interparticle gaps
tween some particles, typically much less than a percen
the typical particle sizeD. One can safely consider suc
packings within the framework of ideal packings, with min
modifications to the algorithm, as described in detail in R
13. However, the either-or character of the above-mentio
jamming criteria is often too restrictive or specialized wh
analyzing large disordered packings with possibly larger
terparticle gaps, where particle displacements may be c
parable to the typical particle size. Therefore, we investig
ways to study jamming in this practical sense for suchnon-
ideal packings. We focus here on trying to judge theextentof
JR by trying to displace the spheres away from their curr
position byas much as possible. In Ref. 13 we describe
algorithm based on linear programming to do just this, a
the basic idea is to repeatedly apply a random load on
particles, solve several linear programs, and displace the
ticles by as much as possible while still avoiding overla
until the particles rearrange and form contacts that actu
support the applied load. This is repeated for several rand
loads, in the hope of exploringJR along several directions
We can then actually quantitatively report the avera
maximal displacement of the particles that was observed,
use this instead of a binary classification into packings wh
are jammed and not jammed. The numerous intricacies of
algorithm are discussed in detail in Ref. 13.

We have implemented these algorithms to test for ja
ming in sphere packings and here we apply them to mo
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disperse and bidisperse packings under periodic boun
conditions. We present some representative but nonexh
tive results for several periodic ordered lattice packings
well as random packings obtained via the Lubachevsk
Stillinger packing algorithm.14 We plot linear unjamming
motions as suitably scaled ‘‘velocity’’ fields, showing the d
rection in which the particles can move~along a straight path
with in this linear algorithm!without violating impenetrabil-
ity. Numerous more illustrative and interactive Virtual Rea
ity Modeling Language~VRML! animations can be viewe
on our webpage.23

III. PACKING GENERATION ALGORITHMS

We produced most packings using the Lubachevsk
Stillinger compression algorithm14 with periodic boundary
conditions. This algorithm is essentially a hard-sphere m
lecular dynamics in which the spheres grow in size dur
the course of the simulation at a certain expansion rate, u
a final state with diverging collision rate is reached.

We also obtained sample monodisperse sphere and
disperse disk packings from the authors of Ref. 15. Th
packings are not of perfectly hard spheres, but rather
spheres interacting via repulsive potentials when there
overlap between the cores of diameterD. They use energy
minimization for harmonic and Hertzian potentials, desce
ing to an energy minimum using the conjugate gradient
gorithm from a random initial configuration~i.e., a rapid
quench fromT5` to T50). The packings we analyze
were just above the ‘‘jamming threshold’’ densityfc , mean-
ing that there was only very small~less than 1025D) overlap
between the outer cores. We therefore simply scaled the s
of the particles by a factor very close to unity to obta
overlap-free hard-sphere packings. Since the jamm
threshold densities found in Ref. 15 were very close to
final densities produced by the Lubachevsky–Stillinger al
rithm ~with reasonably large compression rates!, we expected
these packings to behave very similarly, and have confirm
this with computational tests. Therefore, here we focus
and present the results for the Lubachevsky–Stillinger pa
ings.

We also had available disordered three-dimensio
packings produced with the contact network buildi
Zinchenko packing algorithm,16 and confirmed that they be
haved like the packings produced by the other algorith
Unfortunately, we do not know of a two-dimensional impl
mentation of this algorithm, and it is important to devel
one in the future and see whether it too produces n
triangular packings.

More detailed results will be given shortly, but we wa
to point out here that none of these algorithms produces t
strictly jammed packingsa priori. Indeed, the packings tha
that we tested were never truly strictly jammed. This is n
surprising because none of them incorporates deformat
of the periodic lattice, but rather, they all use a fixed~typi-
cally cubical!unit cell. It is not hard to incorporate bounda
deformations into these algorithms, and we are prese
working on such extensions. In particular, the Lubachevsk
Stillinger algorithm can easily incorporate a deforming l
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tice in the spirit of Parinello–Rahman molecular dynamics24

We have in fact implemented such an extend
Lubachevsky–Stillinger algorithm and used it to producea
priori strictly jammed packings. Details of this work i
progress will be given in future papers, and here we will on
analyze some of the final packings produced by the al
rithm. In packing algorithms based on energy minimizatio
as in Ref. 15, one need only include the strain as part of
degrees of freedom in order to allow relaxation of the latt
and produce strictly jammed packings. The same is true
the Zinchenko packing algorithm.

On the other hand, all of these algorithms seem to p
duce collectively jammed packings in both two and thr
dimensions, excluding rattlers and allowing for appropria
numerical tolerances. This can be proved rigorously for
Zinchenko packing algorithm, and under certain additio
assumptions also for the energy minimization algorithm.
principle, only locally jammed configurations are possib
final states for the Lubachevsky–Stillinger algorithm sin
they give infinite collision rates, however, we believe th
local configurations are unstable attractors for this algorit
and in fact underappropriate conditionsall final states have
a collectively jammed subpacking, excluding rattlers. W
have recently devised a way to dynamically verify jammi
during the packing process in the Lubachevsky–Stilling
algorithm for both packings of spheres and ellipsoids, ho
ever, details will be given in future publications.

IV. RESULTS

We have developed an efficient numerical implemen
tion of the randomized LP algorithm using the primal-du
interior-point algorithm in the LOQO optimization library.25

Both FORTRAN 95 codes which directly invoke the LOQ
library, and Algebraic Modeling Programming Langua
~AMPL! models have been developed, along with VRM
visualization tools. Illustrations of results obtained usi
these implementations are given throughout this paper.
have applied the algorithms to test for the different jamm
categories in practice and verified their utility and efficien
Although reporting exhaustive results is not the primary a
of this work, in this section we present some relevant res
for both ordered and disordered periodic packings. We h
analyzed disordered packings produced by a variety of pa
ing algorithms, namely the Lubachevsky–Stillinger packi
algorithm,14 an energy minimization algorithm as present
in Ref. 15, as well as the Zinchenko packing algorithm.16

A. Periodic lattice packings

Table 1 in Ref. 7 gives a classification of some comm
simple lattice packings into jamming categories for hard-w
boundary conditions. Table I modifies this for period
boundary conditions. The results in principle will depend
the choice of unit cell, so the terminology ‘‘lattice XXX is
YYY jammed’’ is used loosely here. We illustrate some u
jamming motions for lattice disk packings in Figs. 2 and

Here we just point out for the curious that the triangu
lattice is not the only strictly jammed ordered disk packin
two other examples are shown in Fig. 4.11 It can be shown
that one can remove at most one quarter of the disks fro
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TABLE I. Classification of some simple lattices into jamming categories for periodic boundary conditions. We
give the packing~i.e., covering! fraction w ~to three decimal places!, the coordination numberZ, and the
number of disks/spheresNs per unit cell, as well as an assessment of whether the lattice is locally~L!,
collectively ~C!, or strictly ~S! jammed~Y is jammed, N is not jammed!. We chose the smallest unit cells fo
which an unjamming motion exists~illustrated on our webpage—Ref. 23!, if there is one.

Lattice w Z Ns L C S

Honeycomb 0.605 3 4 Y N N
Kagomé 0.680 6 3 Y N N
Square 0.785 4 2 Y N N

Triangular 0.907 6 1 Y Y Y
Diamond 0.340 4 4 Y N N

Simple cubic 0.524 6 2 Y N N
Body-centered cubic 0.680 8 2 Y N N
Face-centered cubic 0.741 12 1 Y Y Y

Hexagonal close-packing 0.741 12 2 Y Y Y
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triangular lattice packing and still maintain strict jammin
Using the Lubachevsky–Stillinger packing algorithm f
small packings, we recently found a new family of strict
jamming packings obtained by reinforcing with triangul
regions a particular tiling of the plane with three congrue
pentagons. An example is shown in Fig. 4.

B. Periodic random packings

We also tested a sample of periodic random packing
two and three dimensions. Both monodisperse and bidisp
packings were studied. The main reason for including bid
perse packings in this preliminary study is that monodispe
disk packings crystallize easily, forming large order
almost-triangular domains~grains! with high packing frac-
tion w'0.88. This is because in two dimensions the loca
densest configuration coincides with the globally densest
angular lattice, unlike in three dimensions, where the loca
optimal ~tetrahedral! configuration cannot tile three
dimensional space.5 It is only by introducing polydispersity
that one can produce disk packings with no apparent~or
little! short-range order~i.e., amorphous!, as can be dete
mined by, for example, bond-orientational order metric5

and in particular, thelocal Q6 order metric. We used an
equimolar mixture of disks with diameter ratio of 1.4 as do
in Ref. 15. For amorphous monodisperse three-dimensi
packings the typical packing fraction is aroundw'0.64, and

FIG. 2. Simple collective mechanisms in the Kagome´ and honeycomb lat-
tices, respectively. These lattices are not collectively jammed with peri
boundary conditions, as the sample unjamming motions for the Kag´
~left! and for the honeycomb~right! packings shown here illustrate. Th
shaded disks represent periodic images.
t

in
se
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e

i-
y

e
al

such a packing is shown in Fig. 5. For the aforemention
amorphous binary disk packingsw'0.84, and such a pack
ing is illustrated in Fig. 6.

In a truly disordered~generic!packing, it is expected
that the average number of interparticle contacts per par
~coordination number!will be Z52d ~more precisely, twice
the number of degrees of freedom per particle!. Thus, it is
expected thatZ54 in two dimensions. However, collectivel
jammed monodisperse disks packings are rather densew
'0.86– 0.88) and crystalline and they haveZ'5.5 ~This
should be compared toZ56 for the triangular crystal!. Dis-
ordered bidisperse disk packings do haveZ'4, and similarly
in three dimensions monodisperse packings haveZ'6, con-
sistent with an assumption of generic character. However,
exact number one gets depends rather sensitively on the
terion for assigning contacts and on whether rattling partic

ic
e

FIG. 3. Shearing the honeycomb lattice. The honeycomb lattice is no
strictly ~or collectively! jammed, and an example of a lattice deformatio
replicated on several unit cells to illustrate the shear character of the s
«5(DL)L21. Note that only three~original! spheres are involved in the
actual calculation of this unjamming motion, the rest are image sphere



ed
on
te

o
m
ing
ict
ow
la
on

ti-

id-

that
re

994 J. Appl. Phys., Vol. 95, No. 3, 1 February 2004 Donev et al.
are excluded or not. Future work will give a more detail
and careful investigation of coordination number distributi
in disordered packings. For this work, it is important to no
that a large packing must haveZ>2d in order to be collec-

FIG. 4. Examples of strictly jammed latticesin two dimensions~from Ref.
13!. The 6/7th lattice~last packing in Ref. 11!, top, is obtained by removing
every seventh disk from the triangular lattice. The reinforced Kagome´ lat-
tice, middle, is obtained by adding an extra ‘‘row’’ and ‘‘column’’ of disks t
the Kagome´ lattice and thus has the same density in the thermodyna
limit, namely, it has every fourth disk removed from the triangular pack
~see also Ref. 11!. It can be proven that this is the lowest density str
jammed subpacking of the triangular lattice. The pentagonal packing sh
at the bottom with 10 disks in the unit cell is obtained from a particu
tiling of the plane with three rotated congruent pentagons, and is just
member of a whole family of strictly jammed packings.
ic

ly
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e

FIG. 5. Virtually strictly jammed sphere packing. This random packing of
500 spheres with densityw50.64 was produced using the~original!
Lubachevsky–Stillinger algorithm and it is collectively jammed and prac
cally strictly jammed. The~cubical!unit cell is also shown.

FIG. 6. Collectively jammed bidisperse disk packing. The algorithm to test
for collectivejamming in ideal packings was applied to this equimolar b
isperse disk packing of 250 disks (w50.846) in order to identify a jammed
subpacking of 232 disks, leaving 18 rattlers~colored black!, which are not
essential for jamming. The dotted disks represent periodic images. Note
the density would be significantly lowered if the rattling particles we
removed.
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tively or strictly jammed, andZ>d11 to be locally jammed.
We also point out that our algorithm to test for jamming do
not depend sensitively on the criterion for selecti
contacts.13

1. Procedure

Although most of the packings we analyzed had sm
interparticle gaps and can also be studied within the fra
work of ideal packings and classified as jammed or
jammed, we instead consider them nonideal and explic
deal with the interparticle gaps. We wish to stress that
results to follow arenot averagesover many packings with
the same number of spheres/disks, but rather they are re
for particular packings produced by the Lubachevsky
Stillinger algorithm. These packings seemed to be typica
the types of packings produced by the algorithm unde
relatively wide range of expansion rates and packing siz
We therefore believe that the numbers presented here s
well as a semiquantitative illustration of the behavior of ra
dom disk and sphere packings commonly used in many c
putational studies. The primary reason we do not give a
aged results this is that detailed average results shoul
given only once it is determined what quantitative metric
jamming is physically appropriate~which is likely to be dif-
ferent for different types of packings and different applic
tions!, and results should also be correlated with more c
acteristics of the packings~i.e., not just the covering fraction!
and to various relevant parameters of the algorithm use
generate the packing.26

As a quantitative measure of jamming in these packin
we report the average particle displacementiDr i i achieved
during random loading. This choice is not ideal, and atta
ing a physical picture to the numbers is difficult. Furthe
more, deciding when to terminate the Lubachevsk
Stillinger algorithm is nontrivial and we used the principle
allowing a certain number of binary collisions per partic
and also limiting the total computational time, which resu
in larger packings not being as ‘‘well-packed’’ as smal
packings. Visualization of the resulting particle displac
ments is still the best way to analyze the results. For
ample, rattlers often contribute most to the average displa
ment for packings which might be ‘‘more jammed’’ if th
rattlers are removed. Moreover, although an entry in Ta
IV below might say that the average displacement fo
monodisperse disk packing was only 10% of the parti
size, the character of the particle motion might be such
very significant rearrangements happen in the packing
cause grain boundaries move~see Fig. 8!, and this has to b
seen to be appreciated. We will share our VRML visualiz
tions with interested readers, and many examples are
vided on our webpage.23

Another statistic we report is the time~in seconds!spent
by the AMPL implementation~with some FORTRAN!of the
testing algorithm on a typical personal computer.~More pre-
cisely, calculations were performed on a 1666 MHz AM
Athlon PC running Linux.!Since most of the computationa
time is spent in LOQO, similar running times are typical
the FORTRAN codes as well. For each packing, we app
three different random loads~with opposite orientations!, and
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for each load we successively solved three linear progra
~so a total of 18 linear programs for each packing!. The
running times to follow should not be taken as a measure
the scaling of the LP solver computational effort with th
number of spheres, but rather as typical runtimes for so
representative packing sizes. This is because the comp
tional effort depends nontrivially on many of the paramet
in the algorithm, and on the exact implementation. We
currently developing more efficient and robust implemen
tions of these algorithms, for both packings of disks/sphe
and ellipses/ellipsoids.

2. Summary of results

Qualitatively different results were observed for th
amorphous monodisperse sphere packings and binary
packings, and the polycrystalline monodisperse disk pa
ings.

For the amorphous packings, we give results in Table
for monodisperse packings in three dimensions and in Ta
III for bidisperse packings in two dimensions, with simila
trends. In general, these packingswerecollectively jammed,
in the sense that only small~average!displacements of the
particles are possible. The small feasible displacements
mostly due to rattlers and/or early termination of the pack
algorithm and we believe that any true final Lubachevsk
Stillinger packing with infinite collision rate will in fact have
an ideal collectively jammed subpacking~similarly for the
other packing algorithms!. The packingswere not strictly
jammed for small system sizes, however, the magnitude

TABLE II. Results for monodisperse sphere packings. The columns ar
in Table III, and here we show the running times for both the testing
collective and strict jamming.

N f t ~s! coll t ~s! strict iDr i i /D coll iDr i i /D strict

50 0.628 23 29 0.0012 0.12
100 0.644 53 76 0.00043 0.15
250 0.636 164 210 0.0021 0.031
500 0.641 480 597 0.0037 0.014
750 0.641 900 1017 0.0015 0.0035
1000 0.642 1822 1866 0.011 0.013

TABLE III. Results of the nonideal randomized LP algorithm for equimo
binary disk packings of diameter ratio 1.4. The first column shows the t
number of particlesN, the second the packing fraction, the third the runni
time for the AMPL model that tests for collective jamming, and the last t
columns show the average particle displacement during collective~i.e., with
a fixed lattice!and strict jamming~i.e., with a deforming lattice! testing.
Notice that the displacements are significantly larger for the strict jamm
test, especially for small packings.

N f t ~s! coll iDr i i /Di coll iDr i i /Di strict

50 0.845 2.1 0.010 0.060
100 0.842 6.4 0.0034 0.011
250 0.846 21 0.0037 0.0053
500 0.847 72 0.0016 0.0067
750 0.849 88 0.0022 0.012
1000 0.849 130 0.0016 0.018
1500 0.848 247 0.0016 0.020
2500 0.849 248 0.0039 0.010
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the feasible displacements decreased as the packings be
larger, and thereforelarge amorphous packings were appa
ently collectively and strictly jammed. This can be under-
stood by thinking of the distinction between collective a
strict jamming as a boundary effect: As the packings beco
larger the boundary effects diminish. Therefore, even tho
none of the packing algorithms is meant to produce stric
jammed packingsa priori, they do so for large amorphou
packings.

Importantly, very different results were observed f
monodisperse disk packings, which are invariantly nearly
angular~i.e., crystalline!. We wish to point out that crysta
lization into a triangular lattice poses a convergence obst
for the Lubachevsky–Stillinger algorithm since near triang
lar regions have very high collision rates even when
disks’ diameters are not at their maximal value. Therefor
was only for monodisperse disk packings that some of
final packings were not collectively jammed~large particle
rearrangements were possible near grain boundaries!. Most
packings were however collectively jammed just as

FIG. 7. Locally jammed disk packing. A random packing (w50.82) of 1000
disks that isnot collectively jammed, and a representative periodic unjam
ming motion. More insightful animations can be found on our webpa
~Ref. 23!.

TABLE IV. Results for monodisperse disk packings. The columns are a
Table III. Notice the very large displacements during the test for strict ja
ming, even for large packings, as well as the high packing densities
larger packings.

N f t ~s! coll iDr i i /D coll iDr i i /D strict

50 0.832 2.9 0.0022 0.39
100 0.863 8.9 5.431028 0.18
250 0.886 21 0.0014 0.86
500 0.891 78 6.731025 0.16
750 0.887 103 0.0040 0.26
1000 0.882 153 0.0017 0.23
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amorphous packings and we present results for these in T
IV. By using certain tricks in the Lubachevsky–Stillinge
algorithm, such as collections of frozen particles or ve
large expansion rates, one can obtain apparently ‘‘jamm
amorphous monodisperse disk packings near a packing
tion w'0.83. However, due to numerical instabilities or th
presence of an artificial boundary of fixed disks, these pa
ings were notcollectively jammed, as illustrated in Fig. 7
One of the important observations is thatnone of the large
Lubachevsky–Stillinger monodisperse disk packings we
strictly jammed. In fact, typical grain boundaries are ve
fragile under shear, and so even for the large packings
nificant rearrangements of the grain boundaries are feas
as illustrated in Fig. 8.

e

FIG. 8. Collectively jammed disk packing. A dense(w50.89) random pack-
ing of 1000 disks that iscollectively jammed but not strictly jammed, and a
representative unjamming motion. One can see the grains gliding over
grain boundary due to the shear, bringing this packing closer to a triang
lattice.

in
-

or

TABLE V. The average particle displacementiDr i i /D during the test for
collective jamming is shown for a series of sphere packings produced by
~original! Lubachevsky–Stillinger algorithm. From top to bottom the pac
ing size N increases, and from left to right the number of collisions p
particleNcoll ~in thousands!increases~and thus the density also slowly in
creases!. No special handling of rattlers was employed. It is easily obse
that the packings uniformly become ‘‘more jammed’’ as the packing al
rithm is run longer~though rattlers may continue to give a finite contributio
to the observed displacements!. Similar behavior is expected of any algo
rithm which in the limit of infinite numerical precision produces packin
with a collectively jammed subpacking.

N/Ncoll(103) 1 5 10 25

50 0.041 0.015 0.0018 4.9310210

100 0.036 0.016 0.0011 0.000 14
250 0.050 0.023 0.0015 0.000 36
500 0.047 0.024 0.0028 0.001 4
750 0.046 0.019 0.0030 0.001 1
1000 0.052 0.020 0.0025 0.000 67
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It is also important to verify that any packing algorith
claimed to produce jammed packings can indeed prod
jammed ideal packings, in the sense that all tolerances in
test for jamming can be tightened progressively as the
merical accuracy is increased and the convergence criter
the packing algorithm are tightened. We demonstrate this
collective jamming in monodisperse sphere packings
Table V. The corresponding results for strict jamming, giv
in Table VI, illustrate that the~traditional! Lubachevsky–
Stillinger packings do not have a strictly jammed ideal su
packing, but are practically strictly jammed for large syste
sizes. This is unlike monodisperse disk packings, which
far from being strictly jammed, as illustrated in Table VII.

Very recently, we have implemented an extension of
Lubachevsky–Stillinger packing algorithm in which the la
tice deforms during the molecular dynamics run, as dicta
by the collisional~contact!stress induced by the particle co
lection. Details of the algorithm and the packings it produc
will be given elsewhere, but a short description can be fou
in Ref. 13. For relatively small numbers of particles, th
algorithm typically produces truly strictly jammed packing
and for these packingsiDr i i is similar for both collective
and strict jamming. The algorithm produces similar am
phous packings~in packing fraction and disorder! to the
original Lubachevsky–Stillinger algorithm, however, f
monodisperse disks it frequently terminates with complet
crystal packings, and also produces complete triangular
tices with special types of defects, such as monovacan
and peculiar ‘‘dislocation cores.’’ One such strictly jamm
disk packing is shown in Fig. 9. Investigation of the
strictly jammed disk packings as well as extensions of ot
packing algorithms to allow for deforming boundaries a

TABLE VI. The analog of Table V but for strict jamming. In this case it
seen that the average displacements do not converge uniformly toward
an indication that the packings do not have a strictly jammed ideal subp
ing ~similar results are observed for amorphous binary disk packings!. How-
ever, the average displacements are quite small for large packings~this is
even more pronounced for the binary disk packings!.

N/Ncoll(103) 1 5 10 25

50 0.083 0.057 0.059 0.051
100 0.066 0.042 0.023 0.026
250 0.052 0.027 0.010 0.0097
500 0.056 0.024 0.012 0.010
750 0.048 0.027 0.014 0.014
1000 0.060 0.025 0.0040 0.0021

TABLE VII. Just as an illustration, shown are the results for a tw
dimensional disk packing with 250 disks, corresponding to the results
sented for amorphous sphere packings in Tables V and VI. It is seen
although the packing has an ideal collectively jammed subpacking,
clearly far from being strictly jammed, as typical for monodisperse d
packings produced by the Lubachevsky–Stillinger packing algorithm wi
fixed lattice.

Ncoll(103) 1 5 10 25

Collective 0.12 0.007 0.000 50 1.731025

Strict 0.45 0.24 0.12 0.12
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being carried out at present. We note in passing that we
used the extended Lubachevsky–Stillinger algorithm to
the shrink-and-bump heuristic13 to test for strict jamming by
also allowing the lattice to deform while the particles bum
around. This seemed to detect disordered packings which
not strictly jammed, however, the test is significantly slow
than the linear programming algorithm and is also very h
ristic and much less reliable.

V. DISCUSSION, FUTURE WORK, AND CONCLUSIONS

Our results have important implications for the class
cation of random disk and sphere packings and sugge
number of interesting avenues of inquiry for future inves
gations. Random disk packings are less well understood
sphere packings. The tendency of disk packings to ‘‘crys
lize’’ ~to form ordered, locally dense domains! at sufficiently
high densities is well established. For example, Quicken
and Tan experimentally estimated the packing fraction of
‘‘random close packed’’~RCP!state to bew'0.83 and found
that the packing fraction could be further increased until
maximum value ofw50.906 is achieved for the triangula
lattice packing.27 By contrast, random sphere packings atw
in the range 0.63–0.66 cannot be made more dense.

Our recent understanding of the ill-defined nature of ra
dom close packing and of jamming categories raises ser
questions about previous two-dimensional studies, part
larly the stability of such packings. Our present study su
gests that disordered random disk packings are not co
tively jammed atw'0.83; at best they may be locall

FIG. 9. Strictly jammed disk packing. We show here 232 unit cells of a
dense(w50.88) random packing of 250 disks that isstrictly jammed,
modulo four rattling particles, shown in black. This packing was produc
with the extended Lubachevsky–Stillinger algorithm which allows for d
formations of the lattice during the compression. We also display the con
network of the packing. The striking feature of this and similar stric
jammed disk packings we have produced is the appearance of peculiar
location cores’’ and the appearance of large perfectly triangular regions
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jammed. This brings into question the previous widespr
belief that the two-dimensional analog of the RCP sphe
packing state has density aboutw'0.82– 0.83.17 Collec-
tively jammed disk packings seem to have significan
higher densitiesw'0.88 and consist of large triangula
grains, but even at such high densities they are not stri
jammed. An interesting question is whether the grain s
becomes small compared to the system size for large co
tively jammed disk packings, or whether the appearance
grain boundaries is in fact a finite-size boundary effect
may be that the preponderance of collectively and stric
jammed large disk packings are very crystalline, with a d
tribution of the local bond-orientational parameterQ6 ~see
Ref. 5! highly peaked around some relatively large valu
Furthermore, it is important to ascertain if the strong distin
tion between only collectively and strictly jammed dis
packings persists in the limit of very large packings. Care
investigations of very large collectively and strictly jamm
disk packings produced with a variety of packing algorith
are still required to answer these questions.

The old concept of the RCP state incorrectly did n
account for the jamming category of the packing. Previo
attempts to estimate the packing fraction of the ‘‘rando
loose’’ state18 are even more problematic, given that this te
is even less well-defined than the RCP state. Furthermor
our investigations of disk packings show, the ‘‘stability’’ o
packings cannot be judged based solely on local criteria
suggested in Ref. 20 for sphere packings, and using s
local criteria in estimating mean coordination numbers
densities of packings18,19 is at best an exercise in modelin
locally jammed packings. The best way to categorize rand
disk packings is to determine the maximally random jamm
~MRJ! state10 for each of the three jamming categories~local,
collective, and strict!. Such investigations will be carried o
in the future, and we have some preliminary results a
promising avenues of approach.

The identification of the MRJ state for strictly jamme
disk packings is an intriguing open problem. On the o
hand, we have shown that random packings exist with d
sities in the vicinity of the maximum possible value (w
5 p/(2))) that are not strictly jammed, and on the oth
hand, there is a conjectured achievable lower boundw
>)p/8 corresponding to the ‘‘reinforced’’ Kagome´ lattice
~see Fig. 4!. It may therefore be that the search for the M
state for strictly jammed disk packings should focus on r
domly diluted triangular packings. For random sphere pa
ings, an initial study undertaken in Ref. 26, using the
algorithm described in this work, found that maximally di
ordered random packings aroundw'0.63 were strictly
jammed, suggesting a close relation between the conven
ally accepted RCP state and the MRJ state for stri
jammed packings. Much less obvious is what the MRJ s
for collectively jammed sphere packings is. Finally, a co
pletely unexplored question concerns the identification of
MRJ state for locally jammed disk and sphere packings.

The jamming concepts and algorithms presented h
can be extended to packings of nonspherical particles w
certain nontrivial modifications, however, mathematical d
velopments in this area are lacking. We are investigat
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such extensions and will report our findings in future wo
Other important tasks include extending various pack
generation algorithms to generate strictly jammed packin
as well as designing algorithms with guarantees of produc
jammed packings. An even more challenging task is des
ing packing algorithms that can produce jammed packi
with certain target properties, such as a certain density
degree of order. The algorithms to test for jamming, a
more generally to explore the set of reachable configurati
JR for hard-particle packings can be further improved.
particular, a carefully tuned implementation of linear solve
for three-dimensional packings is needed as a building bl
in implementations of various nonlinear programming alg
rithms related to packings. Development of such implem
tations and extensions is also under way. Finally, there
many open questions related to the enumeration and cla
fication of random hard-particle packings that might be a
swered with the application of these tools.

In Ref. 13 and this work we have proposed, imp
mented, and tested a practical algorithm for verifying ja
ming categories in finite sphere packings based on lin
programming. We demonstrated its simplicity and utility, a
presented some representative results for ordered lattices
random packings. Interestingly, the large computer-gener
monodisperse random packings that we tested were virtu
strictly jammed in three dimensions, butnot in two dimen-
sions. Future extensions and applications of the propo
algorithms are awaiting exploration. Work is already und
way to provide highly efficient implementations of variou
optimization algorithms for linear and nonlinear program
ming on large-scale~contact!networks.
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