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Hard-particle packings have provided a rich source of outstanding theoretical problems and served
as useful starting points to model the structure of granular media, liquids, living cells, glasses, and
random media. The nature of “jammed” hard-particle packings is a current subject of keen interest.
Elsewhere, we introduceathorous andefficientlinear-programming algorithms to assess whether a
hard-sphere packing is locally, collectively, or strictly jammed, as defined by Torquato and Stillinger
[J. Phys. Chem. B05, 118492001)]. One algorithm applies to ideal packings in which particles
form perfect contacts. Another algorithm treats the case of jamming in packings with significant
interparticle gaps. We have applied these algorithms to test jamming categories of ordered lattices
as well as random packings of circular disks and spheres under periodic boundary conditions. The
random packings were produced computationally with a variety of packing generation algorithms,
all of which should, in principle, produce at least collectively jammed packings. Our results
highlight the importance of jamming categories in characterizing particle packings. One important
and interesting conclusion is that the amorphous monodisperse sphere packings with density
~0.64 were for practical purposes strictly jammed in three dimensions, but in two dimensions the
monodisperse disk packings at previously reported “random close packed” densities @B3

were not even collectively jammed. On the other hand, amorphous bidisperse disk packings with
density of ¢~0.84 were virtually strictly jammed. This clearly demonstrates one cannot judge
“stability” in packings based solely on local criteria. Numerous interactive visualization models are
provided on the authors’ webpage. @04 American Institute of Physics.
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I. INTRODUCTION sification is closely related to the concepts of “rigid” and
. . . . . “stable” packings found in the mathematics literatfr&The
Packings of hard particles interacting only with 'nfln'teFealized hard-sphere model is in a sense’thing model”

repulsive pairwise forces on contact are applicable as mode tudvi ety of hard-particle bhvsical ‘ q
of complex many-body systems because repulsive intera or studying a variety ot hard-particie physical systems, an

tions are the primary factor in determining their structure.the importance Of_ unde.rste}ndmg |t.|n deFa|I cannot be over-
Hard-particle packings are therefore widely used as simpl§tated- The term jamming is used in a different sense in the
models for granular material€ glasses, liquids;* and other modeling of granular media, which includes effects such as
random medid, to mention a few examples. Furthermore, friction, adhesion, particle deformability, etc., and, by defi-
hard-partic|e packings’ and especia”y hard-sphere packingg’ition, hard'Sphere systems do not include these effects. It is
have inspired mathematicians and been the source of nume&lso important to note that we do not discuss dynamical ef-
ous challengingmany still open)theoretical problemS. fects in hard-particle packings. In the present work, hard-
We focus our attention in this paper on the venerablesphere jamming is presented from a rigorous perspective that
idealized hard-sphere model, i.e., the only interparticle interfocuses on thgeometryof the final packed states. We note
action is an infinite repulsion for overlapping particles, sincethat extensions of this work to packings of nonspherical par-
this enables us to be precise about the important concept @tles (such as ellipses, ellipsoids, or spherocylinglease
‘jamming.” In particular, a hierarchical classification possible and the subject of current and future research.
scheme for jammed packings intocally, collectively, and There are still many important and challenging questions
strictly jammedpackings was proposed in Ref. 7. This clas-open even for the simplest type of hard-particle packings,
i.e., monodisperse packings of smooth perfectly impen-
*Electronic mail: torquato@electron.princeton.edu etrable spheres. One important category of open problems
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1.0 jammed’ The first algorithm targets packings with perfect
interparticle contacts, while the second allows for significant
interparticle gaps. Both algorithms are based on linear pro-
gramming and are applicable to both ordered and disordered
J disk and sphere packings of arbitrary polydispersity. In Ref.
ammed MRJ . - .
Structures 13 we give a complete description of the algorithms. Here
we demonstrate their applicability, usefulness, and efficiency
in analyzing large disordered packings, as produced by vari-
ous packing generation algorithms. Algorithms that generate
large-scale hard-particle packings are very important, espe-
00,5 0.2 0.4 0.6 cially because experimental hard-particle configurations are
o difficult to obtain and are limited in applicability. Of particu-
FIG. 1. A highly schematic plot of the jammed subspace in the density-g:"r mt%r.eStdare ZtOChaE.“C algomhms aimed at produ 9
disorder plane. om (disordere )pa}c ings.
Through numerical investigations, we show here that
several previously used packing algorithms generate collec-

pertains to the enumeration and classification of both ordereliV€!y jammed packings under appropriate conditions. In par-
and disordered jammed circular disk and sphere packings fdicular, we study in detail monodisperse sphere as well as
the various jamming categories described in the followingMmonodisperse and bidisperse disk packings produced by the
Since one cannot enumerate all possible packings even forldiPachevsky—Stillinger packing algoriththWe also tested
small number of particles, it is desirable to devise a small sef Sample of monodisperse sphere and bidisperse disk pack-
of parameters that can characterize packings well. Two imin9S Produced by the algorithm described in Ref. 15, as well
portant scalar properties of packings are deesity (packing 25 monodisperse sphere packings produced by the Zinchenko
fraction) ¢ andorder metricy. For any two stateX andY packing algorithmt® and observed similar behavior as for the
>y implies that stateX is to be considered as more Lubachevsky-Sitillinger packings.

ordered than stat¥. Candidates for such an order metric ~ OUr testing of these packings enables us to arrive at sev-
include various translational and orientational order€'@ important conclusions. First, we find that the amorphous

parameterg, but the search for better order metrics is still Monodisperse sphere packingsith covering fraction, or
very active. density, ¢~0.64) and bidisperse disk packingg~0.84)

Figure 1 from Ref. 10 shows a conjectured region ofare practically strictly jammedthough not in th_e ideal .
feasible hard-sphere packings in thhe-w plane. It is clear S€NSe). Second, we observe that large monodisperse disk
that only a small subset of this feasible region will be occu-Packings are invariably highly crystalling ¢ 0.88) and are
pied by jammed packingéor a givenjamming category), as only collectively jammed. Previously reportédow cover-

schematically indicated in Fig. 1. Several limit points in this N9 fractions for “random close packed” disks o
region are particularly interesting. ~0.82-0.84 were not even found to be collectively jammed.

(1) Point A corresponds to the lowest-density jammedThiS conclusion clearly demonstrates that the distinctions be-

packing, and its location strongly depends on the jammingWeen the di_fferent“jamr_nin?_Categories are important and
category used. It can be shown that there are zero-densif§'€ cannot judge “stability” in packings based solely on

locally jammed disk and sphere packirigee references and [0cal criteria, as has been done extensively in the
discussion in Ref. 11). However, for collectively and strictly literature: Preliminary investigations with an extension

jammed packings, it is not known what are the lowest pOS_of the Lubachevsky—Stillinger algorithm indicate that it is
sible densities. possible to produce ideal strictly jammed packings, which is
(2) PointB corresponds to the most dense jammed packi_mport'ant in order to'eliminateT finite—size boundary effects,
ing. It has of course already been identified to be a triangulafSPecially for monodisperse disk packings. L
packing for disks and the FCC/HCP variant lattice for !N Sec. Il, we introduce important notation, definitions,
spheres. But much less is known about polydispersé‘nd review basic concepts. In Sec. I, we descnbe_vanous
packingsi2 or packings of nonspherical particles. algorithms that are used to generate random packings. We

(3) MRJ point represents the maximally random jammedWi” anglyzg the resultar_lt packings. In. Sec. IV we discuss the
(MRJ) statel® which has recently supplanted the ill-defined numerical implementation, and provide results for ordered

“srandom close packed’(RCP) state. The RCP state was periodic Iatt_ice pac_:kings.and random packings. FinaIIy,_ we
widely believed to have a packing fractigr=0.63—0.64 in cpncludg W|th'a @scgssmn of the results and future direc-
three dimensions. The MRJ state is the most disordereHons of investigation in Sec. V.
jammed packing in a given jamming categdtgcally, col-
lectively, or strictly jammed). The MRJ state is well-defined
for a given jamming category and choice of order metric.

Numerical algorithms have long been the primary tool||. BACKGROUND AND METHODOLOGY
for studying random packings quantitatively. In a separate
paper® we introduced two algorithms to assess whether a  Here we briefly summarize some of the essential nota-
hard-sphere packing is locally, collectively, or strictly tion, problem statements, and methods, as described in detail
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in Ref. 13. We consider a sphere packing in Euclidean strict jamming implies that there is no nonvanishing con-
d-dimensional spac&’, characterized by the positions of tinuous periodicAR(t) which maintains impenetrability
the sphere centeR=(r,,...,Iy), other than trivial uniform translations of the packing,
even if we allow avolume-nonincreasing continuous lat-
tice deformatiomM A(t) (this translates to a strain tensor
with a nonpositive trace).

L Di+D;,
P(R): rief)‘{, |:1,...,N:||ri_rj||> 2 quﬁl s

where the diameter of theth sphere isD;, and here we Observe that these jamming categories are ordeiedrchi-
focus on monodisperse packings, i.e., packings where all theally, with local being a prerequisite for collective and simi-
spheres are identicaD;=D. Our perspective on jamming larly collective being a prerequisite for strict jamming. It
focuses on the sefr of configurations around a particular should be mentioned that jammed random particle packings
initial configuration R reachable viacontinuousdisplace-  produced experimentally or in simulations typically contain a
ments of the spheresR(t), subject to nonoverlapping con- small population of “rattlers,” i.e., particles trapped in a cage
straints and certain boundary conditions. Hei®a time-like  of jammed neighbors but free to move within the cage. For
parameter, and we will often drop it for brevity, but it should present purposes we shall assume that these have been re-
be kept in mind that any change in configuration we considemoved before considering tHgossibly)jammed remainder
must be reachable via a continuous deformation. If the extensubpacking).
of Jr is small, in the sense that only small continuous dis-  |n Ref. 13, we presented a randomized linear program-
placements of the particles from their initial configurationsming (LP) algorithm to test whether a given packing is
are possible for allRe Jgr, the packing is considered jammed or not, for each of the above-given jamming catego-
jammed. The natural length scale defining the meaning ofies. The essential ingredient of this algorithm is to apply a
“small” is the typlcal size of the particles, or the size of the random|y selectedoad (i_e_, a force)on each partic|€(|0_
interparticle gaps, depending on the context and the type ofally, or collectively)and then solve a linear program which
packing under consideration. In a jammeteal packing, takes into account a linearized version of the impenetrability
which has perfect interparticle contacts, the particles cannqipnstraints between neighboring particles to find whether
at all be displaced continuously from their current configu-(and how)the particles displacénd possible the lattice de-
ration (modulo trivial rigid-body motions By changing the  forms) in order to support this applied load. If the particles
pounc_iary conditions, we get several different categories ofjg not displace then we apply the load of opposite sign and
jamming, namely local, collective, and strict jammihyve repeat the test. If the particles do not displace again, then the
briefly review these definitions for the convenience of thejgeg| packing under consideration is jammed.
reader in the following. We consider first ideal packings, and Computer-generated packings, which we analyze, are
discuss interparticle gaps in more detail as an extension. npeyer ideal and there are always small interparticle gaps be-
We specialize these jamming definitions for periodic yyeen some particles, typically much less than a percent of
sphere packings for concreteness, but packings in a concayge typical particle sizeD. One can safely consider such
hard-wall containers can also be considereriodic (re-  hackings within the framework of ideal packings, with minor
petitive) packingsare characterized by a unit cell and a lat- mogjfications to the algorithm, as described in detail in Ref.

tice A={Xy,...,\s}, Wherel,; are linearly independenat- 13 However, the either-or character of the above-mentioned
tice vectors. We additionally al!ow thel lattice to contmuc%uslyjamming criteria is often too restrictive or specialized when
change bﬁylA.A(t) as the partlcles d'SP'ace’_ whete- 822 analyzing large disordered packings with possibly larger in-
=(AA)A " is the symmetrignacroscopic strain tensdr- terparticle gaps, where particle displacements may be com-
Finite systems of spheres are characterized as follows: 5 ape 10 the typical particle size. Therefore, we investigate
(1) Locally jammed: Each particle in the system is locallyways to study jamming in this practical sense for snoh-
trapped by its neighbors, i.e., it cannot be translateddeal packings. We focus here on trying to judge ¢xéentof
while fixing the positions of all other particles. Each Jr by trying to displace the spheres away from their current
sphere simply has to have at least 1 contacts with  position byas much as possible. In Ref. 13 we describe an
neighboring spheres, not all in the sagieimensional algorithm based on linear programming to do just this, and
hemisphere. the basic idea is to repeatedly apply a random load on the
(2) Collectively jammed: Any locally jammed configuration particles, solve several linear programs, and displace the par-
where all finite subsets of particles are trapped by theiticles by as much as possible while still avoiding overlap,
neighbors. For periodic boundary conditions, collectiveuntil the particles rearrange and form contacts that actually
jamming implies that there is no nonvanishing continu-support the applied load. This is repeated for several random
ous periodic displacement of the particlARR(t) that loads, in the hope of exploringr along several directions.
maintains impenetrability other than trivial uniform We can then actually quantitatively report the average/
translations of the packing, whilkeeping the lattice maximal displacement of the particles that was observed, and
fixed, AA(t)=0. use this instead of a binary classification into packings which
(3) Strictly jammed: Any collectively jammed configuration are jammed and not jammed. The numerous intricacies of the
that disallows all globally uniform volume- algorithm are discussed in detail in Ref. 13.
nonincreasing deformations of the system boundary. For We have implemented these algorithms to test for jam-
periodic packings, the boundary is in fact the lattice, andming in sphere packings and here we apply them to mono-
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disperse and bidisperse packings under periodic boundatice in the spirit of Parinello—Rahman molecular dynanifts.
conditions. We present some representative but nonexhaug/e have in fact implemented such an extended
tive results for several periodic ordered lattice packings atubachevsky—Stillinger algorithm and used it to prodace
well as random packings obtained via the Lubachevsky-priori strictly jammed packings. Details of this work in
Stillinger packing algorithn¥* We plot linear unjamming progress will be given in future papers, and here we will only
motions as suitably scaled “velocity” fields, showing the di- analyze some of the final packings produced by the algo-
rection in which the particles can movalong a straight path rithm. In packing algorithms based on energy minimization,
with in this linear algorithmwithout violating impenetrabil- as in Ref. 15, one need only include the strain as part of the
ity. Numerous more illustrative and interactive Virtual Real- degrees of freedom in order to allow relaxation of the lattice
ity Modeling LanguaggVRML) animations can be viewed and produce strictly jammed packings. The same is true of
on our webpagé® the Zinchenko packing algorithm.

On the other hand, all of these algorithms seem to pro-

duce collectively jammed packings in both two and three

1. PACKING GENERATION ALGORITHMS dimensions, excluding rattlers and allowing for appropriate

We produced most packings using the Lubachevsky—numerical tolerances. This can be proved rigorously for the

Stillinger compression algorithth with periodic boundary ~ Zinchenko packing algorithm, and under certain additional
conditions. This algorithm is essentially a hard-sphere mo@SSumptions also for the energy minimization algorithm. In
lecular dynamics in which the spheres grow in size during®"inciple, only locally jammed configurations are possible
the course of the simulation at a certain expansion rate, unt[|"a! states for the Lubachevsky—Stillinger algorithm since
a final state with diverging collision rate is reached. they glve_|nf|n|t_e collision rates, however, we b_elleve t_hat
We also obtained sample monodisperse sphere and Hpcal_ configurations are gnstable g.ttractor:'s for this algorithm
disperse disk packings from the authors of Ref. 15. Thes@nd in fact undeappropriate conditionsll final states have

packings are not of perfectly hard spheres, but rather soft collectively jammed subpacking, excluding rattlers. We
spheres interacting via repulsive potentials when there i§2ve recently devised a way to dynamically verify jamming

overlap between the cores of diameBer They use energy during the packing process in the Lubachev;ky—StiIlinger
minimization for harmonic and Hertzian potentials, descend@/dorithm for both packings of spheres and ellipsoids, how-
ing to an energy minimum using the conjugate gradient al€Ve" details will be given in future publications.
gorithm from a random initial configuratiofi.e., a rapid
quench fromT=o to T=0). The packings we analyzed IV. RESULTS
were just above the “jamming threshold” densi#y, mean- We have developed an efficient numerical implementa-
ing that there was only very smdless than 10°D) overlap  tion of the randomized LP algorithm using the primal-dual
between the outer cores. We therefore simply scaled the siz@sterior-point algorithm in the LOQO optimization librafy.
of the particles by a factor very close to unity to obtain Both FORTRAN 95 codes which directly invoke the LOQO
overlap-free hard-sphere packings. Since the jammingbrary, and Algebraic Modeling Programming Language
threshold densities found in Ref. 15 were very close to thé AMPL) models have been developed, along with VRML
final densities produced by the Lubachevsky—Stillinger algovisualization tools. lllustrations of results obtained using
rithm (with reasonably large compression rajege expected these implementations are given throughout this paper. We
these packings to behave very similarly, and have confirmeflave applied the algorithms to test for the different jamming
this with computational tests. Therefore, here we focus orcategories in practice and verified their utility and efficiency.
and present the results for the Lubachevsky-Stillinger packalthough reporting exhaustive results is not the primary aim
ings. of this work, in this section we present some relevant results
We also had available disordered three-dimensionafor both ordered and disordered periodic packings. We have
packings produced with the contact network buildinganalyzed disordered packings produced by a variety of pack-
Zinchenko packing algorithrif, and confirmed that they be- ing algorithms, namely the Lubachevsky—Stillinger packing
haved like the packings produced by the other algorithmsalgorithm’* an energy minimization algorithm as presented
Unfortunately, we do not know of a two-dimensional imple- in Ref. 15, as well as the Zinchenko packing algorittm.
mentation of this algorithm, and it is important to develop
one in the future and see whether it too produces nea
triangular packings. Table 1 in Ref. 7 gives a classification of some common
More detailed results will be given shortly, but we want simple lattice packings into jamming categories for hard-wall
to point out here that none of these algorithms produces trulpoundary conditions. Table | modifies this for periodic
strictly jammed packinga priori. Indeed, the packings that boundary conditions. The results in principle will depend on
that we tested were never truly strictly jammed. This is notthe choice of unit cell, so the terminology “lattice XXX is
surprising because none of them incorporates deformationgYY jammed” is used loosely here. We illustrate some un-
of the periodic lattice, but rather, they all use a fiX¢ghi-  jamming motions for lattice disk packings in Figs. 2 and 3.
cally cubical)unit cell. It is not hard to incorporate boundary Here we just point out for the curious that the triangular
deformations into these algorithms, and we are presentliattice is not the only strictly jammed ordered disk packing;
working on such extensions. In particular, the Lubachevsky-two other examples are shown in Fig*4lt can be shown
Stillinger algorithm can easily incorporate a deforming lat-that one can remove at most one quarter of the disks from a

'A. Periodic lattice packings
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TABLE |. Classification of some simple lattices into jamming categories for periodic boundary conditéens
give the packing(i.e., covering fraction ¢ (to three decimal placgsthe coordination numbeZ, and the
number of disks/sphereNg per unit cell, as well as an assessment of whether the lattice is lodally
collectively (C), or strictly (S) jammed(Y is jammed, N is not jammedWe chose the smallest unit cells for
which an unjamming motion existdlustrated on our webpage—Ref. R3f there is one.

Lattice @ 4 Ns L C S
Honeycomb 0.605 3 4 Y N N
Kagome 0.680 6 3 Y N N
Square 0.785 4 2 Y N N
Triangular 0.907 6 1 Y Y Y
Diamond 0.340 4 4 Y N N
Simple cubic 0.524 6 2 Y N N
Body-centered cubic 0.680 8 2 Y N N
Face-centered cubic 0.741 12 1 Y Y Y
Hexagonal close-packing 0.741 12 2 Y Y Y

triangular lattice packing and still maintain strict jamming. such a packing is shown in Fig. 5. For the aforementioned
Using the Lubachevsky—Stillinger packing algorithm for amorphous binary disk packings~0.84, and such a pack-
small packings, we recently found a new family of strictly ing is illustrated in Fig. 6.

jamming packings obtained by reinforcing with triangular In a truly disordered(generic)packing, it is expected
regions a particular tiling of the plane with three congruentthat the average number of interparticle contacts per particle

pentagons. An example is shown in Fig. 4. (coordination numbenyill be Z=2d (more precisely, twice
the number of degrees of freedom per parjiclehus, it is
B. Periodic random packings expected thaZ =4 in two dimensions. However, collectively

- . .jammed monodisperse disks packings are rather depse (
We also tested a sample of periodic random packings 'i0.86—0.88) and crystalline and they haie-5.5 (This

two and three dimensions. Both monodisperse and bidispersg 4 he compared =6 for the triangular crystal Dis-

packings were S.tUdi.Gd' Th_e _main reason for including bidiS'ordered bidisperse disk packings do h@ve4, and similarly
perse packings in this preliminary study is that monodispers

disk Ki alli v formi | d dﬁ1 three dimensions monodisperse packings hawé, con-
ISK packings _ crystallize ~€aslly, 1orming largé Oorderédggiqne with an assumption of generic character. However, the
almost-triangular domaingrains) with high packing frac-

. e . . . exact number one gets depends rather sensitively on the cri-
tion ¢=~0.88. This is because in two dimensions the locally g P y

) . e . terion for assigning contacts and on whether rattling particles
densest configuration coincides with the globally densest tri- gning gp

angular lattice, unlike in three dimensions, where the locally
optimal (tetrahedral) configuration cannot tile three-
dimensional spacglt is only by introducing polydispersity
that one can produce disk packings with no appafent
little) short-range ordefi.e., amorphous), as can be deter-
mined by, for example, bond-orientational order metfics,

ORORERECRECC
SRERED

and in particular, thdocal Qg order metric. We used an 838383333330
equimolar mixture of disks with diameter ratio of 1.4 as done ogogegogogoo
in Ref. 15. For amorphous monodisperse three-dimensiong 933’ 3030300

)
)
packings the typical packing fraction is aroupe-0.64, and ©)

FIG. 2. Simple collective mechanisms in the Kagoamel honeycomb lat- FIG. 3. Shearing the honeycomb lattic&he honeycomb lattice is not
tices, respectively. These lattices are not collectively jammed with periodicstrictly (or collectively) jammed, and an example of a lattice deformation,
boundary conditions, as the sample unjamming motions for the Kagomeeplicated on several unit cells to illustrate the shear character of the strain
(left) and for the honeycomitright) packings shown here illustrate. The e=(AA)A~. Note that only thredoriginal) spheres are involved in the
shaded disks represent periodic images. actual calculation of this unjamming motion, the rest are image spheres.
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FIG. 5. Virtually strictly jammed sphere packin@his random packing of
500 spheres with densityp=0.64 was produced using thériginal)
Lubachevsky-Stillinger algorithm and it is collectively jammed and practi-
cally strictly jammed. Thecubical) unit cell is also shown.
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FIG. 4. Examples of strictly jammed latticés two dimensiongfrom Ref.

13). The 6/7th latticélast packing in Ref. 1) top, is obtained by removing
every seventh disk from the triangular lattice. The reinforced Kaglate
tice, middle, is obtained by adding an extra “row” and “column” of disks to
the Kagomelattice and thus has the same density in the thermodynamic
limit, namely, it has every fourth disk removed from the triangular packing |
(see also Ref. 11). It can be proven that this is the lowest density strictlyF:
jammed subpacking of the triangular lattice. The pentagonal packing showr]
at the bottom with 10 disks in the unit cell is obtained from a particular
tiling of the plane with three rotated congruent pentagons, and is just ong:”
member of a whole family of strictly jammed packings.

FIG. 6. Collectively jammed bidisperse disk packifidne algorithm to test
for collectivejamming in ideal packings was applied to this equimolar bid-
are excluded or not. Future work will give a more detailedisperse disk packing of 250 diske ¢ 0.846) in order to identify a jammed

and careful investigation of coordination number distributionSuPPacking of 232 disks, leaving 18 rattiécolored black), which are not
essential for jamming. The dotted disks represent periodic images. Note that

in disordered pac_kings. For this WOF!(, it is important to notey,e density would be significantly lowered if the rattling particles were
that a large packing must have=2d in order to be collec- removed.
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tively or strictly jammed, and=d+ 1 to be locally jammed. TABLE II. Results for monodisperse sphere packings. The columns are as

We also point out that our algorithm to test for jamming doesi” Table Ill, and here we show the running times for both the testing for
. L .__collective and strict jamming.

not depend sensitively on the criterion for selecting

3 . —_—

contacts: N ¢ t(s)coll t(s)stict [Ar]/D coll [Ar|/D strict

50 0.628 23 29 0.0012 0.12

1. Procedure 100  0.644 53 76 0.00043 0.15
Although most of the packings we analyzed had small 250 0.636 164 210 0.0021 0.031
interparticle gaps and can also be studied within the frame-500  0.641 480 597 0.0037 0.014
work of ideal packings and classified as jammed or not /20 0641 900 1017 0.0015 0.0035
P 9 J 000 0.642 1822 1866 0.011 0.013

jammed, we instead consider them nonideal and explicitly
deal with the interparticle gaps. We wish to stress that the

results to follow arenot averagever many packings with

the same number of spheres/disks, but rather they are resuf@y each load we successively solved three linear programs
for particular packings produced by the Lubachevsky—(so a total of 18 linear programs for each packinghe
Stillinger algorithm. These packings seemed to be typical ofunning times to follow should not be taken as a measure of
the types of packings produced by the algorithm under dhe scaling of the LP solver computational effort with the
relatively wide range of expansion rates and packing sizegiumber of spheres, but rather as typical runtimes for some
We therefore believe that the numbers presented here sert@presentative packing sizes. This is because the computa-
well as a semiquantitative illustration of the behavior of ran-tional effort depends nontrivially on many of the parameters
dom disk and sphere packings commonly used in many conit the algorithm, and on the exact implementation. We are
putational studies. The primary reason we do not give avercurrently developing more efficient and robust implementa-
aged results this is that detailed average results should Bigns of these algorithms, for both packings of disks/spheres
given only once it is determined what quantitative metric ofand ellipses/ellipsoids.

jamming is physically appropriat@vhich is likely to be dif-

ferent for different types of packings and different applica-2. Summary of results

tions), and results should also be correlated with more char-  Qualitatively different results were observed for the
acteristics of the packingse., not just the covering fraction  amorphous monodisperse sphere packings and binary disk
and to various relevant parameters of the algorithm used tpackings, and the polycrystalline monodisperse disk pack-
generate the packir. ings.

As a quantitative measure of jamming in these packings,  For the amorphous packings, we give results in Table Il
we report the average particle displacemieht;|| achieved  for monodisperse packings in three dimensions and in Table
during random loading. This choice is not ideal, and attach{ll for bidisperse packings in two dimensions, with similar
ing a physical picture to the numbers is difficult. Further-trends. In general, these packingsre collectively jammed,
more, deciding when to terminate the Lubachevsky—in the sense that only smalhverage)displacements of the
Stillinger algorithm is nontrivial and we used the principle of particles are possible. The small feasible displacements are
allowing a certain number of binary collisions per particle mostly due to rattlers and/or early termination of the packing
and also limiting the total computational time, which resultsalgorithm and we believe that any true final Lubachevsky—
in larger packings not being as “well-packed” as smaller Stillinger packing with infinite collision rate will in fact have
packings. Visualization of the resulting particle displace-an ideal collectively jammed subpackin¢similarly for the
ments is still the best way to analyze the results. For exether packing algorithms The packingswere not strictly
ample, rattlers often contribute most to the average displacgammed for small system sizes, however, the magnitude of
ment for packings which might be “more jammed” if the
rattlers are removed. Moreover, although an entry in Table

IV below miaht sav that the average displacement for TABLE lll. Results of the nonideal randomized LP algorithm for equimolar
w mig y verag ISp %inary disk packings of diameter ratio 1.4. The first column shows the total

monOdiSperse disk packing was Onll_/ 10% of the particlesumber of particles, the second the packing fraction, the third the running
size, the character of the particle motion might be such thaime for the AMPL model that tests for collective jamming, and the last two
very significant rearrangements happen in the packing becolumns show the average particle displacement during collegtezewith
cause grain boundaries mo(&e Fig. 8), and this has to be 2 f|>‘(ed Iattlce)an_d strict jammlng(l.g., \(\{Ith a deforming Iattlc)atgst_lng. _

. . . .___ Notice that the displacements are significantly larger for the strict jamming
seen to be appreciated. We will share our VRML visualiza-

. L test, especially for small packings.
tions with interested readers, and many examples are pro-

vided on our webpag& N ¢ t(s)coll  [Ar/D; coll  Ar,/D; strict
Another s_tatlst|c we regportlls the tinfan secondsspent 50 0.845 o1 0.010 0.060
by the AMPL implementatioriwith some FORTRANDf the 100 0.842 6.4 0.0034 0.011
testing algorithm on a typical personal comput&tore pre- 250 0.846 21 0.0037 0.0053
cisely, calculations were performed on a 1666 MHz AMD 500 0.847 72 0.0016 0.0067
Athlon PC running Linux.)Since most of the computational ~ 750~ 0.849 88 0.0022 0.012
L . i S : 1000 0.849 130 0.0016 0.018
time is spent in LOQO, similar running times are typical of 500 0.848 a7 0.0016 0.020
the FORTRAN codes as well. For each packing, we applied 5500 849 248 0.0039 0010

three different random loadwith opposite orientationsand



996 J. Appl. Phys., Vol. 95, No. 3, 1 February 2004 Donev et al.

TABLE IV. Results for monodisperse disk packings. The columns are as in
Table IIl. Notice the very large displacements during the test for strict jam-
ming, even for large packings, as well as the high packing densities for

B AR
G LI R

larger packings. 0”63%”0%’95@330"20“
00800 0a0 00

i, 5 (IS

N ¢ t(s)col  JARJ/D coll  [Ar/D strict 900 85
a0

50 0.832 2.9 0.0022 0.39

100 0.863 8.9 54108 0.18

250 0.886 21 0.0014 0.86

500 0.891 78 6.%10°° 0.16

750 0.887 103 0.0040 0.26

1000 0.882 153 0.0017 0.23

the feasible displacements decreased as the packings beca
larger, and thereforarge amorphous packings were appar-
ently collectively and strictly jammedhis can be under-
stood by thinking of the distinction between collective and
strict jamming as a boundary effect: As the packings becomg
larger the boundary effects diminish. Therefore, even though
none of the packing algorithms is meant to produce strictly
jammed packings priori, they do so for large amorphous
packings. FIG. 8. Collectively jammed disk packing dense(¢=0.89) random pack-

| tantl diff t It b d f ing of 1000 disks that isollectively jammed but not strictly jammeshd a
mportantly, very diirerent resufts were observe or representative unjamming motion. One can see the grains gliding over each

monodisperse disk packings, which are invariantly nearly trigrain boundary due to the shear, bringing this packing closer to a triangular
angular(i.e., crystalline). We wish to point out that crystal- lattice.

lization into a triangular lattice poses a convergence obstacle

for the Lubachevsky—Stillinger algorithm since near triangu- ) )

lar regions have very high collision rates even when the.ﬁmorphou's paC"'”QS ar}d we present results forthesg n Table
disks' diameters are not at their maximal value. Therefore if V- By using certain t”CkS, in the Lubachevslfy—Stllllnger
was only for monodisperse disk packings that some of th@lgorlthm, su_ch as collections of fr(_Jzen part|cles_or very
final packings were not collectively jammédtarge particle large expansion ra_tes, one can obta_m apparently ja_mmed
rearrangements were possible near grain boundaiigsst amorphous monodisperse disk packings near a packing frac-

packings were however collectively jammed just as fortion ¢~0.83. How_e_ve_zr, due to numer!cal |n§tab|llt|es or the
presence of an artificial boundary of fixed disks, these pack-

ings were notcollectively jammed, as illustrated in Fig. 7.
One of the important observations is thaine of the large
LubachevskyStillinger monodisperse disk packings were
strictly jammed. In fact, typical grain boundaries are very
fragile under shear, and so even for the large packings sig-
nificant rearrangements of the grain boundaries are feasible,
as illustrated in Fig. 8.

TABLE V. The average particle displacemeatr;||/D during the test for
collective jamming is shown for a series of sphere packings produced by the
(original) Lubachevsky—Stillinger algorithm. From top to bottom the pack-
ing sizeN increases, and from left to right the number of collisions per
particle N, (in thousandsjncreasegand thus the density also slowly in-

e

'oﬂ'ﬁ-‘g L0S T X creases). No special handling of rattlers was employed. It is easily observed
f Pl I 2 - - - -
9% i,g?i;'a;f,)_‘, 97, that the packings uniformly become “more jammed” as the packing algo-
oY ’?5?‘52;6}‘@ rithm is run longer(though rattlers may continue to give a finite contribution
PR - i o
éaau,;g to the observed displacementSimilar behavior is expected of any algo-
Qgs'agig = rithm which in the limit of infinite numerical precision produces packings
23 oIS with a collectively jammed subpacking.
N/Noi(10°) 1 5 10 25
50 0.041 0.015 0.0018 491010
100 0.036 0.016 0.0011 0.000 14
250 0.050 0.023 0.0015 0.000 36
FIG. 7. Locally jammed disk packing random packing ¢=0.82) of 1000 500 0.047 0.024 0.0028 0.0014
disks that isnot collectively jammedand a representative periodic unjam- 750 0.046 0.019 0.0030 0.0011
ming motion. More insightful animations can be found on our webpage 1000 0.052 0.020 0.0025 0.000 67

(Ref. 23).
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modulo four rattling particles, shown in black. This packing was produced

an indication that the packings do not have a strictly jammed ideal subpack
ing (similar results are observed for amorphous binary disk packihggsv-
ever, the average displacements are quite small for large pacihigss

seen that the average displacements do not converge uniformly toward zerq
even more pronounced for the binary disk packjngs

TABLE VI. The analog of Table V but for strict jamming. In this case it is

J. Appl. Phys., Vol. 95, No. 3, 1 February 2004

N/Ncoll(]-(F)

0.057 0.059 0.051

0.083
0.066

50
100
250
500
750

1000

0.023 0.026

0.042
0.027

0.0097
0.010

0.010

0.052

0.024 0.012

0.056

0.014 0.014

0.027

0.048

0.0040 0.0021

0.025

0.060

It is also important to verify that any packing algorithm
claimed to produce jammed packings can indeed produces
jammed ideal packings, in the sense that all tolerances in thg

Tormations of the lattice during the compression. We also display the contact

with the extended Lubachevsky—Stillinger algorithm which allows for de-

dense (¢

collective jamming in monodisperse sphere packings IirFIG. 9. Strictly jammed disk packingVe show here X2 unit cells of a
packing, but are practically strictly jammed for large systemnetwork of the packing. The striking feature of this and similar strictly

test for jamming can be tightened progressively as the nu
merical accuracy is increased and the convergence criteria i| &
the packing algorithm are tightened. We demonstrate this for=
Stillinger packings do not have a strictly jammed ideal sub

Table V. The corresponding results for strict jamming, given
in Table VI, illustrate that thdtraditional) Lubachevsky—

which aré@mmed disk packings we have produced is the appearance of peculiar “dis-

location cores” and the appearance of large perfectly triangular regions.

sizes. This is unlike monodisperse disk packings,
far from being strictly jammed, as illustrated in Table VII.

Very recently, we have implemented an extension of the

Lubachevsky—Stillinger packing algorithm in which the lat-

-and-bump heuristitto test for strict jamming by
Iso allowing the lattice to deform while the particles bump
d. This seemed to detect disordered packings which are

eing carried out at present. We note in passing that we also

d the extended Lubachevsky—Stillinger algorithm to try

not strictly jammed, however, the test is significantly slower
"than the linear programming algorithm and is also very heu-

ristic and much less reliable.

use
the shrink

S
aroun

g
d

lection. Details of the algorithm and the packings it produce
will be given elsewhere, but a short description can be foun

in Ref. 13. For relatively small numbers of particles, this
algorithm typically produces truly strictly jammed packings

and for these packinglgAr;|| is similar for both collective
and strict jamming. The algorithm produces similar amor-

phous packinggin packing fraction and disorderto the

tice deforms during the molecular dynamics run, as dictate
original

by the collisional(contact)stress induced by the particle col-

for V. DISCUSSION, FUTURE WORK, AND CONCLUSIONS

—Stillinger algorithm, however

Lubachevsky

Our results have important implications for the classifi-

mber of interesting avenues of inquiry for future investi-
gations. Random disk packings are less well understood than

%

and peculiar “dislocation cores.” One such strictly jammed

monodisperse disks it frequently terminates with completely
disk packing is shown in Fig. 9.

Investigation of these

high densities is well established. For example, Quickenden
and Tan experimentally estimated the packing fraction of the
“random close packed{RCP)state to bep~0.83 and found

that the

sphere packings. The tendency of disk packings to “crystal-
lize” (to form ordered, locally dense domairat sufficiently

strictly jammed disk packings as well as extensions of othe
packing algorithms to allow for deforming boundaries are

Just as an illustration, shown are the results for a two-

dimensional disk packing with 250 disks

TABLE VII.

packing fraction could be further increased until the

corresponding to the results pre

0.906 is achieved for the triangular

lue ofp

thdhaximum val

sented for amorphous sphere packings in Tables V and VI. It is seen

it idattice packing’’ By contrast, random sphere packingseat

clearly far from being strictly jammed, as typical for monodisperse diskjn the ran

packings produced by the Lubachevsky—Stillinger packing algorithm with a

although the packing has an ideal collectively jammed subpacking,
fixed lattice.

ge 0.63-0.66 cannot be made more dense.
Our recent understanding of the ill-defined nature of ran-
dom close packing and of jamming categories raises serious

questions about previous two-dimensional studies, particu-

coll( 103)

N

larly the stability of such packings. Our present study sug-

5

0.000 50 X710

0.007
0.24

0.12
0.45

Collective

gests that disordered random disk packings are not collec-

0.12

0.12

Strict

tively jammed at¢=~0.83; at best they may be locally
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jammed. This brings into question the previous widespreaduch extensions and will report our findings in future work.
belief that the two-dimensional analog of the RCP sphereOther important tasks include extending various packing
packing state has density about=0.82—0.83!" Collec- generation algorithms to generate strictly jammed packings,
tively jammed disk packings seem to have significantlyas well as designing algorithms with guarantees of producing
higher densitiesp~0.88 and consist of large triangular jammed packings. An even more challenging task is design-
grains, but even at such high densities they are not strictljng packing algorithms that can produce jammed packings
jammed. An interesting question is whether the grain sizevith certain target properties, such as a certain density and
becomes small compared to the system size for large colleclegree of order. The algorithms to test for jamming, and
tively jammed disk packings, or whether the appearance ofnore generally to explore the set of reachable configurations
grain boundaries is in fact a finite-size boundary effect. 1tJg for hard-particle packings can be further improved. In
may be that the preponderance of collectively and strictlyparticular, a carefully tuned implementation of linear solvers
jammed large disk packings are very crystalline, with a disfor three-dimensional packings is needed as a building block
tribution of the local bond-orientational parame®@g (see  in implementations of various nonlinear programming algo-
Ref. 5) highly peaked around some relatively large value.rithms related to packings. Development of such implemen-
Furthermore, it is important to ascertain if the strong distinc-tations and extensions is also under way. Finally, there are
tion between only collectively and strictly jammed disk many open questions related to the enumeration and classi-
packings persists in the limit of very large packings. Carefulfication of random hard-particle packings that might be an-
investigations of very large collectively and strictly jammed swered with the application of these tools.
disk packings produced with a variety of packing algorithms ~ In Ref. 13 and this work we have proposed, imple-
are still required to answer these questions. mented, and tested a practical algorithm for verifying jam-
The old concept of the RCP state incorrectly did notming categories in finite sphere packings based on linear
account for the jamming category of the packing. Previougrogramming. We demonstrated its simplicity and utility, and
attempts to estimate the packing fraction of the “randomPresented some representative results for ordered lattices and
loose” staté® are even more problematic, given that this termrandom packings. Interestingly, the large computer-generated
is even less well-defined than the RCP state. Furthermore, &0onodisperse random packings that we tested were virtually
our investigations of disk packings show, the “stability” of Strictly jammed in three dimensions, buot in two dimen-
packings cannot be judged based solely on local criteria, a&ons. Future extensions and applications of the proposed
suggested in Ref. 20 for sphere packings, and using sucigorithms are awaiting exploration. Work is already under
local criteria in estimating mean coordination numbers oMvay to provide highly efficient implementations of various
densities of packing&'®is at best an exercise in modeling optimization algorithms for linear and nonlinear program-
locally jammed packings. The best way to categorize randorf?ing on large-scalécontact)networks.
disk packings is to determine the maximally random jammed
(MRJ) staté? for each of the three jamming categoritscal, ~ACKNOWLEDGMENTS
f:ollective, and strict). Such investigation_s vyill be carried out  \ne would like to thank Andrea Liu and Corey O’'Hern
in the future, and we have some preliminary results andor providing us with sample packings and helpful e-mail
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hand, we have shown that random packings exist with denysr pMR-0213706. R.C. was partially supported by NSF
sities in the vicinity of the_ maximum possible value (  Grant No. DMS-0209595.
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