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The time-dependent solutions to the low-order BBGKY hierarchy are exa~ined for the cas~ of inter­
diffusion of two mechanically identical isotopes. In order to effect a closure dl~ected at evalua~lOn of the 
pair-distribution-function perturbations and the self-diffusion constant D, ~e_ ~nvoke a d!~amlcal su~er­
position approximation, and a truncated expansion in inverse powers of t.he mltlal COmP?SltlOn fluctuatlOn 
wavelength. The potential feasibility of this general approach to calcu!atlOn _o~ dense-flUld t.ran~port ~r?p­
erties is illustrated by explicit numerical calculations for the dense flUld of ngld spheres, usmg m addl~lOn 
a pair-space local equilibrium assumption. Although the resulti~g pair-distrib~tio~-function perturbatlOns 
seem to be in accord with physical intuition, cumulative errors m ~he approX1IDat~o~ sequence render the 
self-diffusion coefficients predicted at variance with other calculatlOns. Systematlc lmprovements of the 
present scheme are outlined. 

I. INTRODUCTION 

THE recent availability of exact autocorrelation­
function expressions for linear transport coefficientsl 

has stimulated interest in the general area of irrevers­
ible statistical mechanics. Though this constitutes an 
elegant reformulation of the microscopic basis of hydro­
dynamic behavior for simple fluids, for example, the 
evaluation of relevant autocorrelation functions appears 
generally no less a formidable t~sk than solution of t~e 
many-body dynamics from WhICh they arose. Only III 

the case of dilute gases, to which the soluble two-body 
problem applies, can complete calculations actually be 
performed. The autocorrelation results, however, then 
represent no fundamental advance over the older Hi!­
bert-Enskog approach to solution of the Boltzmann 
equation.2 

In the case of dense fluids (i.e., liquids), one of the 
earliest attempts to develop a systematic transport 
theory was Kirkwood's generalization of Brownian­
motion theory,S utilizing kinetic equations of the Fok­
ker-Planck type to describe motion of small sets of 
particles. Here, and in Rice's more rec:nt modifica­
tions,4 the intractible many-body dynamIcs are trans­
ferred to a friction constant r, whose evaluation then 
constitutes the major challenge for that approach. 

It is not the intent of the present paper to develop 
a critique of the Kirkwood-Rice scheme. Instead, we 
offer an exploratory analysis of the reduced Liouville 
equations (the BBGKY hierarchy) with a view to­
ward providing an alternative and distinct approach 

to transport in liquids. We wish to draw attention, 
therefore, to an independent set of merits and draw­
backs. 

The following development has largely resulted from 
a desire to construct a time-dependent analog of the 
closed and self-consistent Born-Green-Yvon superposi­
tion integrodifferential equation for determination of 
the equilibrium pair distribution function,6 which is 
historically important for equilibrium liquid sta~e t~e­
ory. Thus, we apply a time-depender;t. generahz~tIOn 
of the well-known Kirkwood superposItIOn approxIma­
tion6 to aid in deduction of a closed set of equations. 
Throughout the analysis it is assumed that the equi­
librium distribution functions are available in sufficient 
accuracy from some suitable independent source. 

Having once obtained perturbed singlet and pair 
distribution functions from a self-consistently closed 
set of equations the corresponding flows (of matter, 
momentum, energy, etc.) may then immediately be 
written down.7 Rather than developing the correspond­
ing general linear transport theory involving sev~ral 
simultaneous flows, we have elected to focus attentIOn 
on just the self-diffusion process in a fluid of spherical 
structureless molecules. We trust that the correspond­
ing loss of generality is adequately counterbalanced 
by increased readability. It is our intention to return 
to the other transport process in due course. 

In order to introduce irreversibility in the Kirkwood­
Rice scheme after starting with the mechanically re­
versible Liouville equation, the notion of time smooth­
ing proved useful. We remark in passing here that in 
the present approach irreversibility is not ensured by 
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SELF-DIFFUSION IN DENSE FLUIDS 2433 

passage to the infinite system size limit, coupled with 
the initial time ensemble dispersion. The kinetic equa­
tions thus have both the desired relaxing solutions as 
well as the "time-reversed" exponentially growing solu­
tions. There is, however, never any problem in identify­
ing the solution corresponding to the initial conditions 
of experimental interest, and which therefore exhibits 
the standard hydrodynamical behavior of relaxation to 
equilibrium. 

The modelistic and dynamical basis of our calcula­
tion is outlined in the following section. Symmetry 
arguments are invoked to identify the relevant per­
turbations to the singlet and pair distribution functions, 
and dynamical equations are deduced for these pertur­
bations. The general method for effecting closure is 
then discussed, and Secs. IV and V illustrate the ap­
proach by application to the rigid-sphere model for 
dense fluids. 

II, DISTRIBUTION FUNCTION PERTURBATIONS 

The dynamical system with which we are concerned 
consists of N = 2M classical structureless particles inter­
acting in pairs with potential v(r). These particles are 
divided into M A's and M B's which are mechanically 
identical, but which it is convenient to distinguish as 
"isotopes." These particles are confined to a rectangular 
box with volume V, to which periodic boundary condi­
tions apply. 

We suppose that a rectangular coordinate system 
has been aligned parallel to the container sides and 
that the container length along the x direction is L. 
Consider the following quantity which measures a si­
nusoidal A -B composition fluctuation: 

M 

S(k) = I:Csin(kxj) -sin(kxM+j)], 
j-I 

k=2n7f/ L, (1) 

where x. stands for the x component of position of 
Particle j, and n is some small integer.8 As the N 
particles move about under thermal motion, S(k) 
will vary about zero, reflecting instantaneous composi­
tion fluctuations in the system.9 

The regression of a fluctuation in S(k) is exactly 
the diffusive process in which we are interested. To 
prepare a system for observation of diffusion, we may 
either pick from an equilibrium ensemble members for 
which S(k) exhibits a preassigned value, or alterna­
tively, a weak external potential which adds a term to 
the Hamiltonian proportional to S(k) may be utilized 
to produce a new ensemble with time-independent com-

8 The convention that all A's precede B's in the numbering 
has been adopted here. 

9 Note that these fluctuations are not coupled to pressure 
fluctuations (sound waves) because the A's and B's are mechan­
ically the same. 

position variation in space. For this latter circumstance, 
the phase space probability becomes: 

[Q(j3, O")J-I exp( -j3E-O"S), (2) 

where j3 has its usual meaning, 

E= L - + L v (rjk) , N (PI) N 

j-I 2m j<k-I 

Q= f" 'f exp( -j3E-O"S)drdp, (3) 

and the external potential energy is O"S/j3. We assume 
that 0" is sufficiently small that the resulting composi­
tion fluctuation with wavenumber k is proportional 
to 0". When 0" is suddenly reduced to zero (at time 
t=O) the diffusion begins to smooth out the composi­
tion variations. 

The system's time evolution is represented by the nor­
malized phase-space probability function j<N) (r, p, t), 
which satisfies the Liouville equation (t>O): 

-+ L ~'V' +F·,V' . j<N)=0 
aj<N) N {p. } 

at j-I m r, 1 p, , 
(4) 

where F j is the force exerted on Particle j by its neigh­
bors. In the customary fashion, we are concerned with 
lower order functions j<n) obtained from j<N) by inte­
gration over the remaining dynamical variables: 

j<n)(rI" 'rn , PI" 'Pn, t) 

In this article, we have occasion to utilize only the 
leading members (n= 1, 2, 3) of this hierarchy. The 
singlet reduced distribution function satisfies a dynami­
cal equation obtained from (4) by integration over 
positions and momenta of N -1 particles: 

[df(I) (rl' PI, t)/dt]+PI'V'rt!Q)(rI, PI, t) 

= tf[V'r1v(rH)} V'pd(2) (rI' rj, PI, Ph t)drjdpi (6) 

in which explicit use has been made of the pairwise 
additivity of the interaction. The analogous pair dis­
tribution function equation is similarly found to be: 

aj<2) (12 t) 2 {p. 2 } 

at ' +?;~ 'V'r;-[V'r;{;v(rn)]'V'Pi j<2)(12, t) 
("'I) 

= t~f[V'r;v(ril)],V'p;f3)(121, t)dr1dpl' (7) 

The next task is to decide what forms are appropri­
ate for the nonequilibrium perturbations to the j<I) and 
j<2) functions under the diffusion process. After suffi­
cient time has elapsed that the system has returned 
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to complete homogeneity (t-'> 00), the distribution func­
tions will have adopted the standard equilibrium forms: 

jA(l)(r, p, t= 00) =jB(l)(r, p, t= 00) =j(p) 

exp( -(3p2/2m) 

V (21TmkT) I 

ja~(2) (r1, r2, P1, P2, t= 00) = j(Pl)j(P2) g(2) (r12' N /V), 

lX, (3=A, B. (8) 

Here, g(2) is the equilibrium pair correlation function 
(at density iV/V) which approaches unity at large r12. 10 

If no means were available for distinguishing the 
isotopes A and B, the outward appearance of the 
system for all times would be that of a system at 
equilibrium. Thus the perturbed distribution functions 
for finite t must be subject to the restraints: 

!UA(l)(r, p, t)+jB(1)(r, p, t)]=j(P), 

1 L ja~(2) (r1' r2, P1, P2, t) =j(P1)j(P2) g(2) (r12, N /V), 
a,~~A,B 

(9) 

stating that total singlet and pair densities are in equi­
librium. 

For negative times, while the sinusoidal external 
field is still on, the equilibrium concentrations of the 
two species are 

CA,B(r, t<O) =M jfA,B(l)(r, p, t<O)dp 

= (M IV) [ITO" sin(kx)], (10) 

where the upper sign refers to A, the lower to B. Pre­
cisely at t=O, the momentum distribution has the 
Maxwell-Boltzmann form shown in Eq. (8), but as 
diffusion gets underway perturbations in this distribu­
tion develop over a very short period of time (in 
typical liquids, roughly 10-12 sec). Thereafter, local 
steady states are established, modulated secularly only 
by the over-all hydrodynamic relaxation. 

The wave vector k has been assumed small, so we 
should expect that subsequent to the quick initial in­
duction period for the distribution-function perturba­
tions to develop, the concentrations should obey the 
macroscopic differential equation for diffusion, Fick's 
law: 

d/dt[CA,B(r, t)]=DV2CA,B(r, t) (t»0). (11) 

Integrating, we find for t well past the induction period: 

CA,B(r, t) = (M IV) {I TO" exp[ - Dk2(t- to)] sin(kx) }; 

(12) 

the concentration spatial variation of course decays 
in time, but maintains its pure sinusoidal form. to is a 

10 For present purposes it is permissible to disregard the devia­
tion of g(2) (r,,) of order N-I from unity at large rl2 in our closed 
system. 

time lag characteristic of (and comparable in length to) 
the rapid momentum-perturbation induction. 

The simple separation of spatial and temporal de­
pendence for the initial sinusoidal composition fluctu­
ation is a crucial point, and allows us to simplify the 
coupled j<1) and j<2) integrodifferential equations. Thus 
by looking at these equations for the given initial 
conditions and at times long after the external field 
has been removed, we can reasonably expect to find 
but a single hydrodynamic relaxation underway, Le., 
all distribution-function perturbations have the same 
exponentially decaying time dependence. Since it is 
essential in the following to consider the way in which 
this single remaining relaxation depends upon wave 
vector k, it must be recognized that both D and to 
are possibly k dependent, so that the relevant time 
dependence involves the factor 

exp{ - k2D(k) [t- to(k)]l, (13) 

in which both D and to have expansions in even orders 
of k: 

D(k) =Do+D1k2+D2k4+ ••• , 

to(k) = too+t01k2+t02k4+ • ••. (14) 

The diffusive flows of course occur only in the x 
direction and since the system is fluid, the distribu­
tion functions must exhibit rotational symmetry about 
the x axis. Furthermore, the A's and B's have been 
handled from the outset in a manner inducing a re­
flection symmetry in the plane x= L/2. The singlet 
distribution functions therefore must be invariant to 
the operation consis ting of: 

(a) x-'>L-x, 

(b) px-'>- Px, 

(c) A, B-'>B, A. (15) 

The singlet functions will exhibit perturbations varying 
spatially with wave vector k [i.e., as sin(kx) or 
cos (kx) ], with momentum dependence whose even or 
odd symmetry is dictated by (15), and all decaying 
exponentially according to the single secular relaxation 
time; the most general permissible form therefore IS 

found to be: 

jA,B(l) (r, p, t) = j(p)(l TO" exp{ - k2D(k) [t- to(k)]l 

X [sin (kx) [1+ Ek2nXn(Px, p)] 
n=l 

+cos(kx) Ek2n- 1cpn(Px, p)]). (16) 
n=l 

The functions Xn are even and the CPn odd with respect 
to change in sign of px. By formal retention of mo­
mentum perturbations of all orders in k, in a manner 
analogous to the expansions (14), it will in principle 
be possible to encompass the full wavelength range of 
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SELF-DIFFUSION IN DENSE FLUIDS 2435 

composition fluctuation regression in the long-time 
limit. 

The pair probabilities may be similarly delineated. 
They are also cylindrically symmetric about the x 
axis, and must be invariant to: 

(a) xl, x2-'>L-XI, L-X2' 

(b) PIx, P2x-'>-PIx, -P2x, 

(c) A, B-'>B, A. (17) 

Because the pair functions reduce to a product of 
singlet functions when the two particles are far re­
removed from one another, it is convenient to factor 
the perturbed singlet functions out of each J<2), which 
then adopt the standard formll : 

ja~(2)(12, t) =ja(l)(l, t)j~(I)(2, t)g(2)(rI2) 

X (1 +!T exp{ -k2D(k) [t-to(k)]l 

X {cOSnk(XI+X2) ]f)2n-lhn.a~(rI2' PI, P2) 
n=l 

+sinnk(xI+X2)]I:k2nln .all(rI2, Ph P2)}), (18) 
n=l 

which is entirely analogous to Eq. (16). The perturba­
tion functions hn •a {3 and In.afJ possess cylindrical sym­
metry about the x axis for simultaneous rotation of all 
three argument vectors. In addition, the second of 
Restraints (9) requires 

'L)n.a{3(r12, Pb P2) =0, 
a.fi 

"I:1n.afi(rI2, PI, P2) =0, (19) 
".{3 

for each n~ 1. Each hn and In should vanish rapidly as 
rI2 increases. 

It proves useful to decompose the pair perturbations 
into separate components each possessing definite sym­
metry under simultaneous sign change of XI2, PL", P2x. 
Reference to standard form (18) shows that Condition 
(17) permits one to write: 

hn.AA=?]n+rn+~n, 

hn.AB= -?]n+rn-~n, 

hn.BA = -?]n-rn+~n, 

hn.BB=?]n-rn-~n, (20) 

where the ?]n(r12, PI, P2) are symmetric with respect to 
simultaneous sign change of the three vectors' x com­
ponents, and the rn and ~n are antisymmetric. Analo­
gously, we may write the following representation for 
the perturbations In: 

(21) 

where now the II" and Tn are even, and:the w" odd. 
We are now in a position to substitute the perturbed 

distribution functions (16) and (18) into the reduced 
Liouville equation (6) for fA (I),l2 Under the integrals 
containing the pair functions, elementary trigonometric 
identities may be used to extract sin(kxl) or COS(kXI) 
factors, which each nonvanishing term of the left-hand 
member of the equation already contains. Since these 
two functions are orthogonal over V, one obtains two 
independent equations from their coefficients, and in 
each the common time-dependence factor (13) may 
be cancelled. The resulting time-independent equation 
from coefficients of sin(kxI) is: 

(22) 

(23) 

11 Since (T is regarded as a small parameter, consistent with linearity of the transport process being discussed, the terms of 
order (T' in Eq. (18) are ignored. 

1. The same results would be obtained from the !B(O dynamical equation. 
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Of the entire set of pair perturbations appearing in the representations (20) and (21), only the r" and v" remain 
in these last two equations. . . 

If the remaining trigonometric functions in Eqs. (22) and (23) are expanded, there occurs In these equatIOns, 
respectively, only even and odd powers of k, and again separate equations result from the individual coefficients. 
The lowest order in k is the first power, in Eq. (23), and it leads to the following relation: 

(Pl"jm) = -2M f dr2dp2f(P2)g(2) (r12) [Vr1v(r12) ]·[Vp l 1(12) - ("PI/m)M12)]. (24) 

The terms of order k2 in Eq. (22) yield: 

DO+~l(Plx' PI) = -M j dr2dp2j(P2)g(2) (r12) [Vr1v(r12) ]- {(X2-Xl) [ Vp l 1(12) -"!lrl(12) ] 

-2[ VP1Vl(12) _"!lV1 (12) ]}. (25) 

Finally, we consider the result of the ka terms in Eq. (23): 

These last three equations, giving exact restraints be­
tween possible perturbations to the singlet and pair 
probability functions, are a sufficient set to consider 
for present purposes out of the infinite set implied 
by Eqs. (22) and (23). 

In order to develop the necessary equations for de­
termination of the pair perturbation functions appear­
ing in the three restraint Eqs. (24)-(26), we must 
examine the dynamical Eq. (7) for the pair probabili­
ties. In doing so of course one requires some knowledge 
of the p3l'S. In analogy with Eq. (18) for the pair 
probabilities, one may write: 

jaiS,),(3)(123, t) =j,,(1) (1, t)jrP) (2, t)j')'(1)(3, t)g(3)(123) 

X (1+0- exp/-k2D(k) [t-to(k)]l / (12) + (13) + (23) 

+cos[!k( Xl+X2+Xg) J I)2n-1hn."iS')' (8) (123) 
,,~l 

+sin[!k (Xl+X2+X3)]f)2"ln,"iS(3)'Y (123) I), (27) 
n~l 

thereby defining specifically triplet perturbation h".afJ(3) 
and In.,,iS(3). g(3) (123) is the equilibrium triplet correla­
tion function at density N IV. For compactness we 
have let (ij) stand for the h" and In sums shown ex­
plicitly in Eq. (18), and so the specific triplet pertur­
bations h,,(S) and t,,(3) should vanish unless all three 
particles are close. Although we do not do so, it 
would be possible to display representations of these 
triplet perturbations similar to, but more complicated 
than, the previous pair perturbation Eqs. (20) and 
(21), in terms of cylindrically symmetric functions of 
specific reflection parity. 

III. CLOSURE-PRODUCING APPROXIMATIONS 

It is the primary objective of this paper to calculate 
the macroscopic self-diffusion constant Do, and because 
this quantity occurs in at least two of the restraint 
conditions (24)-(26), these latter are accorded a central 
role in our approach. It then becomes necessary to 
evaluate the low-order t and v pair perturbations, equa­
tions for which may be obtained by substitution of 
forms (18) and (27) for f2) and pa) into Eq. (7). It 
is obvious, however, that the resulting appearance of 
unknown triplet perturbations limits usefulness. There­
fore we make a "dynamical superposition approxima­
tion," equivalent to neglect of these triplet perturbations, 

h".afJ)S) (123)"'0, 

(28) 

For the time being, we carry along the exact equilib­
rium triplet correlation function g(S) .13 

The irrelevant pair perturbations (1]",1/1,., Tn, Wn ) may 
be eliminated by adding together the jAA(2) (12, t) and 
jAB(2)(12, t) dynamical equations. Substantially the 
same operations may then be followed that led to· 
Restraint Conditions (24)-(26). We do not reproduce 
tedious details except to remark that the equilibrium 
Born-Green-Yvon integrodifferential equation, 

Vr1w(r12) = V.1v(rI2) 

+ (NIV) j[Vr1'l!(r13)][g(3) (rl, r2, ra)lg(2) (r12)]dra, 

w(rI2)=-j3-lIng(2)(r12), (29) 

13 Several recent studies have begun to reveal the nature of 
deviations of this function from the standard Kirkwood super­
position product of g(2)'S. See, for example: E. Helfand and F. H •. 
Stillinger, Jr., J. Chern. Phys. 37, 2646 (1962); B. J. Alder, Phys. 
Rev. Letters 12, 317 (1964). 
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SELF-DIFFUSION IN DENSE FLUIDS 2437 

may be utilized to effect intermediate reductions. The equation deduced from the coefficients of terms pro­
portional to the first power of the wave vector k is: 

From the coefficients of k2 it likewise follows that: 

(31) 

Finally, the third pair perturbation equation with which we deal is obtained from coefficients of P: 

PI P2 hx+P2x 
- Dot1(12) +_. Vr1.\2(12) +-. Vr2M12) + 2 VI (12) - V r,w(r12) 

m m m 

Unlike the situation regarding equilibrium distribu­
tion functions which may be indexed by the number of 
particles to which they refer, the perturbation func­
tions must be indexed both by particle number and 
their order in wave vector k. The restraints and dy­
namical equations couple the functions in this two­
dimensionally infinite array of functions. To close 
the set of functional equations at a manageable level 
of complication in equilibrium requires only terminat­
ing a one-dimensional sequence (as accomplished by 
the Kirkwood superposition approximation). Roughly 
speaking we now require a truncation scheme equiva­
lent to retention only of one corner of the square 
function array, namely the corner with both indices 
small. 

The simplest recipe which one might at first sight 
be tempted to try would be simultaneous use of Eqs. 
(24), (25), and (30), in which )11 is disregarded, so 
the unknowns are t1, CPl, and Do. The last of these then 
would be evaluated by setting Plx=O in (25). We 
remark, however, that .\1(12) may be separated into 
two parts, respectively, even and odd under X12~-X12 

g(2) (13) ] 

(momenta unchanged); only the latter is constrained 
by (24), whereas it is the former which determines Do 
and CP1 in (25). Thus Do, CPI, and the spatially odd 
part of .\1 are undetermined to the extent of a common 
numerical factor, since their equations are linear and 
homogeneous.14 

Consequently a somewhat more elaborate approach 
is warranted. Notice that Restraint (26) contains the 
product of Do and CPl, as well as .II linearly, so its use 
would serve to avoid the homogeneity difficulty. We 
propose therefore to work with Restraints (24) and 
(26) and the three pair perturbation equations (30), 
(31), and (32). 

The pair perturbations retained, .II, VI, and .12, are 
difficult to handle computationally, since they depend 
on three vector variables each. Although it is not 
absolutely mandatory in the face of the approxima­
tions already made, it is nevertheless very convenient 
to introduce yet another class of simplifications, which 

14 This difficulty in working just in lowest order in wave vector k 
has been noticed before: G. Klein and I. Prigogine, Physica 19, 
89 (1953); R. E. Nettleton, J. Chern. Phys. 23, 1560 (1955). 
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z 

x 

y 

FrG. 1. Cartesian coordinate system and polar angle used in 
"local equilibrium" form of the pair perturbations, Eqs. (33)-(35). 

should~'apply well to the case of interest, namely, dense 
fluids. In view of the high density and resulting high 
collision rate, it seems appropriate to suppose that 
the perturbed pair distribution functions exhibit Max­
wellian momentum distributions about some locally 
shifted value of mean momentum. Since we are only 
interested in the linear region of the transport phe­
nomenon, this is equivalent to the assumption that 5"1, 
PI, and 5"2 may be written as linear functions of mo­
mentum components. Since 5"1 is odd under simultane­
ous sign change of its three argument x components, 
the appropriate linear form is: 

M12)"'z\O) (r12) +Pt"Zl(e) (r12) +P2xZ2\e) (r12) 

+ (PIli coslh2+Plz sinlh2) zllO) (rd 

+ (p211 COS8l2+P2. sin812)z2(O) (r12); (33) 

812 is the angle"of projection of r12 into the y-z plane 
as shown in Fig. 1, so that 5"1 is invariant to simul­
taneous rotation about the x axis of r 12, PI, P2. Each 
Z function is cylindrically symmetric about the x axis 
also, and has X12 parity, even or odd, denoted respec­
tively by Superscript (e) or (0). Equation (33) may 
be thought of as the leading set of terms in a com­
plete multiple power series expansion of 5"1 in the 
six momentum components, and the terms quadratic 
or higher order in these variables should gain in rela­
tive importance as density decreases. The linear ex­
pression for PI corresponding to (33) is: 

PI (12)~n(e) (rI2) +Plxnl(O) (rI2) +P2x~(O) (r12) 

+ (PIli COS8l2+ Plz sin8l2) nl Ie) (r 12) 

+ (p211 COS8l2+P2. sin8l2) n2(e) (r12) , (34) 

in which the same cylindrical symmetries and super­
script conventions apply. Finally, the 5"2 "local equi­
librium" expression is: 

5"2 ( 12) '" z(O) (rI2) +PlxZI (e) (rI2) +p2xZ2(e) (r12) 

+ (PlY COS812+Plz sin8l2) ZllO) (r12) 

+ (P211 COS8l2+P2. sin812) Z2(O) (r12). (35) 

When (33) is substituted into the first restraint 
condition (24), one finds: 

so that only the leading term in the 5"1 "local equilib­
rium" expression remains. Inserting both (33) and 
(34) in the second restraint (25), 

Pix Mj aV(r12) 
DO+~I(PlX' PI) = -V dr2g(2)(r12)~ 

(37) 

Set Ptx= 0 in this last expression to obtain a formal 
relation for Do: 

Do= - (M/V) f dr2g(2) (rI2) [aV(r12) /axI] 

x[ (X2-Xl)Zl(e) (r12) - 2nl(O) (r12)]. (38) 

This result has no present computational interest, since 
we do not evaluate ZI\e) or nl(O), however, it does show 
that Eq. (37) implies 

(39) 

which is fully consistent with our local equilibrium 
assumption.I5 

Finally, the third restraint (26), upon use of (39), 
leads to: 

(40) 

Obviously XI must be momentum independent in the 
present approximation. Going back to Eq. (16) for 
the appropriate form of j(I) time dependence, one sees 
that a constant Xl modifies the amplitude of the sinus­
oidal concentration variation for a given diffusive cur­
rent (i.e., cf>l). This must therefore reflect wavelength 
dependence of D (k ), and in order that Eq. ( 16) for 
f(l) be consistent with Fick's law (11), we must have: 

XI= -DdDo, ( 41) 

15 Since the direction of diffusive flow in our isotropic system 
relative to the Cartesian coordinate system could initially have 
been arbitrary, cf>1 generally must have the form of a product 
of a scalar function of Pt, times the only available vector, PI 
itself. With our initial conditions therefore, the exact form of cf» 
must be cf>(Pl) PIx, of which (39) represents the first term in a 
multiple momentum component series expansion. 
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SELF-DIFFUSION IN DENSE FLUIDS 2439 

upon neglect of CP3. In the Appendix the last ratio is 
estimated to be m{3D02, and accordingly Eq. (40) be­
comes: 

Equations (36) and (42) are two of our working 
relations, and so clearly we need to determine z(O), nee) 

and z(O). The requisite formulas may be obtained by 
inserting local equilibrium approximations (33), (34), 
and (35) into the pair perturbation Eqs. (30), (31), 
and (32). The resulting expressions contain terms 
through quadratic order in momentum components. 
If we examine separately the coefficients of PIx and P2x 
in Eq. (30), we obtain, respectively, the following ho­
mogeneous integrodifferential equations for z(O)(rd: 

(43) 

2{3Mj g(3) (123) av (r23) () ( ) 
--- dr3 --zO r13. 

V gt2) (rd aX2 
(44) 

In a similar manner two equations may also, respectively, be obtained from PIr" and P2x coefficients in Eq. (31), 

(45) 

(46) 

The analogous equations containing '\2, which follow by the same procedure from Eq. (32) are: 

Solution of these pair perturbation equations is to be 
carried out subject to the vanishing at large r12 of each 
perturbation function. 

In view of the appearance in Eqs. (47) and (48), 
respectively, of ZI(e) and Z2(e), the announced scheme of 
working just with the perturbations z(O), n(e), and z(O) 

appears to be violated. However, our approximations 
thus far have been designed to describe dense fluids, 
for which Do is very small by comparison with its dilute 
gas values. It therefore seems appropriate and con­
sistent to regard the third terms in the left members of 
each of Eqs. (47) and (48), since they contain the 
factor Do, as being negligible. Henceforth we drop these 
terms. 

The six equations, (43)-(48), for calculation of just 
the three desired perturbations z(O), n(e), and z(O) of 
course amount to an overdetermination. If each of the 
separate approximations used so far were in fact exact, 
(43) and (44) would necessarily possess a common 
solution, and the same would apply in turn to (45)-(46) 

( 47) 

(48) 

and (47) - ( 48). For the purpose of performing the 
exploratory hard-sphere calculation in the next section, 
attention is confined just to the three equations (43), 
(45), and (47). Equation (36) fixes the normalization 
of z(O), which then provides an inhomogeneous term in 
nee) Eq. (45); these two functions in turn do the same 
for z(O) Eq. (47). The three perturbation functions so 
determined may then be substituted into Eq. (42) to 
find the dense fluid self-diffusion constant Do. 

IV. RIGID SPHERES 

The rigid-sphere model is a convenient testing ground 
for the method so far outlined for several reasons. 
First, only a single variable thermodynamic parameter, 
the reduced density, affects the transport process in a 
nontrivial fashion. Secondly, the singular character of 
the interaction reduces the dimensionality of quadra­
tures that are required in the theory. Also, the equilib­
rium pair distribution functions are relatively well 
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known. Finally, calculated Do values may be compared 
with estimates based on electronically computed mo­
lecular dynamics for this interaction.I6 

Since deviation of the equilibrium triplet correlation 
function g(3) from the superposition product of g(2)'S 

should not be very severe,17 we introduce this simplifi­
cation into Eqs. (43), (45), and (47) to obtain: 

az(O) (rI2) 

aXI2 

(50) 

(51) 

Unit lengths are selected equal to the collision diam­
eter of the spheres. The hard-sphere interaction con­
verts the space integrals in the last three equations to 
integrals over the surface r13= 1, due to the formal 
identity for hard spheres 

g,2) (r) [dv(r) /drJ = - (1/{3) 0(r-1) g(2) (1 +). (52) 

The homogeneous equation (49) may then be inte­
grated with respect to X12 between some arbitrary lower 
limit (but outside of contact) and infinity to give, 
after some manipulation, 

-z(O)(r, u) = [ldvk(r, u, v)z(O)(1, v), (53) 

where z(O) is reckoned to be a function of radial dis­
tance r, and u the cosine of the angle relative to the 

16 B. J. Alder and T. Wainwright, "Molecular Dynamics by 
Electronic Computers," in Transport Processes in Statistical 
Mechanics, edited by I. Prigogine (Interscience Publishers, Inc., 
New York, 1958), p. 97. 

17 B. J. Alder, Ref. 13. 

x axis (u=x/r). The kernel in (48) is: 

k(r,u,v) 

= 2: g(2) (1)v fO dx' {" dcp{g(2)[r23(u, v, x', cp) ]-1}, 

Y23(U, v, x', cp) 

=[(x')2-u2+2-2x'v-2(1-u2) (l-v2) coscJ>]t. (54) 

Setting r= 1 in Eq. (48), we obtain an homogeneous 
integral equation over a finite interval, which is rela­
tively easy to handle numerically. The odd (in u) 
function z(O) (1, u) therefore is presumably an eigen­
function corresponding to eigenvalue - 1. In view of 
the set of approximations we have been forced to 
make, though, it is by no means assured that kernel 
k(1, u, v) possess either rigorously odd eigenfunctions 
or precisely -1 as an eigenvalue. We recognize, how­
ever, that it would have been possible at an earlier 
state in its derivation to have antisymmetrized the 
pair perturbation functional equation (before intro­
ducing any approximations), so that after use of ap­
proximations, Eq. (53) would instead have contain 
the antisymmetrized kernel: 

k(O)(r, u, v)=![k(r, u, v)-k(r, -u, v)]. (55) 

For the purposes of numerical analysis, therefore, we 
examine the modified homogeneous integral equation, 

-Xz(O)(1, u) = L:1dV k(O)(1, u, v)z(O)(1, v), (56) 

whose solutions are necessarily and rigorously odd. The 
deviation of X from + 1 for the physically acceptable 
eigenfunction z(O)(1, u) constitute a measure of the 
error in our approximations. 

The hard-sphere version of It he restraint (36), by 
which the eigenfunction must be normalized, is: 

47rM 1+1 1=Vg(2)(1) -1 du uz(O) (1, u). (57) 

Integration of Eq. (50) with respect to XI2, supple­
mented by a partial integration, yields: 

-n(B)(1, u) = (u/2)z(O) (1, u) 

1
+1 

+ -1 dv[K(1, u, v)z(O)(1, v)+k(l, u, v)n(e)(1, v)], 

(58) 
where 

K(1, u, v) = 2:g(2) (1) vfOdx'{"dCP(X'-tV) 

x {g(2)[r23(u, v, x, cp)J-11. (59) 

Since (58) is an inhomogeneous equation, it is not 
subject to the eigenvalue shift difficulty, but it is still 
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possible that the even parity of n(e)(1, u) with respect 
to u might have been destroyed by the approximations. 
Therefore we again modify the correct behavior; III 

(58) K and k are to be replaced by 

K\e)(1, U, v) =![K(1, u, v)+K(1, -u, v)], 

k(e) (1, U, v) =![k(1, u, v)+k(l, -u, v)]. (60) 

Henceforth, then, we consider 

-n(e)(l, u) = (u/2)z(0) (1, u) 

+ L:
1

dv[K(e) (1, u, v)z(O)(l, v)+k(e)(l, u, v)n(e)(l, v)] 

(61) 
in place of Eq. (58). 

The third integral equation required in the subse­
quent hard-sphere numerical calculation is obtained 
from Eq. (51) in an exactly similar way. The anti­
symmetrization and partial integration operations fi­
nally lead to: 

-z(O)(l, u)+!un(e)(l, u)+iu2z\0)(1, u) 

= L:ldV[k(O) (1, u, v)z(O)(l, v) -K(O)(l, u, v)n\e)(l, v) 

+X(O)(l, u, v)z(O)(l, v)]. (62) 

The kernel klO) has already been defined in Eq. (55) 
and: 

K\O)(l, u, v) =![K(1, u, v) -K(l, -u, v)], 

x(O)(l, u, v)=![X(l, u, v)-x(1, -u, v)]; (63) 

X(l, u, v) = Z:g(2) (l)v fOdX I fTdct> ( _~+ V;'_ X;2) 

X {gt2)[r23(u, v, x', ct»]-1}. (64) 

After having solved integral equations (56), (61), 
and (64) in sequence, the self-diffusion constant may 
be obtained from the hard-sphere version of Eq. (42): 

21rMg(2) (1)jl [ US 
D02= Vt3m 0 du -4z(0)(1, u)+u2n(e)(1, u) 

+Zuz(0)(1, u) 1 (65) 

V. NUMERICAL ANALYSIS 

The basic input, required by the scheme outlined in 
the last section for calculation of rigid-sphere pair per­
turbations and self-diffusion coefficients, is the equi­
librium rigid-sphere pair correlation function g(2). On 
the basis of its performance in yielding reliable fluid­
phase thermodynamic functions, and of its analytic 
tractability, we elected to employ the solution to the 

approximate Percus-Yevick18 integral equation for g(2). 

The required values for this function (at steps of 0.01 
in reduced distance up to 6.00) were easily obtained 
from Wertheim's19 explicit algebraic expressions for the 
Laplace transform of gt2), at each of six densities em­
ployed. 

Next, the kernels k, K, X were computed from the 
g(2) results. In doing so, it proved possible to disregard 
the fluctuations of g(2) about one for distances greater 
than 6.00. Weddle's seven-point formula was used for 
the x' integration with a step length of 0.01 for x' <2 
and 0.05 for x'> 2; the 20-point Gaussian quadrature 
formula was used for the variable ct>.20 The values of 
g(2) required were obtained from interpolation into the 
relevant table of g(2) values by means of Newton's 
interpolation formula through third differences.2o In 
anticipation of further use of the ZO-point Gauss formula 
in the integral equations themselves, as well as in the 
z(O) normalization and D02 integrals, the kernel vari­
ables -1 < v < 1 were given successively the values dic­
tated by this quadrature formula. 

The z\O) eigenvalue equation consequently was han­
dled as a nominally ZOX20 matrix eigenvalue problem. 
Kernel symmetry, however, reduced this (as was the 
case for the other two perturbation integral equations) 
to a lOX 10 matrix problem. The z(O) eigenfunction of 
interest corresponds to the maximum eigenvalue; these 
were obtained through use of the relevant SHARE pro­
grams on the Murray Hill IBM 7094 computer. After 
having normalized z(O) according to Eq. (57), the func­
tions nee) and zeD) were computed in turn from the 
associated lOX 10 linear arrays. 

Six densities were considered. They corresponded to 
the following multiples of VD (the close-packed volume) : 
V /VD= 1.500, 1.550, 1.600, 1.767,2.000,3.000. The first 
three of these values may actually involve first fluid 
metastable with respect to crystallization, but the 
Percus-Yevick g(2)'S are oblivious to this possibility, 
and these high densities were included in view of the 
bias of the approximations in the foregoing theory. 

Figure 2 displays the computed values of the contact 
pair perturbation ZID) (1, u), vs angle cos-lu, for three 
of the densities. The strong peak in the "forward" 
direction (0°) indicates the tendency for A-B sphere 
pairs to accumulate in the head-on collision configura­
tion, resulting from their opposed flows, before they 
have a chance to get out of one another's way. Figure 3 
shows for V /VD= 1.600, in addition to Z(D), the higher­
order contact pair perturbations n\e) (1, u) and zeD) (1, u). 
Qualitatively, this case was typical for all of the densi­
ties examined. 

18 J. K. Percus and G. J. Yevick, Phys. Rev. 110, 1 (1958). 
19 M. S. Wertheim, J. Math. Phys. 5, 643 (1964); g(2) calcula­

tions carried out in the same fashion as done for the present 
transport theory have independently been reported: G. J. Throop 
and R. J. Bearman, J. Chern. Phys. 42, 2408 (1965). 

20 J. B. Scarborough, Numerical M atkematical A nalysis (The 
Johns Hopkins Press, Baltimore, Maryland, 1962). 
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FIG. 2. Contact pair perturbations z(O) (1, u) for three of the 
six densities studied numerically. The abscissa represents angle 
cos-1u (0° is in the flow direction). 

Beside the obvious tendency of the z(O) to peak in 
the forward direction, there is another feature of this 
set of solutions which also seems to be in agreement 
with one's intuitive picture of transport in dense fluids. 
Clearly, as the fluid is compressed toward the close-

TABLE 1. z(O) homogeneous integral equation eigenvalues (>.) 
and the predicted self-diffusion constant (Do) values for the six 
densities considered in the rigid-sphere computation. The Enskog 
prediction for Do, Eq. (66), has been included for comparison. 
Diffusion constants are in units a/(mf3)i, where a is the rigid­
sphere diameter. 

VIVo >. Do Do (Enskog) 

3.000 0.6637 0.285 0.227 
2.000 1.2398 (±1. 22i) 0.103 
1. 767 1.6205 1.23 0.076 
1.600 2.0698 0.465 0.058 
1.550 2.2492 0.393 0.051 
1.500 2.4555 0.356 0.046 

packed limit, it becomes increasingly difficult for a 
sphere to escape from the momentary cage formed by 
its neighbors. Indeed, in the close-packed limit, no 
diffusion at all is permitted on purely geometric grounds 
in the presence of any concentration gradient. It is 
therefore not surprising that the flow perturbation z<O), 

defined in terms of unit concentration gradient, declines 
in magnitude as the density increases. 

Table I collects the diffusion constant results, and 
shows, as well, the eigenvalue obtained during solution 
of the homogeneous z<O) equation. Included for com-

o.26.----------------------------------, 

- 0.16 

-0.20
0 
L ----,l,---~---::'::----;4'='0 ----:5'='0 ----:60;:-~70::----;;;60::--~90 

DEGREES 

FIG. 3. The three contact pair perturbation functions, z(O) (1, u). 
n(e) (1, u), and z(O)(l, u) for V /Vo= 1.600. 

paris on are the values predicted by the Enskog theory, 

Do= [8 (7r) waa:(2) (a)/V 1;(3)!' (66) 

for rigid spheres of diameter a. 

VI. COMMENTARY 

In spite of the physically reasonable behavior of the 
perturbation z(O) already noted, the numbers entered 
into Table I are not quantitatively impressive. The 
eigenvalue X, which would have been precisely unity 
if the theory were exact clearly deviates by roughly a 
factor of two in both directions from this desired value. 
Assuming in addition that the Enskog value is sub­
stantially accurate, the predicted Do values are far off 
the mark, in one instance becoming imaginary [i.e., 
Do2 in Eq. (65) was found to be negative]. One is 
therefore apparently confronted with a case of con-
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siderable sensitivity of the central transport coefficient 
expression, Eq. (65), to errors that have accumulated 
during the approximate calculation. Since it is our 
belief that the general approach advocated in this paper 
has basic merit, it becomes necessary to suggest the 
various ways in which the relatively crude first level 
of approximation used above might profitably be sharp­
ened to improve numerical results. 

We note in passing that the rigid-sphere model con­
stitutes a relatively severe test of, especially, the present 
transport theory. If the molecular pair interactions on 
the contrary were weak, so that pair encounters implied 
only small deflections from linear trajectories, the dy­
namical superposition approximation would have been 
essentially exact. 

There are several areas in which the stringency of 
the approximations actually employed in the rigid­
sphere Do numerical calculation could conceivably be 
relaxed: 

(1) Use of more accurate g(2)'S than provided by the 
Percus-Yevick integral equation; 

(2) Avoidance of the superposition approximation 
for the equilibrium g(3); 

(3) Improvement of the dynamical superposition 
approximation; 

(4) Extension of the local equilibrium approxima­
tion to include pair perturbations quadratic in mo­
mentum components; 

(5) Inclusion in the theory of terms of higher order 
in the wave vector k, to permit direct evaluation of DI • 

The first of these categories has been tested at 
V /Vo= 1.600 by modifying slightly the input g(2) so 
as to conform with the presumably accurate pair cor­
relation function obtained by Alder in molecular-dy­
namic investigations.17 The eigenvalue A decreased 
slightly (from 2.0698 to 2.0425) but Do more than 
doubled in value (changing from 0.465 to 0.98). Quite 
aside from the fact that the Do result becomes even 
worse, it is clear that this quantity displays consider­
able sensitivity to the input g\2). Indeed, our experience 
has been that the various integral terms in Eq. (65) 
for D02 tend to cancel one another, so that resultant 
error is amplified percentagewise. By implication, it 
would seem probable that the calculation is similarly 
sensitive to error in the equilibrium superposition ap­
proximation used to eliminate g(3). These equilibrium 
distribution function errors naturally increase in mag­
nitude as density increases. 

With regard to (3) above, it should be noted that 
one has no assurance that the steady-state flow pattern 
in the phase space of three particles, as predicted by 
dynamical superposition, is necessarily divergence free. 
It would eventually be valuable to impose at least 
this triplet flow conservation condition in quantitative 
rectification of the low-order calculation presented in 
this article. Of course it need hardly be mentioned that 

computational difficulty increases with each suggested 
extension. 

There are potentially two aspects of self-diffusion 
wherein the form of the present theory, as distinct from 
its adaptability to computation, may lead to important 
insights. Both are connected with the fact that equi­
librium pair and triplet distribution functions, as input 
functions, will in the last analysis control the behavior 
of the transport phenomenon. Thus, the manner in 
which the decay of g(2)(r, N IV) -1 to zero decreases 
as one increases density from the dilute gas limit may 
be connected with the apparent nonanalyticity of trans­
port coefficients in density.21 For a similar reason, the 
very long-range tail that g\2)-1 develops under critical 
conditions for substances with attractive intermolecular 
forces, also may suffice in the present context to clarify 
the anomalous behavior reported for self-diffusion co­
efficients at the critical point.22 

The conclusion to be drawn from the expoloratory 
program outlined in this paper, we believe, is that 
qualitative (but not yet quantitative) feasibility has 
been demonstrated for construction of dense-fluid flow 
perturbations and transport coefficients directly from 
the low-order reduced Liouville equations. 

APPENDIX 

Under the local equilibrium assumption for the pair 
distribution function perturbations, Xl was related to 
DI , which then required elimination. We shall now 
investigate the character of DI for the stochastic process 
examined at length by Nelkin and Ghatak.23 

Consider the diffusive spreading of an initial delta­
function concentration profile, which at arbitrary time 
t is denoted by .:l(r, t). Then initially 

.:l(r, t=O) = oCr) = [1/ (271YJ! dk exp(ik·r). (A1) 

For t greater than the induction times to(k) for all 
wavelengths, 

.:l(r, t) = [1/(211")3J 

X! dk expl-k2D(k)[t-to(k) J+ik·r}. (A2) 

Unit normalization is maintained at all times by (A2) 
automatically: 

! .:l(r, t)dr= [1/ (211")3J jdrdk 

Xexpl-k2D(k) [t-to(k) J+ik·r} 

= !dkexpl -k2D(k)[t-to(k)J}o(k) 

=1. (A3) 

21 K. Kawasaki and 1. Oppenheim, Phys. Rev. 139, A1763 
(1965) . 

22 J. D. Noble and M. Bloom, Phys. Rev. Letters 14, 250 
(1965) . 

23 M. Nelkin and A. Ghatak, Phys. Rev. 135, A4 (1964). 
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The inverse to Fourier transform (A2) may be manip­
ulated as follows: 

exp{ -k2D(k) [t-to(k)]l = f dr exp( -ik·r) A(r, t) 

f sinkr 
= dr--A(r, t) 

kr 

en (-1) nk2nf 
= L dr r2nA(r t) 

n=O (2n+1)! ' 

en (-1) nk2n 
=~(2n+1)!(r2n)t, (A4) 

to introduce the spatial moments (r2n)1 at time t of the 
concentration packet. Now if the left hand member 
at the beginning of (A4) is expanded as a power series 
in k2 [referring to Eqs. (14) in the text] and corre­
sponding terms compared, we find: 

Do=lim(1/6t) (r2)1' 

Dl=lim[!Do2(t-2to) - (1/120t) (r4 )t]' (AS) 
t_en 

THE JOURNAL OF CHEMICAL PHYSICS 

The statistics of Brownian paths executed by diffus­
ing molecules are complex, even for rigid spheres. We 
suppose, however, that there exists an equivalent sim­
pler stochastic process, whose parameters are chosen 
to reproduce the correct Do, and which will suffice to 
estimate D1• We choose the Nelkin-Ghatak process, 
which postulates a velocity-independent molecular col­
lision rate, with randomization of velocities (according 
to the Maxwell distribution) after each collision. The 
successive spatial moments for this process have been 
computed,23 and the leading members of the sequence 
are: 

(r2),= (6/m/3a2) [T-1+exp( -r)], 

(r4)I= (120/m2j32a4) [!r2-3+ (r2+3T+3) exp( -T)], 

r=at, (A6) 

where a is the collision rate. After inserting these val­
ues in (AS), one obtains 

(A7) 

which was quoted in the text just before Eq. (40). 
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Direct mass spectrometric sampling studies of one-atmosphere flames are described. A simple model of the 
sampling process is summarized which accounts for the effects and results obtained. Stable product analysis 
and evidence for appreciable temperature dependence of fragmentation patterns are shown. Quantitative 
sampling of the free radicals H, 0, OH, and Cl from the burnt gas region of one-atmosphere flames is demon­
strated, with direct observation of excess free-radical concentrations in the reaction zones of these flames. 

1. INTRODUCTION 

THE first paperl in this series described the relation­
ship between aerodynamic molecular-beam forma­

tion and the problem of the direct mass-spectrometric 
sampling of systems at atmospheric pressure and above. 
Since the publication of that paper, considerable theo­
retical and experimental work on the free jet expansion 
and aerodynamic molecular beams has been reported. 
Now a rather simple model of the sampling process can 

* This research was sponsored by the Chemistry Office of the 
Advanced Research Projects Agency through the Power Branch 
of the Office of Naval Research. 

1 F. T. Greene, J. Brewer, and T. A. Milne, J. Chern. Phys. 
40, 1488 (1964). 

be formulated which accounts for the observed effects 
and gives a quantitative history of the sampling process. 
In this paper, we summarize this model and present 
data on the sampling of reactive species from one­
atmosphere flames. 

n. BEAM FORMATION FROM HIGH-PRESSURE 
SOURCES 

Starting from a stagnant condition, the gas to be 
sampled is accelerated as it approaches the sampling 
orifice, and reaches the speed of sound near the throat 
of the orifice. At this point, the pressure has dropped by 
as much as 15%-20%. From the sonic condition, the 
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