
Inherent-Structure View of Self-Diffusion in Liquids †

M. Scott Shell and Pablo G. Debenedetti
Department of Chemical Engineering, Princeton UniVersity, Princeton, New Jersey 08544

Frank H. Stillinger*
Department of Chemistry, Princeton UniVersity, Princeton, New Jersey 08544

ReceiVed: October 30, 2003; In Final Form: February 24, 2004

Molecular dynamics computer simulations have been conducted to examine the self-diffusion process for the
liquid phase of the classical Dzugutov model. Mean-square particle displacements as a function of time have
been evaluated over a wide temperature range, at reduced density 0.85, for both the continuous Newtonian
trajectories and the corresponding piecewise-constant inherent-structure trajectories. Both representations yield
the same self-diffusion constants but display distinct asymptotic offsets. These offsets possess different
temperature dependences, with a crossover well into the supercooled liquid regime, close to reduced temperature
T ) 0.7. Lindemann ratios have been obtained for both the stable bcc crystal and the liquid, showing a
characteristic jump upon melting. Although its magnitude appears to be model-dependent, this jump signifies
a marked difference in geometric character of the inherent-structure basins that respectively underlie the two
phases, and that have correspondingly different interbasin transitions controlling the rate of self-diffusion.

I. Introduction

The strong, complicated, and continual interactions that
operate in condensed phases determine both static and dynamic
properties of those material systems. Establishing quantitative,
predictive connections between knowledge of those interactions
on one hand, and the observable macroscopic properties on the
other hand, remains a major challenge to condensed matter
theory. In particular, this is true for the self-diffusion process,
one of the most basic attributes of molecular motion. This paper
has as its primary goal the clarification of diffusive motion from
the viewpoint of the multidimensional potential energy “land-
scape” representation,1,2 whereby steepest descent basins, and
their embedded “inherent structures”, serve as descriptive
analytical tools.3-5 To illustrate our theoretical ideas, we have
carried out, and report results from, a series of molecular
dynamics computer simulations. These simulations utilize the
classical single-component Dzugutov model,6-8 over a wide
temperature range. We are pleased to note that Keyes and
Chowdhary have carried out an analogous investigation for the
distinctly different Lennard-Jones model,9 and any similarities
and contrasts between the results obtained for these two cases
could provide a basis for enhanced understanding of molecular
details of diffusive processes. The introductory section to ref 9
contains a detailed general discussion of the physical insights
provided by the potential landscape/inherent-structure approach.

The following section briefly reviews the basic formulas
describing diffusive motion, the procedure for exhaustive
division of the multidimensional potential energy landscape into
basins, and the use of inherent structures (potential energy
minima) as a descriptive approach. Section III reviews the
Dzugutov model, explains why it was chosen for the present
study, and describes how it has been implemented in our
molecular dynamics simulation. Section IV presents numerical

results that have emerged from those simulations. Conclusions
and discussion in section V end our presentation.

II. Background Formalism

Throughout this paper, attention will focus on classical
N-body systems occupying volumeV, in a state of equilibrium
that is specified by the intensive variables temperatureT and
particle number densityF ) N/V. Diffusive particle motions
that are driven by local dynamics can be represented by the
mean-square displacement, versus elapsed timet, for any given
“tagged” particlej (1 e j e N), averaged over the equilibrium
ensemble. In the long-time asymptotic limit this mean-square
displacement rises at a rate proportional to the self-diffusion
constant:10

Herer j(t) is the position of particlej at timet, which in concert
with all other time-dependent particle positions obeys the
coupled Newton equations of motion for the system. Although
we shall not have reason to use it in the present analysis,
standard manipulation of expression (II.1) produces a familiar
expression for the self-diffusion constant in term of a velocity
autocorrelation function:10

In contrast to the long-time behavior ofF shown in eq II.1, the
leading short-time behavior has nothing directly to do with
diffusion. Under the realistic assumption that the Newtonian
equations of motion involve only portions of theN-body
potential energy functionΦ(r1...rN) that are continuous and
differentiable, the small-t character ofF results from linear† Part of the special issue “Hans C. Andersen Festschrift”.

F(t) ≡ 〈[r j(t) - r j(0)]2〉 ∼ 6D(T,F)t (II.1)

D(T,F) ) (1/3)∫0

∞
〈vj(t)‚vj(0)〉dt

vj(t) ) dr j(t)/dt (II.2)
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estimates of particle paths. This leads to the following result:

Here kB is Boltzmann’s constant,m is particle mass, and the
coefficient of the leading quadratic term follows directly from
the Maxwell-Boltzmann velocity distribution at temperature
T. The subsequent quartic and higher order terms are more
complicated and substance-specific, because they involve
interparticle forces. Note that eq II.3 is valid regardless of the
phase that is involved, and in particular applies to a low-
temperature crystal in which diffusion may be immeasurably
small.

Although a best linear fit toF(t) in its asymptotic regime
has a slope specified by eq II.1, that linear fit does not generally
extrapolate back to the origin. Instead, it will typically exhibit
a vertical offset:

This offset is an important indicator of at least some aspects of
the cooperative many-body effects (such as “caging”) that
control self-diffusion rates.

An alternative, but closely related, representation of the
diffusive process emerges naturally from the steepest descent
mapping operation on the multidimensional potential energy
hypersurface.2-5 This operation connects anyN-particle con-
figuration r1...rN (with zero-measure exceptions) to that of a
nearbyΦ minimum, to be denoted byR1...RN. The latter is
conventionally called an “inherent structure”. The set of all
configurations that map onto the same inherent structure defines
a steepest descent basin for that inherent structure. The set of
all basins tiles (i.e., exhaustively covers) the entire configuration
space. Although each basin contains only a singleΦ minimum
by construction, it can in principle contain one or more
embedded saddles of various orders. Basins are topologically
connected but need not be singly connected.

The Newtonian trajectoryr j(t) for any particle j can be
resolved into its inherent-structure componentRj(t), plus an
intrabasin displacementSj(t):

Although the Newtonian trajectoryr j(t) is continuous in time,
the mapped trajectoryRj(t) is piecewise constant, suffering jump
discontinuities each time that the former executes a boundary-
crossing transition from one basin to another. The intrabasin
“vibrational” displacementSj(t) of course exhibits discontinuities
that are exactly the negatives of those ofRj(t).

Accumulated experience has shown that interbasin transitions,
viewed from the respective inherent-structure (IS) configura-
tions, typically entail localized rearrangements of essentially
onlyO(1) particles out of the full set ofN, and furthermore those
localized displacements involved are themselves onlyO(1) in
magnitude.11-13 This implies thatFIS(t), the inherent-structure
mean-square-displacement analogue ofF(t),

has the same asymptotic behavior as shown earlier in eq II.1:

However, a different offset magnitude should be expected for

this alternative mean-square displacement function:

It should be noted that bothF(t) andFIS(t) formally are even
functions oft, owing to time-reversal symmetry of the equations
of motion.

At low temperature, where the equilibrium phase of the
system will be a crystal, or where the system may have been
quenched into a low temperature glass, dynamical motions will
predominantly be small amplitude harmonic vibrations about a
single inherent structure. In this circumstanceFIS(t) will remain
equal to zero for any reasonable observation time, butF(t) will
rise quickly above zero due to those intrabasin vibrations before
leveling out to the valueC(T,F) > 0. At somewhat higher, but
still low, temperatures bothFIS and F will rise slowly with
increasingt on account of the presence of slow diffusion, but it
is reasonable to anticipate that at intermediate to long times

However, this inequality might be violated at intermediate or
high temperatures. This crossover possibility, a sign change of
the offset differenceC(T,F) - CIS(T,F), supplies one of the
motivations for invoking molecular dynamics simulation, as
described in sections III and IV.

On account of the piecewise-constant character of the function
Rj(t), the short-time behavior ofFIS(t) differs qualitatively from
that of F(t). Specifically, the leading order int is linear:

The coefficientL(T,F) is determined by the statistics of timing
and of particle displacement at the first IS transition att > 0.
Let P(σ,τ) dσ dτ be the probability this first transition occurs
during infinitesimal time intervalτ ( dτ/2, and that it displaces
the tagged particle by a scalar distance in the infinitesimal
intervalσ ( dσ/2. Then the coefficientL(T,F) is determined by
the initial-time transition rate out of the starting inherent
structure, with squared-distance weighting:

Equations II.10 and II.11 are an appropriate description for
systems with modest, finite numbers of particles such as that
chosen for our simulation in sections III and IV. However, it
has to be realized that in considering very large systems, and
the thermodynamic large-system limit, the interbasin transition
rate is an extensive quantity.11,14 This stems from the fact that
the number of locations at which a localized particle rearrange-
ment could occur at any instant is asymptotically proportional
to the system size. Therefore, in a very large system the most
likely first transition aftert ) 0 will be remote from the tagged
particle j, and will have only an extremely small effect onj
due to medium elasticity. Consequently, thet ≈ 0 behavior of
the infinite-system-limitFIS(t) may not be simply a linear form
indicated in eq II.10 for the finite-N version of that function.
This limiting behavior is a subtlety whose detailed analysis lies
beyond the scope of the present paper.

It should not be overlooked that comparisons between
Newtonian positionsr j(t) and the inherent-structure positions
Rj(t) permit evaluation of the instantaneous root-mean-square
return distance

F(t) ) (3kBT/m)t2 + O(t4) (II.3)

C(T,F) ) lim
tf∞

[F(t) - 6D(T,F)t] (II.4)

r j(t) ) Rj(t) + Sj(t) (II.5)

FIS(t) ) 〈[Rj(t) - Rj(0)]2〉 (II.6)

FIS(t) ∼ 6D(T,F)t (II.7)

CIS(T,F) ) lim
tf∞

[FIS(t) - 6D(T,F)t] (II.8)

FIS(t) < F(t) (low T) (II.9)

FIS(t) ) L(T,F)t + O(t2) (II.10)

L(T,F) ) ∫0

∞
σ2P(σ,τ)0+) dσ (II.11)

〈[r j(t) - Rj(t)]
2〉1/2 ≡ 〈[Sj(t)]

2〉1/2 (II.12)
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as a function of density and temperature. This quantity is directly
relevant to the Lindemann melting criterion for crystals,15 which
states that equilibrium melting occurs when the ratio of the root-
mean-square displacement of atoms from equilibrium lattice
positions to the nearest neighbor lattice spacing reaches a critical
value. The value of this Lindemann ratio at melting is somewhat
crystal-structure and substance dependent, but in all known cases
is of the order of magnitude 0.1.15,16The quantity shown in eq
II.12 is well-defined for any phase and thus offers the possibility
of an “inverse-Lindemann freezing criterion” for liquids.17 In
this sense, a lower critical value attained during liquid cooling
by this quantity (suitably nondimensionalized) would signal the
onset of equilibrium freezing. A discussion of this byproduct
of our simulation appears below.

III. Simulation Procedure

To illustrate concepts outlined in previous section II with
computer simulation, it is advantageous to select a classical
model that is relatively simple, that possesses a substantial
liquid-state temperature range, and that affords a useful contrast
to the Lennard-Jones model that has been previously consid-
ered.9 With these criteria in mind, we have chosen the Dzugutov
pair-potential model for study. When it is expressed in the usual
reduced energy and length units, this pair potential has the
following form:6

with V1 andV2 vanishing identically beyond the respective cutoff
distancesa andb. The numerical values chosen for the constants
appearing in these expressions are

This pair interaction function possesses a single minimum
located at

and in this respect it is qualitatively similar to the familiar
Lennard-Jones pair potential (which has a unit-depth minimum
at distance 21/6 = 1.1225). However, unlike the Lennard-Jones
function, the Dzugutov pair potential exhibits a single relative
maximum at

This model potential was originally constructed to favor the
formation of icosahedral short-range order in the liquid phase,
a feature that would intrinsically frustrate the formation of a
periodic crystal at low temperature.6 However, it has subse-
quently been discovered that the classical Dzugutov model has
the body-centered cubic phase as its equilibrium structure at
moderately low temperatures and pressures.18 This stands in
contrast to the classical Lennard-Jones model, for which the
corresponding crystal phase is hexagonal close-packed (with

slight uniaxial distortion) at low pressures.19 It has also been
demonstrated that the Dzugutov potential possesses significantly
different liquid-phase short-range order compared to the Len-
nard-Jones case,6 which is one of the primary motivators for
the present study. It is also noteworthy that the Dzugutov model
does not exhibit liquid-vapor coexistence, in distinct contrast
to the Lennard-Jones model.20

Our liquid-phase numerical simulations involvedN ) 256
particles, confined to a cubic unit cell with a volume chosen to
fix the reduced density atF ) 0.85. Periodic boundary conditions
applied. Particle mass was set equal to unity, and the energy
and length units used in eqs III.1-III.4 above served to define
reduced temperatures and densities. The Newtonian equations
of motion were integrated numerically using the velocity Verlet
algorithm with a time stepδt ) 0.001.21 Although the mapping
of configurations onto localΦ minima are usually defined to
emanate from a steepest descent process, this has been found
to be numerically very inefficient; instead, we have used a
conjugate gradient approach, the first step of which is in fact a
steepest descent operation.22 In most cases this more effective
procedure identifies the proper inherent structure and is adequate
for present purposes. It is worth noting that the Dzugutov pair
potential and all its distance derivatives are continuous at the
cutoff pointsa andb, a feature that stabilizes both the Newtonian
equation of motion and the conjugate gradient numerical
processes; however, this interaction smoothness property has
not been present in many past numerical studies that have
truncated infinite-range interactions (such as the Lennard-Jones
model potential) at a finite-distance cutoff.

All simulations were performed in the microcanonical
ensemble, and temperature was adjusted by means of periodic
velocity scaling every 103 time steps. Except for the highest
temperature examined (T ) 3.0), the system was slowly cooled
from reduced temperatureT ) 2.0 to the desired temperature
over the course of 5× 105 time steps, and then allowed to relax
for an additional 2× 105 steps. During the subsequent
production period, velocity rescaling was turned off and energy
minimization was performed every 103 time steps. Twenty time
origins, each separated by 10 time units, were used to gather
statistics for the calculation of mean-squared displacement
curves.

We found that this simulation protocol resulted in the system
spontaneously freezing into a somewhat strained and defective
crystal atT ) 0.8 during the latter portion of the production
phase. By using only the data before this freezing event, we
were able to extract properties corresponding to the metastable
liquid phase at this relatively low temperature. At the slightly
lower temperatureT ) 0.7, however, we found this transition
to occur too quickly to extract meaningful liquid-state informa-
tion. To examine the behavior of the supercooled liquid at even
lower temperatures, therefore, we employed a quenching
procedure in which an equilibrated high-temperature (T ) 1.4)
liquid was suddenly forced to a much lower temperature via
periodic velocity rescaling. By quenching to low enough
temperatures (0.4e T e 0.5), crystal nucleation became sluggish
owing to the increased viscosity of the melt, permitting adequate
measurements to be performed for the liquid state. Visual
examination of the final configuration from these trajectories
verified that crystallization indeed had not occurred.

Finally, and for comparison with the liquid-phase results, we
have investigated the melting behavior of the crystal upon
heating at the constant density ofF ) 0.85. By periodic velocity
rescaling, we slowly heated a perfect bcc crystal of 250 atoms
from T ) 0.5 to 1.0 over the course of 106 time steps. Similarly

V(r) ) V1(r) + V2(r)

V1(r) ) A(r-m - B) exp[c/(r - a)] (r < a) (III.1)

V2(r) ) B exp[d/(r - b)] (r < b)

m ) 16 A ) 5.82 B ) 1.28

a ) 1.87 b ) 1.94 c ) 1.1 d ) 0.27
(III.2)

rmin = 1.1301

V(rmin ) = -0.581436 (III.3)

rmax = 1.6275

V(rmax) = 0.459686 (III.4)
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to the liquid-state simulations, inherent-structure minimizations
were performed every 103 time steps, though the mean-squared
displacement curves were tabulated for a single time origin.

IV. Results

Figure 1 shows characteristic mean-squared displacement
curves for a single trajectory, generated from a system equili-
brated atT ) 1.0. The discontinuous nature of the inherent-
structure curve is immediately obvious; the system remains in
its original basin untilt ) 0.02, after which point it maneuvers
rather quickly between nearby basins. The small length scale
on which these changes occur suggests that the inherent-structure
transitions involve a relatively small number of particles. The
corresponding Newtonian calculation remains smooth and
exhibits the initial ballistic behavior described by eq II.3 until
roughly t ) 0.10. It is clear at this temperature that the system
leaves its initial basin relatively rapidly, which results in
inherent-structure displacements greater than their Newtonian
counterparts at subsequent times.

Figure 2 illustrates the freezing process which was detected
at the slightly lower temperature ofT ) 0.8. During this
trajectory, both the internal energy and pressure decreased
abruptly aroundt ) 850, fluctuating around new average values
for further molecular dynamics steps. In particular, the pressure
drop implies that under isobaric conditions the volume change
on melting would be positive. An additional 103 MD steps did
not yield further changes or transitions (not shown). The final
inherent-structure configuration is depicted in Figure 3a, which
clearly indicates the presence of crystallinity. To collect liquid-
state data at lower temperatures and avoid the freezing transition,
therefore, a procedure was employed in which high-temperature
systems were rapidly quenched and allowed to evolve atT )
0.4 and 0.5 (see preceding section). These temperatures were

found to be high enough for the system to eventually escape
cagelike dynamics (results not shown), but sufficiently low to
suppress crystal nucleation during the trajectory. The final
inherent structures from these runs were found to remain
amorphous; theT ) 0.5 case appears in Figure 3b.

We show selected average mean-squared displacement results
for both the high-temperature and quench runs in Figure 4. At
the relatively high temperatureT ) 1.6, the vertical position of
the inherent-structure displacement curve exceeds that of its
Newtonian equivalent by a substantial amount, over 0.1 squared
distance units per particle. This again reflects the tendency of
the system very quickly to leave its initial basin at increased
temperatures, with the minimization procedure on average taking
the system to inherent structures that are quite remote. As the
temperature is decreased, however, the separation between the
two curves gradually decreases and appears to change sign at a
temperature that lies between theT ) 0.5 and 0.8 cases. At the
cooler of these, the vertical ordering of the two curves has
reversed. In that case, the system spends a substantial amount
of time in each basin before finding a sufficiently low-energy
avenue to another, whereas the vibrational displacements around
energy minima of the Newtonian trajectory more quickly move
the system away from its initial configuration. At all temper-
atures, the long-time behavior of the two curves yielded
statistically identical self-diffusion coefficients, which are shown
for the Newtonian version in Figure 5.

A quantitative depiction of the offset between inherent-
structure and Newtonian mean-squared displacement results is
given in the top of Figure 6. We show calculations averaged
from both the entire collection, and from only the first 200
Newtonian/inherent-structure pairs in each trajectory. The two
averages reveal a nontrivial amount of statistical fluctuation in
the data; however, one can generally extract a decreasing trend

Figure 1. Short-time behavior of a single trajectory for the liquid at
F ) 0.85 andT ) 1.0. The Newtonian (solid line) and inherent-structure
(line with symbols) trajectories are displayed on a per-particle basis.
Each diamond symbol corresponds to a single time step.

Figure 2. Progression of the per-particle potential energy and pressure
in theT ) 0.8 trajectory. At approximatelyt ) 850 the system freezes
into a strained and defective crystal.

Figure 3. Visualizations of the final inherent-structure configurations
from (a) theT ) 0.8 trajectory, which freezes into a strained and
defective crystal, and (b) theT ) 0.5 quenched trajectory, which
remains in an amorphous state.

Figure 4. Short-time behavior of the Newtonian (solid line) and
inherent-structure (dotted line) trajectories for several temperatures.
Each curve is an average over 20 time origins and reported on a per-
particle basis. The vertical ordering of the two curves changes between
the temperaturesT ) 0.8 andT ) 0.5.
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in the inherent-structure offset compared to the Newtonian data
with decreasing temperature. This relative offset vanishes around
T ) 0.7 and becomes negative at lower temperatures. In the
bottom of this figure, we also show the average squared return
distance between instantaneous configurations and their associ-
ated inherent structure. The growth of this quantity with
temperature is a reflection of the fact that the system spends
increasingly more time in basin areas that are remote from
inherent structures. Furthermore, its nonlinear behavior is
evidently influenced both by vibrational anharmonicity and by
changes with temperature of the shapes of occupied basins.
Interestingly, it appears this average return distance possesses
an inflection point in the same temperature region where the
inherent-structure mean-squared displacement offset extrapolates
to zero.

By slowly “heating” a perfect bcc crystal configuration, we
were also able to determine the corresponding mean-squared
displacement behavior in the solid phase. Presumably, one would
expect the inherent-structure displacement to remain zero at low
temperatures, where no defects are present in the crystal, and
to increase sharply as the temperature rises above the melting
point. In simulation, however, the crystal structure is likely to
persist as a metastable feature even as the temperature is raised
slightly above the true thermodynamic melting line. This is in
fact the behavior we observe in our calculations, displayed in
Figure 7. The crystal remains stable until the temperature reaches

T ) 0.95, at which point both the Newtonian and inherent-
structure mean-squared displacement curves increase dramati-
cally. (For comparison, the slopes of the liquid-phase curves at
that temperature are nearly 5000 times greater than the slope
exhibited by the crystal’s Newtonian curve prior to melting.) It
is interesting to note that melting occurs when〈(R - r )2〉 ≈
0.045, which is equivalent to a Lindemann ratio (of rms
displacement to nearest-neighbor separation) equal to 0.18.
Although this number may be somewhat inflated as a result of
bcc crystal superheating, it is nevertheless within the range
reported for other models and substances.15-17 The average
squared return distance in the liquid atT ) 1.0 is〈(R - r )2〉 ≈
0.115, which implies a Lindemann ratio approximately equal
to 0.29. This is about 1.6 times that of the bcc crystal at the
same temperature, thus exhibiting a substantial increase as a
result of melting. This behavior is similar to an observation made
some years ago for a smoothly truncated version of the Lennard-
Jones interaction;17 however, in that former case the jump factor
for the Lindemann ratio was approximately 2.7, implying a
significant model dependence. Nevertheless, these results sup-
port the applicability of a properly structured “inverse” Linde-
mann criterion for the liquid phase, in which crystallization
spontaneously occurs during liquid cooling when the average
return distance of the system to its nearest inherent structure
declines to a relevant critical value.

V. Conclusions and Discussion

The long-time limiting behavior of particle mean-square
displacements determines self-diffusion constants. Two contrast-
ing routes are available for this determination. The first, and
traditional, route monitors the Newtonian dynamical paths for
selected particles. The second option relies on mapping the
N-particle time-evolving configuration onto inherent structures
(potential energy minima), and uses those inherent structures
to evaluate mean-square displacements versus time. Although
these two alternatives must in principle yield identical results
for the self-diffusion constant, they display short and intermedi-
ate time differences that arise from details of diffusion processes.
These differences hold the promise of revealing insights for
deeper understanding of those processes.

The present study involves a series of classical molecular
dynamics simulations for the pairwise-additive Dzugutov po-
tential model at reduced density 0.85, and over a wide
temperature range that encompasses equilibrium and supercooled
liquid states, as well as the crystal. The simulations produced
mean-square particle displacement results both for the Newto-
nian trajectory and for the inherent-structure alternatives. The

Figure 5. Arrhenius plot of self-diffusion coefficients from the current
work with N ) 256 (filled symbols) and that of ref 8 (open symbols)
with N ) 16000.

Figure 6. Top panel: average difference between the inherent-structure
and Newtonian mean-squared displacement curves. The open symbols
are averaged over the full trajectory, whereas the closed ones are
averaged over only the first 200 time units. Bottom panel: average
squared return distance between an instantaneous configuration and
its associated inherent structure.

Figure 7. Progression of the Newtonian (solid line) and inherent-
structure (dotted line) mean-squared displacement curves as a perfect
bcc crystal is heated fromT ) 0.5 toT ) 1.0. When the temperature
reaches approximately 0.95, the crystal melts and both displacement
curves increase dramatically.
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implied liquid-phase diffusion constants (Figure 5) show a
temperature dependence that, within the numerical uncertainty,
can be described as an Arrhenius behavior with an activation
energy of approximately 3.0 reduced energy units. This activa-
tion energy is approximately 5.2 times the depth of the Dzugutov
pair potential minimum, eq III.3.

In both protocols, the asymptotic long-time form of the mean-
square displacement curves are accurately described as linear
functions of time at all temperatures. The best linear fits for
the Newtonian and the inherent-structure alternatives exhibit
constant offsetsC(T) (eq II.4) andCIS(T) (eq II.8) that, at the
conditions investigated here, are positive, but with distinct
temperature dependences. The sign of the offsetC depends on
the relative magnitudes oft1 ) 2Dm/kBT (the time when 6Dt )
〈[r (0) - r (t)]2〉, assuming parabolic behavior of the mean-
squared displacement) andt2, the momentum relaxation time
at which the mean-squared displacement essentially changes
from parabolic to linear. Ift2 > t1, the common situation,C >
0. However,t2 decreases with increasing density, and henceC
can become negative. The manner in which this occurs, and
the influence of caging onC, are interesting topics for future
investigation.

At low temperatures, in both crystalline and supercooled
liquid states,C > CIS, due primarily to inclusion of intrabasin
displacements inC but their exclusion fromCIS. At high
temperature the order is reversed,CIS > C. In this latter regime,
typical liquid configurations are widely removed from their
mapped inherent structures on account of strong local density
and structural fluctuations driven by intense thermal excitation;
by contrast the Newtonian trajectories are immune to this effect.
Our results suggest that the crossover temperature at whichC
) CIS is approximatelyT ) 0.7. This crossover is analogous
to, but not necessarily to be directly identified with, the mode-
coupling-theory structural arrest temperatureTx, below which
only activated hops between neighboring basins are available
for relaxation and diffusion.23 In fact, Dzugutov and co-workers8

have calculatedTx to be about 0.39, and their results seem to
suggest that theC(T), CIS(T) crossover better coincides with
the onset of stretched-exponential relaxation and the formation
of large icosahedral clusters.

A natural byproduct of the numerical construction of inherent-
structure mean-square displacements versus time is evaluation
of the intrabasin root-mean-square magnitude of particle return
distance under the mapping to potential minima. In the crystal
phase, the dimensionless ratio of this length to the nearest-
neighbor lattice spacing plays a fundamental role in the
Lindemann melting criterion.15,16 For the Dzugutov potential
model at density 0.85 we have verified that the Lindemann ratio
for the stable body-centered cubic crystal rises from zero at
absolute zero temperature to approximately 0.18 at the melting
point, in agreement with conventional expectation. Furthermore,
the Lindemann ratio in the liquid at the freezing point is
substantially larger. This latter observation is similar to one made
some time ago for a modified Lennard-Jones potential model,17

and thus strengthens the case for advocating a suitably crafted
“inverse-Lindemann” freezing criterion. A significant jump in
the Lindemann ratio upon passing from crystal to liquid at the
melting point accents the qualitative difference in character of
the potential energy basins that respectively underlie the two
phases.

Finally, we remark briefly on the comparison between the
present results for the Dzugutov model at reduced density 0.85

to the Keyes and Chowdhary simulation results (N ) 32) for
the Lennard-Jones model at reduced density 1.0.9 First, those
authors have also observed distinct offsets for Newtonian and
for inherent-structure mean-square displacement curves as a
function of time, presenting qualitatively the same kinds of
temperature variations, with a crossover temperature of ap-
proximately 0.8 (Figure 10 of ref 9). Keeping in mind the
relative depths of the Lennard-Jones and Dzugutov pair
potentials, however, this temperature is effectively lower than
that of the present Dzugutov study. Second, the self-diffusion
rates for that Lennard-Jones study (Figure 7 of ref 9) appear to
have a range of activation energies that are a considerably
smaller multiple (roughly 2.0) of the pair potential depth than
we have observed for the Dzugutov interaction model. This may
seem somewhat surprising, given the higher packing density of
the Lennard-Jones case (even after accounting for the slightly
different distances at which the two potentials have first zeros,
1.0000 for Lennard-Jones and 1.0245 for Dzugutov). In addition,
the Dzugutov model may have a greater propensity for
heterogeneous dynamics.8 Evidently, the details of short-range
order that are distinctly different in the respective liquids,
stemming from the contrasting interactions, markedly influence
the diffusion processes in the two cases. In short, these two
models present a clear and instructive contrast.
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